To see the other types of publications on this topic, follow the link: Bacillus thuringiensis sérotype israelensis.

Journal articles on the topic 'Bacillus thuringiensis sérotype israelensis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bacillus thuringiensis sérotype israelensis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ward, E. S., and D. J. Ellar. "Bacillus thuringiensis var. israelensis δ-endotoxin." Journal of Molecular Biology 191, no. 1 (September 1986): 1–11. http://dx.doi.org/10.1016/0022-2836(86)90417-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ward, E. S., A. R. Ridley, D. J. Ellar, and J. A. Todd. "Bacillus thuringiensis var. israelensis δ-endotoxin." Journal of Molecular Biology 191, no. 1 (September 1986): 13–22. http://dx.doi.org/10.1016/0022-2836(86)90418-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Hyun-Woo, Dennis K. Bideshi, and Brian A. Federici. "Recombinant Strain of Bacillus thuringiensis Producing Cyt1A, Cry11B, and the Bacillus sphaericus Binary Toxin." Applied and Environmental Microbiology 69, no. 2 (February 2003): 1331–34. http://dx.doi.org/10.1128/aem.69.2.1331-1334.2003.

Full text
Abstract:
ABSTRACT A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).
APA, Harvard, Vancouver, ISO, and other styles
4

Armstrong, J. L., G. F. Rohrmann, and G. S. Beaudreau. "Delta endotoxin of Bacillus thuringiensis subsp. israelensis." Journal of Bacteriology 161, no. 1 (1985): 39–46. http://dx.doi.org/10.1128/jb.161.1.39-46.1985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khan, Sharik R., Josef Deutscher, Ram A. Vishwakarma, Vicente Monedero, and Nirupama B. Bhatnagar. "The ptsH gene from Bacillus thuringiensis israelensis." European Journal of Biochemistry 268, no. 3 (February 2001): 521–30. http://dx.doi.org/10.1046/j.1432-1327.2001.01878.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lacey, Lawrence A. "BACILLUS THURINGIENSIS SEROVARIETY ISRAELENSIS AND BACILLUS SPHAERICUS FOR MOSQUITO CONTROL." Journal of the American Mosquito Control Association 23, sp2 (July 2007): 133–63. http://dx.doi.org/10.2987/8756-971x(2007)23[133:btsiab]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Futami, Kyoko, James O. Kongere, Mercy S. Mwania, Peter A. Lutiali, Sammy M. Njenga, and Noboru Minakawa. "Effects of Bacillus thuringiensis israelensis on Anopheles arabiensis." Journal of the American Mosquito Control Association 27, no. 1 (March 2011): 81–83. http://dx.doi.org/10.2987/10-5998.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wamunyokoli, Fred W., and Ellie O. Osir. "Characterisation of Bacillus thuringiensis variety israelensis delta-endotoxin." International Journal of Tropical Insect Science 16, no. 3-4 (December 1995): 343–49. http://dx.doi.org/10.1017/s1742758400017380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zribi-Zghal, Raida, Marwa Kharrat, Ahmed Rebaï, Saoussen Ben khedr, and Slim Tounsi. "Study of bioinsecticide production by Bacillus thuringiensis israelensis." New Biotechnology 29 (September 2012): S221. http://dx.doi.org/10.1016/j.nbt.2012.08.623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ankarloo, Jonas, Dominique A. Caugant, Bjarne M. Hansen, Alexandra Berg, Anne-Brit Kolstø, and Ann Lövgren. "Genome Stability of Bacillus thuringiensis subsp. israelensis Isolates." Current Microbiology 40, no. 1 (January 31, 2000): 51–56. http://dx.doi.org/10.1007/s002849910010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tang, Mujin, Dennis K. Bideshi, Hyun-Woo Park, and Brian A. Federici. "Minireplicon from pBtoxis of Bacillus thuringiensis subsp. israelensis." Applied and Environmental Microbiology 72, no. 11 (August 25, 2006): 6948–54. http://dx.doi.org/10.1128/aem.00976-06.

Full text
Abstract:
ABSTRACT A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression.
APA, Harvard, Vancouver, ISO, and other styles
12

Wermelinger, Eduardo D., José C. Zanuncio, Elizabeth F. Rangel, Paulo R. Cecon, and Leon Rabinovitch. "Toxicity of Bacillus species to larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae)." Anais da Sociedade Entomológica do Brasil 29, no. 3 (September 2000): 609–14. http://dx.doi.org/10.1590/s0301-80592000000300025.

Full text
Abstract:
A study was conducted to compare the susceptibility of third instar larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae), the vector of the American visceral leishmaniasis to two strains of Bacillus thuringiensis serovar israelensis, one strain of Bacillus sphaericus (all pathogenic to Diptera Culicidae) and a strain of B. thuringiensis ser. morrisoni (pathogenic to larvae of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae)). Larvae of L. longipalpis showed similar susceptibility to the two strains of B. thruringiensis ser. israelensis, while B. sphaericus and B. thuringiensis ser. morrisoni showed low and no larvicidal effect to this vector, respectively.
APA, Harvard, Vancouver, ISO, and other styles
13

Koskella, J., and G. Stotzky. "Larvicidal toxins fromBacillusthuringiensissubspp.kurstaki,morrisoni(straintenebrionis), andisraelensishave no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro." Canadian Journal of Microbiology 48, no. 3 (March 1, 2002): 262–67. http://dx.doi.org/10.1139/w02-005.

Full text
Abstract:
The insecticidal toxins from Bacillus thuringiensis subspp. kurstaki (antilepidopteran), morrisoni strain tenebrionis (anticoleopteran), and israelensis (antidipteran) did not affect the growth of a variety of bacteria (8 gram-negative, 5 gram-positive, and a cyanobacterium), fungi (2 Zygomycetes, 1 Ascomycete, 2 Deuteromycetes, and 2 yeasts), and algae (primarily green and diatoms) in pure and mixed culture, as determined by dilution, disk-diffusion, and sporulation assays with purified free and clay-bound toxins. The insecticidal crystal proteins from B. thuringiensis subspp. kurstaki and israelensis had no antibiotic effect on various gram-positive bacteria.Key words: insecticidal toxins, Bacillus thuringiensis, microbiostatic, microbicidal.
APA, Harvard, Vancouver, ISO, and other styles
14

Rice, E. W., N. J. Adcock, M. Sivaganesan, and L. J. Rose. "Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination." Applied and Environmental Microbiology 71, no. 9 (September 2005): 5587–89. http://dx.doi.org/10.1128/aem.71.9.5587-5589.2005.

Full text
Abstract:
ABSTRACT Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.
APA, Harvard, Vancouver, ISO, and other styles
15

Ekawati, Sri Nadyar, Nova Hariani, and Sudiastuti Sudiastuti. "PERBANDINGAN EFEKTIVITAS TEMEPHOS DENGAN Bacillus thuringiensis var. israelensis TERHADAP MORTALITAS NYAMUK Aedes aegypti DARI TIGA KELURAHAN DI KOTA SAMARINDA." Al-Kauniyah: Jurnal Biologi 12, no. 1 (April 24, 2019): 46–53. http://dx.doi.org/10.15408/kauniyah.v12i1.7894.

Full text
Abstract:
AbstrakPengendalian vektor penyakit demam berdarah (DBD) di Indonesia menggunakan larvasida temephos telah berlangsung lebih dari 30 tahun, oleh karena itu, perlu dilakukan penelitian untuk mengetahui efektivitas temephos dan Bacillus thuringiensis var. israelensis yang merupakan larvasida jenis baru dari agen biologi terhadap larva nyamuk Aedes aegypti. Penelitian ini bertujuan untuk mengetahui perbandingan efektivitas temephos dengan B. thuringiensis var. israelensis terhadap mortalitas larva nyamuk Ae. aegypti dari tiga Kecamatan di Samarinda, yaitu Kecamatan Samarinda Utara Kelurahan Gunung Lingai, Samarinda Ulu Kelurahan Air Putih dan Sungai Kunjang Kelurahan Loa Bakung. Metode yang digunakan adalah metode bioassay. Hasil penelitian menunjukan bahwa temephos tidak efektif untuk membunuh larva nyamuk Ae. aegypti dari tiga kelurahan yang diamati, dengan LC50,24jam sebesar 1,88–2,24 ppm dan LC90,24jam sebesar 2,07–3,59 ppm. Sementara itu, B. thuringiensis var. israelensis masih efektif untuk membunuh larva nyamuk Ae. aegypti dari ketiga kelurahan yang diamati, dengan LC50,24jam sebesar 0,93–1,00 mL/50 L air dan LC90,24jam sebesar 1,05–1,11 mL/50 L air. Hal ini berarti penggunaan B. thuringiensis var. israelensis dengan dosis yang dianjurkan pemerintah masih efektif untuk mengendalikan populasi nyamuk Ae. aegypti.AbstractThe control of dengue hemorrhagic fever (DHF) vector in Indonesia using larvicide temephos has been ongoing for more than 30 years. Hence, it is necessary to assess the effectiveness of temephos compared to Bacillus thuringiensis var. israelensis which is a new type of biological larvacide agent against Aedes aegypti mosquito larvae. This study aimed to determine the effectiveness of temephos compared to B. thuringiensis var. israelensis against mortality of Ae. aegypti mosquito larvae sampled from three subdistricts in Samarinda namely Samarinda Utara Subdistrict Gunung Lingai, Samarinda Ulu Subdistrict Air Putih, and Sungai Kunjang Subdistrict Loa Bakung. The method used was bioassay. The results showed that temephos was not effective in killing Ae. aegypti mosquito larvae from the three subdistricts observed, with LC50.24 hours by 1.88–2.24 ppm, and LC90,24 hours by 2.07–3.59 ppm. Meanwhile, B. thuringiensis var. israelensis is still effective in killing Ae. aegypti mosquito larvae from the three subdistricts observed, with LC50.24 hours by 0.93–1.00 mL/50 L of water and LC90,24 hours by 1.05–1.11 mL/50 L of water. Those results mean that the application of B. thuringiensis var. israelensis with the recommended dosage of the government is still effective in controlling the population of Ae. aegypti.
APA, Harvard, Vancouver, ISO, and other styles
16

Wirth, Margaret C., Armelle Delécluse, Brian A. Federici, and William E. Walton. "Variable Cross-Resistance to Cry11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) Resistant to Single or Multiple Toxins of Bacillus thuringienisis subsp.israelensis." Applied and Environmental Microbiology 64, no. 11 (November 1, 1998): 4174–79. http://dx.doi.org/10.1128/aem.64.11.4174-4179.1998.

Full text
Abstract:
ABSTRACT A novel mosquitocidal bacterium, Bacillus thuringiensissubsp. jegathesan, and one of its toxins, Cry11B, in a recombinant B. thuringiensis strain were evaluated for cross-resistance with strains of the mosquito Culex quinquefasciatus that are resistant to single and multiple toxins of Bacillus thuringiensis subsp. israelensis. The levels of cross-resistance (resistance ratios [RR]) at concentrations which caused 95% mortality (LC95) betweenB. thuringiensis subsp. jegathesan and the different B. thuringiensis subsp.israelensis-resistant mosquito strains were low, ranging from 2.3 to 5.1. However, the levels of cross-resistance to Cry11B were much higher and were directly related to the complexity of the B. thuringiensis subsp. israelensis Cry toxin mixtures used to select the resistant mosquito strains. The LC95 RR obtained with the mosquito strains were as follows: 53.1 againstCq4D, which was resistant to Cry11A; 80.7 againstCq4AB, which was resistant to Cry4A plus Cry4B; and 347 against Cq4ABD, which was resistant to Cry4A plus Cry4B plus Cry11A. Combining Cyt1A with Cry11B at a 1:3 ratio had little effect on suppressing Cry11A resistance in Cq4D but resulted in synergism factors of 4.8 and 11.2 against strainsCq4AB and Cq4ABD, respectively; this procedure eliminated cross-resistance in the former mosquito strain and reduced it markedly in the latter strain. The high levels of activity ofB. thuringiensis subsp. jegathesan and B. thuringiensis subsp. israelensis, both of which contain a complex mixture of Cry and Cyt proteins, against Cry4- and Cry11-resistant mosquitoes suggest that novel bacterial strains with multiple Cry and Cyt proteins may be useful in managing resistance to bacterial insecticides in mosquito populations.
APA, Harvard, Vancouver, ISO, and other styles
17

Polanczyk, Ricardo Antonio, Marcelo de Oliveira Garcia, and Sérgio Batista Alves. "Potencial de Bacillus thuringiensis israelensis Berliner no controle de Aedes aegypti." Revista de Saúde Pública 37, no. 6 (December 2003): 813–16. http://dx.doi.org/10.1590/s0034-89102003000600020.

Full text
Abstract:
Relata-se a importância da bactéria entomopatogênica Bacillus thuringiensis israelensis para o controle de Aedes aegypti. São abordados a utilização e potencial de B. thuringiensis israelensis contra o mosquito vetor da dengue. Outros aspectos são discutidos como a evolução da resistência dos insetos em relação aos inseticidas químicos e as vantagens e desvantagens do controle microbiano como estratégia de controle. É dada ênfase à importância da utilização desta bactéria no Brasil como alternativa para resolver o problema em questão sem afetar o ambiente, o homem e outros vertebrados nas áreas de risco.
APA, Harvard, Vancouver, ISO, and other styles
18

Khawaled, Kamal, Eitan Ben-Dov, Arieh Zaritsky, and Ze'ev Barak. "The fate of Bacillus thuringiensis var. israelensis in B. thuringiensis var. israelensis-killed pupae of Aedes aegypti." Journal of Invertebrate Pathology 56, no. 3 (November 1990): 312–16. http://dx.doi.org/10.1016/0022-2011(90)90117-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Siegel, Joel P., and John A. Shadduck. "Clearance of Bacillus sphaericus and Bacillus thuringiensis ssp. israelensis from Mammals." Journal of Economic Entomology 83, no. 2 (April 1, 1990): 347–55. http://dx.doi.org/10.1093/jee/83.2.347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lopes, J., OMN Arantes, and MA Cenci. "Evaluation of a new formulation of Bacillus thuringiensis israelensis." Brazilian Journal of Biology 70, no. 4 (November 2010): 1109–13. http://dx.doi.org/10.1590/s1519-69842010000500029.

Full text
Abstract:
The aim of this study was to determine the potency (ITU) and efficacy of a liquid formulation of Bacillus thuringiensis israelensis developed by the State University of Londrina named BioUel, against early fourth instar larvae of Aedes aegypti and Culex quinquefasciatus. The ITU/mg of BioUel was 960, the LC50 was of 0.271 (± 0.39) ppm, and the LC95 was 0.634 (± 0.099) ppm, in larvae of C. quinquefasciatus. In A. aegypti larvae, LC50 was 0.332 (± 0.042) ppm and LC95 was 0.694 (± 0.073) ppm. The ITU level of BioUel and its control results were similar to most commercial products tested. Stability was of approximately 90 days, which allows for local production.
APA, Harvard, Vancouver, ISO, and other styles
21

Eskils, Katarina, and Ann Lövgren. "Release of Bacillus thuringiensis subsp. israelensis in Swedish Soil." FEMS Microbiology Ecology 23, no. 3 (January 17, 2006): 229–37. http://dx.doi.org/10.1111/j.1574-6941.1997.tb00405.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cahan, Rivka, Hen Friman, and Yeshayahu Nitzan. "Antibacterial activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis." Microbiology 154, no. 11 (November 1, 2008): 3529–36. http://dx.doi.org/10.1099/mic.0.2008/020784-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ben-Dov, Eitan. "Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins." Toxins 6, no. 4 (March 28, 2014): 1222–43. http://dx.doi.org/10.3390/toxins6041222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Skovmand, Ole, Dorthe Hoegh, Hanne Skov Pedersen, and Tina Rasmussen. "Parameters Influencing Potency of Bacillus thuringiensis var. israelensis Products." Journal of Economic Entomology 90, no. 2 (April 1, 1997): 361–69. http://dx.doi.org/10.1093/jee/90.2.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kant, Sashi, Rupam Kapoor, and Nirupama Banerjee. "Identification of a Catabolite-Responsive Element Necessary for Regulation of the cry4A Gene of Bacillus thuringiensis subsp. israelensis." Journal of Bacteriology 191, no. 14 (May 22, 2009): 4687–92. http://dx.doi.org/10.1128/jb.00421-09.

Full text
Abstract:
ABSTRACT Bacillus thuringiensis subsp. israelensis produces a potent mosquitocidal protein, Cry4A. We have identified a 15-bp catabolite responsive element (cre), overlapping the −35 element of the cry4A promoter. Changing a guanine to adenine at position −49 in the promoter abolished glucose catabolite repression of cry4A and enhanced promoter activity two- to threefold. This cis regulatory element is essential for controlled toxin synthesis, vital to evolutionary success of B. thuringiensis subsp. israelensis.
APA, Harvard, Vancouver, ISO, and other styles
26

Ibarra, Jorge E., M. Cristina del Rincón, Sergio Ordúz, David Noriega, Graciela Benintende, Rose Monnerat, Leda Regis, et al. "Diversity of Bacillus thuringiensis Strains from Latin America with Insecticidal Activity against Different Mosquito Species." Applied and Environmental Microbiology 69, no. 9 (September 2003): 5269–74. http://dx.doi.org/10.1128/aem.69.9.5269-5274.2003.

Full text
Abstract:
ABSTRACT The characterization of selected Bacillus thuringiensis strains isolated from different Latin America countries is presented. Characterization was based on their insecticidal activity against Aedes aegypti, Culex quinquefasciatus, and Anopheles albimanus larvae, scanning electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and plasmid profiles as well as PCR analysis using novel general and specific primers for cry and cyt genes encoding proteins active against mosquitoes (cyt1, cyt2, cry2, cry4A, cry4B, cry10, cry11, cry17, cry19, cry24, cry25, cry27, cry29, cry30, cry32, cry39, and cry40). Strains LBIT315, LBIT348, and IB604 showed threefold higher mosquitocidal activity against A. aegypti and C. quinquefasciatus larvae than B. thuringiensis subsp. israelensis and displayed high similarities with the B. thuringiensis subsp. israelensis used in this study with regard to protein and plasmid profiles and the presence of cry genes. Strain 147-8906 has activity against A. aegypti similar to that of B. thuringiensis subsp. israelensis but has different protein and plasmid profiles. This strain, harboring cry11, cry30, cyt1, and cyt2 genes, could be relevant for future resistance management interventions. Finally, the PCR screening strategy presented here led us to identify a putative novel cry11B gene.
APA, Harvard, Vancouver, ISO, and other styles
27

De Nachs, Yoseph, Hasmiwati Hasmiwati, and Selfi Renita Rusdji. "Penentuan Spesies dan Uji Efektivitas Bacillus Thuringiensis Israelensis H-14 Terhadap Larva Nyamuk Anopheles spp Sebagai Vektor Malaria di Kecamatan Sikakap Kabupaten Kepulauan Mentawai." Jurnal Kesehatan Andalas 8, no. 2S (January 24, 2019): 15. http://dx.doi.org/10.25077/jka.v8i2s.953.

Full text
Abstract:
Nyamuk Anopheles spp adalah vektor utama penyebab penyakit malaria. Pengendalian vektor malaria dapat dilakukan dengan bioinsektisida salah satunya menggunakan Bacillus thuringiensis israelensis H-14. Tujuan penelitian ini adalah untuk mengidentifikasi spesies Anopheles dan mengetahui efektivitas Bacillus thuringiensis israelensis H-14 terhadap larva nyamuk Anopheles di Kecamatan Sikakap Kabupaten Kepulauan Mentawai. Penelitian ini bersifat deskriptif dan eksperimental yang dilaksanakan pada Juli 2017 – Maret 2018. Teknik pengambilan sampel dalam penelitian ini adalah konsekutif sampling berupa larva instar III dari Kecamatan Sikakap Kabupaten Kepulauan Mentawai. Larva yang didapatkan dilapangan diidentifikasi untuk menentukan spesies dan selanjutnya dilakukan uji efektivitas dengan 5 konsentrasi yaitu 0.0025, 0.005, 0.01, 0.02 dan 0.04 % serta ditambah dengan kontrol. Hasil penelitian didapatkan spesies Anopheles yang terbanyak di Kecamatan Sikakap Kabupaten Kepulauan Mentawai adalah Anopheles subpictus. Nilai LC50 didapatkan pada konsentasi 0.005 % dan LC90 terdapat pada konsentrasi 0.015 % setelah 48 jam perlakuan. Penghitungan dengan konsentrasi 0.04 % didapatkan kematian larva LT50 dicapai pada menit ke 1123.30 dan LT90 pada menit ke 1682.25. Kesimpulannya adalah spesies Anopheles yang terbanyak di Kecamatan Sikakap Kabupaten Kepulauan Mentawai adalah Anopheles subpictus dan Bacillus thuringiensis israelensis H-14 efektif menyebabkan kematian larva instar III nyamuk Anopheles dengan konsentrasi yang rendah.
APA, Harvard, Vancouver, ISO, and other styles
28

Cucchi, Adriana, and Carmen Sanchez de Rivas. "ssp Genes and spore osmotolerance in Bacillus thuringiensis israelensis and Bacillus sphaericus." Current Microbiology 31, no. 4 (October 1995): 228–33. http://dx.doi.org/10.1007/bf00298379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kalfon, A., M. Lugten, and J. Margalit. "Development of selective media for Bacillus sphaericus and Bacillus thuringiensis var. israelensis." Applied Microbiology and Biotechnology 24, no. 3 (June 1986): 240–43. http://dx.doi.org/10.1007/bf00261544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ghosal, Sutapa, Terrance J. Leighton, Katherine E. Wheeler, Ian D. Hutcheon, and Peter K. Weber. "Spatially Resolved Characterization of Water and Ion Incorporation in Bacillus Spores." Applied and Environmental Microbiology 76, no. 10 (March 26, 2010): 3275–82. http://dx.doi.org/10.1128/aem.02485-09.

Full text
Abstract:
ABSTRACT We present the first direct visualization and quantification of water and ion uptake into the core of individual dormant Bacillus thuringiensis subsp. israelensis (B. thuringiensis subsp. israelensis) endospores. Isotopic and elemental gradients in the B. thuringiensis subsp. israelensis spores show the permeation and incorporation of deuterium in deuterated water (D2O) and solvated ions throughout individual spores, including the spore core. Under hydrated conditions, incorporation into a spore occurs on a time scale of minutes, with subsequent uptake of the permeating species continuing over a period of days. The distribution of available adsorption sites is shown to vary with the permeating species. Adsorption sites for Li+, Cs+, and Cl− are more abundant within the spore outer structures (exosporium, coat, and cortex) relative to the core, while F− adsorption sites are more abundant in the core. The results presented here demonstrate that elemental abundance and distribution in dormant spores are influenced by the ambient environment. As such, this study highlights the importance of understanding how microbial elemental and isotopic signatures can be altered postproduction, including during sample preparation for analysis, and therefore, this study is immediately relevant to the use of elemental and isotopic markers in environmental microbiology and microbial forensics.
APA, Harvard, Vancouver, ISO, and other styles
31

Revina, Lyudmila P., Lyubov I. Kostina, Maria A. Dronina, Igor A. Zalunin, Galina G. Chestukhina, Tatyana G. Yudina, Anna V. Konukhova, and Anna V. Izumrudova. "Novel antibacterial proteins from entomocidal crystals of Bacillus thuringiensis ssp. israelensis." Canadian Journal of Microbiology 51, no. 2 (February 1, 2005): 141–48. http://dx.doi.org/10.1139/w04-121.

Full text
Abstract:
Proteins with molecular masses of 36 and 34 kDa (Bti36 and Bti34) were isolated from entomocidal crystals formed by Bacillus thuringiensis ssp. israelensis cells. The samples of Bti36 contained the admixture of a protein with a molecular mass of 33 kDa (Bti33), apparently a product of proteolysis of Bti36. These 3 proteins are significantly different in N-terminal sequences from known δ-endotoxins of B. thuringiensis and show antibacterial activity toward Micrococcus luteus. The combination of Bti36 and Bti33 also suppresses the growth of some other microorganisms including Streptomyces chrysomallus. The effects of the mixture of Bti36 and Bti33 on the M. luteus cell surface and on the surface of S. chrysomallus cells and exospores are similar, but they are different from the effect of endotoxin Cry11A on micrococcal cells.Key words: Bacillus thuringiensis, δ-endotoxins, antibacterial activity, Micrococcus luteus, Streptomyces chrysomallus.
APA, Harvard, Vancouver, ISO, and other styles
32

Tikar, Sachin, and Shri Prakash. "Fly ash-based Bacillus thuringiensis israelensis formulation: An ecofriendly approach." Indian Journal of Medical Research 146, no. 6 (2017): 680. http://dx.doi.org/10.4103/ijmr.ijmr_1679_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nisnevitch, Marina, Svetlana Nikonov, and Yeshayahu Nitzan. "Cytolytic Peptide Fragments of Cyt1Aa from Bacillus thuringiensis subsp. israelensis." Cell Biochemistry and Biophysics 65, no. 2 (August 9, 2012): 121–27. http://dx.doi.org/10.1007/s12013-012-9405-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ohana, Bella, Joel Margalit, and Ze'Ev Barak. "Fate of Bacillus thuringiensis subsp. israelensis under Simulated Field Conditions." Applied and Environmental Microbiology 53, no. 4 (1987): 828–31. http://dx.doi.org/10.1128/aem.53.4.828-831.1987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Garduno, F., L. Thorne, A. M. Walfield, and T. J. Pollock. "Structural relatedness between mosquitocidal endotoxins of Bacillus thuringiensis subsp. israelensis." Applied and Environmental Microbiology 54, no. 1 (1988): 277–79. http://dx.doi.org/10.1128/aem.54.1.277-279.1988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bolotin, Alexandre, Annika Gillis, Vincent Sanchis, Christina Nielsen-LeRoux, Jacques Mahillon, Didier Lereclus, and Alexei Sorokin. "Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis." Research in Microbiology 168, no. 4 (May 2017): 331–44. http://dx.doi.org/10.1016/j.resmic.2016.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Siegel, Joel P., John A. Shadduck, and James Szabo. "Safety of the Entomopathogen Bacillus thuringiensis var. israelensis for Mammals." Journal of Economic Entomology 80, no. 4 (August 1, 1987): 717–23. http://dx.doi.org/10.1093/jee/80.4.717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

SEN, Kikuo, and Ken-ichi YOSHIDA. "Insecticidal activity and molecular biology of Bacillus thuringiensis var. israelensis." Journal of the agricultural chemical society of Japan 64, no. 10 (1990): 1612–15. http://dx.doi.org/10.1271/nogeikagaku1924.64.1612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Banerjee-Bhatnagar, Nirupama. "Inorganic Phosphate Regulates CryIVA Protoxin Expression in Bacillus thuringiensis israelensis." Biochemical and Biophysical Research Communications 262, no. 2 (August 1999): 359–64. http://dx.doi.org/10.1006/bbrc.1999.1094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kanda, K., T. Ohderaotoshi, A. Shimojyo, F. Kato, and A. Murata. "An extrachromosomal prophage naturally associated with Bacillus thuringiensis serovar israelensis." Letters in Applied Microbiology 28, no. 4 (April 1999): 305–8. http://dx.doi.org/10.1046/j.1365-2672.1999.00535.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Vorgetts, L. J., J. H. Nelson, and L. M. Anderson. "Effect of Homogenization on Preparations of Bacillus thuringiensis var. israelensis." Bulletin of the Entomological Society of America 32, no. 4 (December 1, 1986): 255–56. http://dx.doi.org/10.1093/besa/32.4.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gill, S. S., G. J. Singh, and J. M. Hornung. "Cell membrane interaction of Bacillus thuringiensis subsp. israelensis cytolytic toxins." Infection and Immunity 55, no. 5 (1987): 1300–1308. http://dx.doi.org/10.1128/iai.55.5.1300-1308.1987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

MITEVA, V. I., and R. T. GRIGOROVA. "Restriction analysis of plasmids of Bacillus thuringiensis subsp. israelensis H14." Letters in Applied Microbiology 3, no. 4 (April 1986): 85–88. http://dx.doi.org/10.1111/j.1472-765x.1986.tb01554.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Poopathi, Subbiah, and K. Anup Kumar. "Novel Fermentation Media for Production of Bacillus thuringiensis subsp. israelensis." Journal of Economic Entomology 96, no. 4 (August 1, 2003): 1039–44. http://dx.doi.org/10.1093/jee/96.4.1039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Andrup, L. "ISOLATION AND CHARACTERIZATION OF MUTANTS OF BACILLUS THURINGIENSIS VAR. ISRAELENSIS." Journal of Applied Bacteriology 77, no. 6 (December 1994): 733. http://dx.doi.org/10.1111/j.1365-2672.1994.tb02827.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cheung, Peter Y. K., Dan Buster, Bruce D. Hammock, R. Michael Roe, and A. Randall Alford. "Bacillus thuringiensis var. israelensis δ-endotoxin: Evidence of neurotoxic action." Pesticide Biochemistry and Physiology 27, no. 1 (January 1987): 42–49. http://dx.doi.org/10.1016/0048-3575(87)90094-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Nisnevitch, Marina, Shmuel Cohen, Eitan Ben-Dov, Arieh Zaritsky, Yossef Sofer, and Rivka Cahan. "Cyt2Ba of Bacillus thuringiensis israelensis: Activation by putative endogenous protease." Biochemical and Biophysical Research Communications 344, no. 1 (May 2006): 99–105. http://dx.doi.org/10.1016/j.bbrc.2006.03.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Schweizer, Mona, Lukas Miksch, Heinz-R. Köhler, and Rita Triebskorn. "Does Bti (Bacillus thuringiensis var. israelensis) affect Rana temporaria tadpoles?" Ecotoxicology and Environmental Safety 181 (October 2019): 121–29. http://dx.doi.org/10.1016/j.ecoenv.2019.05.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wirth, Margaret C., Hyun-Woo Park, William E. Walton, and Brian A. Federici. "Cyt1A of Bacillus thuringiensis Delays Evolution of Resistance to Cry11A in the Mosquito Culex quinquefasciatus." Applied and Environmental Microbiology 71, no. 1 (January 2005): 185–89. http://dx.doi.org/10.1128/aem.71.1.185-189.2005.

Full text
Abstract:
ABSTRACT Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.
APA, Harvard, Vancouver, ISO, and other styles
50

Cherif, Ameur, Besma Ettoumi, Noura Raddadi, Daniele Daffonchio, and Abdellatif Boudabous. "Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting." Canadian Journal of Microbiology 53, no. 3 (March 2007): 343–50. http://dx.doi.org/10.1139/w06-129.

Full text
Abstract:
The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography