Academic literature on the topic 'Bacillus thuringiensis sérotype israelensis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacillus thuringiensis sérotype israelensis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bacillus thuringiensis sérotype israelensis"

1

Ward, E. S., and D. J. Ellar. "Bacillus thuringiensis var. israelensis δ-endotoxin." Journal of Molecular Biology 191, no. 1 (September 1986): 1–11. http://dx.doi.org/10.1016/0022-2836(86)90417-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ward, E. S., A. R. Ridley, D. J. Ellar, and J. A. Todd. "Bacillus thuringiensis var. israelensis δ-endotoxin." Journal of Molecular Biology 191, no. 1 (September 1986): 13–22. http://dx.doi.org/10.1016/0022-2836(86)90418-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Hyun-Woo, Dennis K. Bideshi, and Brian A. Federici. "Recombinant Strain of Bacillus thuringiensis Producing Cyt1A, Cry11B, and the Bacillus sphaericus Binary Toxin." Applied and Environmental Microbiology 69, no. 2 (February 2003): 1331–34. http://dx.doi.org/10.1128/aem.69.2.1331-1334.2003.

Full text
Abstract:
ABSTRACT A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).
APA, Harvard, Vancouver, ISO, and other styles
4

Armstrong, J. L., G. F. Rohrmann, and G. S. Beaudreau. "Delta endotoxin of Bacillus thuringiensis subsp. israelensis." Journal of Bacteriology 161, no. 1 (1985): 39–46. http://dx.doi.org/10.1128/jb.161.1.39-46.1985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khan, Sharik R., Josef Deutscher, Ram A. Vishwakarma, Vicente Monedero, and Nirupama B. Bhatnagar. "The ptsH gene from Bacillus thuringiensis israelensis." European Journal of Biochemistry 268, no. 3 (February 2001): 521–30. http://dx.doi.org/10.1046/j.1432-1327.2001.01878.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lacey, Lawrence A. "BACILLUS THURINGIENSIS SEROVARIETY ISRAELENSIS AND BACILLUS SPHAERICUS FOR MOSQUITO CONTROL." Journal of the American Mosquito Control Association 23, sp2 (July 2007): 133–63. http://dx.doi.org/10.2987/8756-971x(2007)23[133:btsiab]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Futami, Kyoko, James O. Kongere, Mercy S. Mwania, Peter A. Lutiali, Sammy M. Njenga, and Noboru Minakawa. "Effects of Bacillus thuringiensis israelensis on Anopheles arabiensis." Journal of the American Mosquito Control Association 27, no. 1 (March 2011): 81–83. http://dx.doi.org/10.2987/10-5998.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wamunyokoli, Fred W., and Ellie O. Osir. "Characterisation of Bacillus thuringiensis variety israelensis delta-endotoxin." International Journal of Tropical Insect Science 16, no. 3-4 (December 1995): 343–49. http://dx.doi.org/10.1017/s1742758400017380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zribi-Zghal, Raida, Marwa Kharrat, Ahmed Rebaï, Saoussen Ben khedr, and Slim Tounsi. "Study of bioinsecticide production by Bacillus thuringiensis israelensis." New Biotechnology 29 (September 2012): S221. http://dx.doi.org/10.1016/j.nbt.2012.08.623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ankarloo, Jonas, Dominique A. Caugant, Bjarne M. Hansen, Alexandra Berg, Anne-Brit Kolstø, and Ann Lövgren. "Genome Stability of Bacillus thuringiensis subsp. israelensis Isolates." Current Microbiology 40, no. 1 (January 31, 2000): 51–56. http://dx.doi.org/10.1007/s002849910010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bacillus thuringiensis sérotype israelensis"

1

Tokcaer, Zeynep. "Response Surface Optimization Of Bacillus Thuringiensis Israelensis Fermentation." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/3/1109602/index.pdf.

Full text
Abstract:
The control of pest populations by using insect pathogens has been an attractive alternative to the application of chemical pesticides employed for the same purpose. As these chemicals not only damage the environment, but also trigger development of resistance by the pests and can harm other organisms together with the target pest, biological control is preferable and Bacillus thuringiensis (Bt) subspecies have been the most widely used bioinsecticides in forestry, agriculture and mosquito/ black fly control. The most important property of Bt subspecies is the synthesis of protoxins named as delta-endotoxins (crystal proteins). In this study, response surface optimization of Bt subsp. israelensis HD500 batch fermentation for high level production of its toxin proteins Cry4Ba and Cry11Aa was performed. As the interaction of the medium components as well as cultivation conditions are expected to influence the production of the toxin proteins, an experimental chart was prepared by accepting the previously reported optimal values for the most important parameters as zero points: [Mn], 10-6 M
[K2HPO4], 50 mM
C:N ratio, 20:1 and incubation temperature
30°
C. When the combinations of these variables at different levels were studied at 30 batch cultures and analysed for the optimum toxin protein concentrations, temperature: 28.3&
#61616
C, [Mn]: 3.3x10-7M, C:N ratio: 22.2 and [K2HPO4]: 66.1mM yielded the highest concentrations of both Cry4Ba and Cry11Aa toxin proteins.
APA, Harvard, Vancouver, ISO, and other styles
2

Purcell, Mark Douglas. "The mosquitocidal activity of Bacillus thuringiensis ssp. israelensis." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clark, Burton David. "Characterization of plasmids from Bacillus thuringiensis var. israelensis /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487330761220416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Houston, J. "Control of sewage filter flies using Bacillus thuringiensis var israelensis." Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boonserm, Panadda. "Structure-function studies of the Bacillus thuringiensis subsp. Israelensis mosquitocidal toxins." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vollmann, Ketlyn. "Análise ecotoxicológica de diferentes formulações do bioinseticida Bacillus thuringiensis var. israelensis." reponame:Repositório Institucional da UFSC, 2012. http://repositorio.ufsc.br/xmlui/handle/123456789/95896.

Full text
Abstract:
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Química, Florianópolis, 2011
Made available in DSpace on 2012-10-26T06:55:53Z (GMT). No. of bitstreams: 0
O Bacillus thuringiensis var. israelensis (Bti) é uma bactéria entomopatogênica, Gram-positiva, aeróbica facultativa, formadora de esporos que, durante a esporulação, sintetiza um cristal protéico parasporal (?-endotoxina) em adição ao endósporo, tóxico a uma grande variedade de insetos que são economicamente importantes como pestes. Sua ação depende da ingestão dos cristais, que são solubilizados no intestino de larvas susceptíveis, onde as protoxinas são liberadas, formando poros na membrana, causando a morte da larva. Ele tem sido utilizado em Joinville e região para o controle dos mosquitos Aedes aegypti e Simulium pertinax, cujos ataques causam sérios impactos e inconveniência à população ribeirinha e ao turismo local. O objetivo do presente estudo é testar a metodologia de cultivo semi-contínuo para a produção de Bacillus thuringiensis var. israelensis proposta por Silva (2007); desenvolver uma formulação bioinseticida contendo o Bti obtido e verificar sua eficácia no controle populacional de larvas de A. albopictus em comparação com os bioinseticidas comerciais Vectobac AS e Teknar HP-D , bem como sua segurança em testes de toxicidade aguda utilizando, como bioindicadores, organismos não-alvo de diferentes níveis tróficos: o flagelado Euglena gracilis, representando os produtores primários, o microcrustáceo Daphnia similis, representanto os consumidores secundários e o peixe Danio rerio como representante dos consumidores terciários. Sob as condições experimentais utilizadas, a formulação bioinseticida produzida demonstrou ser eficiente para o controle de larvas de A. albopictus, com valores de DL50 de 3,97 mg/L, enquanto que os produtos comerciais formulados Vectobac AS e Teknar HP-D , tiveram valores de DL50 de 0,019 e 0,013 mg/L respectivamente. O bioinseticida Bti-Univille formulado demonstrou ser mais seguro ao organismo não-alvo Daphnia similis (DL50= 130 mg/L) que os produtos comerciais Vectobac AS® (DL50= 50 mg/L) e Teknar HP-D® (DL50= 32 mg/L), requerendo doses maiores para causar a mesma letalidade. Para todas as formulações bioinseticidas testadas, os valores de DL50 à D. similis foram superiores aos de DL50 estimados para o inseto-alvo; frente ao peixe Danio rerio, nenhuma das amostras bioinseticida testadas demonstrou toxicidade em doses até 100 mg/L. Os resultados obtidos nos ensaios de toxicidade aguda com Euglena gracilis foram inconclusivos, sendo necessária a realização de novos testes sob as mesmas condições experimentais para estimar a toxicidade do bioinseticida produzido a este organismo não-alvo.
APA, Harvard, Vancouver, ISO, and other styles
7

Beltrão, Henrique de Barros Moreira. "Interação das toxinas Cry do Bacillus thuringiensis svar. israelensis com o mesêntero de larvas do vetor Aedes aegypti (Diptera: Culicidae)." reponame:Repositório Institucional da FIOCRUZ, 2006. https://www.arca.fiocruz.br/handle/icict/3931.

Full text
Abstract:
Made available in DSpace on 2012-05-07T14:43:55Z (GMT). No. of bitstreams: 2 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) 000004.pdf: 691391 bytes, checksum: c2676ae4df935413ee508028e9a02a22 (MD5) Previous issue date: 2006
O Bacillus thuringiensis svar. israelensis (Bti) é um importante entomopatógeno utilizado na produção de larvicidas para o controle do Aedes aegypti, vetor da dengue. A toxicidade do Bti está baseada no cristal, produzido durante a esporulação, que contém quatro protoxinas Cry11Aa (70 kDa), Cry4Aa (125 kDa), Cry4Ba (130 kDa) e Cyt1A (28 kDa). Sua ação ocorre através da ingestão dos cristais que são solubilizados no mesêntero, onde as protoxinas são liberadas e clivadas por serina-proteases em toxinas ativas que agem em sinergia no epitélio intestinal e provocam a morte das larvas. Apesar da alta seletividade do Bti, ainda não foi completamente elucidado como as toxinas Cry interagem com os receptores específicos presentes no epitélio das larvas. O objetivo principal do trabalho foi caracterizar, através de ensaios in vitro de natureza quantitativa, a capacidade de ligação de cada toxina Cry (4Aa, 4Ba e 11Aa) às preparações de microvilli intestinal (BBMF) de larvas de Ae. aegypti. Para tal, cada componente Cry foi produzido a partir de cepas recombinantes, Bt cepa 4Q2-81, para produção de biomassas. A atividade inseticida das biomassas para larvas do 3o/4o estádios foi determinada através de bioensaios e, outra parte da biomassa foi utilizada para a obtenção dos cristais. Os cristais contendo cada protoxina foram processados in vitro e uma amostra de cada uma delas foi marcada com iodo (I125). Para realizar os estudos de ligação foram feitas preparações BBMF, a partir de larvas do 3o/4o estádios. Os estudos da capacidade de ligação da toxina foram realizados através de ensaios de competição, de saturação e de cinética, através de incubações entre a toxina- I125 e preparações de BBMF, na ausência ou na presença de um competidor. (...) Os resultados obtidos mostraram que as toxinas Cry competem pelos mesmos sítios e partilham receptores presentes na BBMF. Em todos os casos estudados, a afinidade do complexo toxinareceptor não foi elevada, e não foi detectada sinergia entre as toxinas Cry para a ligação à BBMF. A ligação entre as toxinas-I125 e a BBMF é irreversível, e observou-se uma forte tendência à oligomerização nos três casos. Os resultados obtidos nesse trabalho sugerem que a toxicidade das toxinas Cry para larvas de Aedes está relacionada à etapa irreversível de ligação com os receptores, e não é caracterizada por um padrão elevado de afinidade do complexo toxina-receptor ...
APA, Harvard, Vancouver, ISO, and other styles
8

Abdoarrahem, Mostafa Mohamed Omar. "Factors influencing the activity of mosquito control agent (Bacillus thuringiensis subsp. israelensis)." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54112/.

Full text
Abstract:
For toxicity, B. thuringiensis must be taken into the larval midgut, where a community of other bacteria is already present. The culturable flora from the Aedes aegypti mosquito midgut was analysed and its role in larval growth and insect mortality was determined. In contrast to published reports concerning B. thuringiensis subsp. kurstaki, subsp. israelensis caused toxicity and larval death even in the absence of other bacteria. The pBtoxis plasmid of B. thuringiensis subsp. israelensis encodes all the mosquitocidal toxins and a number of other coding sequences. The potential effects of selected genes on host phenotype was assessed. No evidence was found for antibiotic production from putative antibiotic synthesis genes. The plasmid also carries potential germination genes organised in a single ger operon. Comparison of the germination responses of spores from strains with and without pBtoxis revealed that this plasmid could promote activation of the spores under alkaline conditions but not following heat treatment. Introduction of the ger operon on a recombinant plasmid to the plasmidless strain established this operon as the first with an identified role in alkaline activation. Mosquito midgets provide an alkaline environment and in which enhanced germination may occur. Co-feeding experiments showed that in competition to colonise intoxicated A. aegypti larvae, B. thuringiensis carrying pBtoxis, are able to outgrow the plasmid-cured strain. This indicates a selective advantage for the presence of pBtoxis. The strain carrying the recombinant ger genes also outgrew its plasmidless parent, indicating that the ger genes may be responsible for this effect, perhaps by allowing strains a head-start by germinating more rapidly in the insect gut.
APA, Harvard, Vancouver, ISO, and other styles
9

Angsuthanasombat, Chanan. "Mechanism of action of Bacillus thuringiensis subsp. israelensis mosquito-larvicidal #delta#-endotoxins." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ward, Elizabeth Sally. "Molecular genetics of an insectidal delta-endotoxin from Bacillus thuringiensis var israelensis." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bacillus thuringiensis sérotype israelensis"

1

Temeyer, Kevin Bruce. Monoclonal antibodies to crystal protein of Bacillus thuringiensis subspecies Israelensis. [Washington, D.C.?: U.S. Dept. of Agriculture?], 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bugoro, Hugo. The efficacy of Bacillus Thuringiensis Israelensis in the breeding habitats of Anopheles Faranti in North Guadalcanal, Solomon Islands. Solomom Islands: s.n., 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Donegan, Katherine K. Interactions and persistence of the mosquitocidal bacteria Bacillus sphaericus and Bacillus thuringiensis var. israelensis. 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pollock, Martin L. Biochemical studies on the mosquitocidal delta endotoxin of Bacillus thuringiensis subsp. israelensis. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rozmajzl, Patrick J. The toxic effects of teknar (bacillus thuringiensis var. israelensis [delta]-endotoxin) on Paramecium tetraurelia. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), Huguette de Barjac, and Donald J. Sutherland (Editor), eds. Bacterial Control of Mosquitoes and Blackflies: Biochemistry, Genetics & Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Springer, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barjac, Huguette de. Bacterial Control of Mosquitoes & Black Flies: Biochemistry, Genetics & Applications of Bacillus Thuringiensis Israelensis and Bacillus Sphaericus. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

de, Barjac Huguette, and Sutherland Donald J, eds. Bacterial control of mosquitoes and black flies: Biochemistry, genetics, & applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. New Brunswick: Rutgers University Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barjac, Huguette De. Bacterial Control of Mosquitoes and Black Flies: Biochemistry, Genetics, and Applications of Bacillus Thuringiensis Israelensis and Bacillus Sphaeric. Rutgers Univ Pr, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rutherford, Gregory J. Development of an enzyme-linked immunosorbent assay to detect antibodies against Bacillus thuringiensis subspecies israelensis in Mallard ducks (Anas platyrhynchos). 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bacillus thuringiensis sérotype israelensis"

1

Margalit, Joel. "Discovery of Bacillus thuringiensis israelensis." In Bacterial Control of Mosquitoes & Black Flies, 3–9. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sekar, Vaithilingam. "Genetics of Bacillus thuringiensis israelensis." In Bacterial Control of Mosquitoes & Black Flies, 66–77. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siegel, Joel P., and John A. Shadduck. "Mammalian Safety of Bacillus thuringiensis israelensis." In Bacterial Control of Mosquitoes & Black Flies, 202–17. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Federici, Brian A., Peter Lüthy, and Jorge E. Ibarra. "Parasporal Body of Bacillus thuringiensis israelensis." In Bacterial Control of Mosquitoes & Black Flies, 16–44. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barjac, Huguette. "Characterization and Prospective View of Bacillus thuringiensis israelensis." In Bacterial Control of Mosquitoes & Black Flies, 10–15. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boyle, Thomas M., and Donald H. Dean. "Cloning of Bacillus thuringiensis israelensis Mosquito Toxin Genes." In Bacterial Control of Mosquitoes & Black Flies, 78–93. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chilcott, Chris N., Barbara H. Knowles, David J. Ellar, and Francis A. Drobniewski. "Mechanism of Action of Bacillus thuringiensis israelensis Parasporal Body." In Bacterial Control of Mosquitoes & Black Flies, 45–65. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kanchanawarin, Chalermpol, and Chanan Angsuthanasombat. "Mosquito-Active Cry δ-Endotoxins from Bacillus thuringiensis subsp. israelensis." In Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases, 191–208. Boca Raton : CRC Press, [2018]: CRC Press, 2017. http://dx.doi.org/10.4324/9781315151656-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guillet, Pierre, Daniel C. Kurtak, Bernard Philippon, and Rolf Meyer. "Use of Bacillus thuringiensis israelensis for Onchocerciasis Control in West Africa." In Bacterial Control of Mosquitoes & Black Flies, 187–201. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mulla, Mir S. "Activity, Field Efficacy, and Use of Bacillus thuringiensis israelensis against Mosquitoes." In Bacterial Control of Mosquitoes & Black Flies, 134–60. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-5967-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bacillus thuringiensis sérotype israelensis"

1

Maciel, Vitória, Karine Carvalho, and Maria Helena Neves. "AVALIAÇÃO DE UMA COLÔNIA DE AEDES AEGYPTI SELECIONADA CONTINUAMENTE COM O BIOLARVICIDA BACILLUS THURINGIENSIS SVAR. ISRAELENSIS." In Encontro Anual da Biofísica 2018. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/biofisica2018-34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MELO, L. F. A., A. M. CABRAL, A. C. A. MELO, M. A. V. MELO-SANTOS, L. FINKLER, and C. L. LUNA-FINKLER. "CULTIVATION OF Bacillus thuringiensis var. israelensis H14 IN BIOREACTOR FOR BIOLOGICAL CONTROL OF Aedes aegypti LARVAE." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-pt.0577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alwa, Amira, and Samir Jaoua. "Investigation of Bacillus Thuringiensis Plasmid Instability and its Effect on the Synthesis of Crystals." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0107.

Full text
Abstract:
In order to explore plasmid instability in Bt, four Bt strains belonging to two Bt subspecies were cultured at 42°C for 9 days. HD1 and QBT376 belong to subspecies kurstaki, while H14 and QBT218 belong to subspecies israelensis. Results showed 100% crystal loss for H14 and QBT218, while 76% and 90% crystal loss for HD1 and QBT376, respectively, showing that cry-carrying plasmids are more stable in Bt kurs. than in Bt isr.. HD1, QBT376, and QBT218 cured clones showed significant protease activity compared to their non-cured counterparts. Microscopic observation revealed the delay of sporulation for high number of HD1 and QBT376 cry- clones, while the absence of spores in several H14 and QBT218 cry- clones. Spo-cry- clones of Bti strains had irregular elongated cell shape. Kinetics/day of plasmid curing for H14 and QBT218 showed H14 to have higher pBtoxis plasmid stability. The number of vegetative cells in Bti strains increased with the increase of curing period. As an attempt to create hybrid Bt strains, cry1Aa gene was extracted to transform cured and non-cured strains.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography