Journal articles on the topic 'Backpropagation and Boltzmann Machine algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Backpropagation and Boltzmann Machine algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
D., T. V. Dharmajee Rao, and V. Ramana K. "A Novel Approach for Efficient Training of Deep Neural Networks." Indonesian Journal of Electrical Engineering and Computer Science 11, no. 3 (2018): 954–61. https://doi.org/10.11591/ijeecs.v11.i3.pp954-961.
Full textDharmajee Rao, D. T. V., and K. V. Ramana. "A Novel Approach for Efficient Training of Deep Neural Networks." Indonesian Journal of Electrical Engineering and Computer Science 11, no. 3 (2018): 954. http://dx.doi.org/10.11591/ijeecs.v11.i3.pp954-961.
Full textPearlmutter, Barak A. "Fast Exact Multiplication by the Hessian." Neural Computation 6, no. 1 (1994): 147–60. http://dx.doi.org/10.1162/neco.1994.6.1.147.
Full textXU, LEI, STAN KLASA, and ALAN YUILLE. "RECENT ADVANCES ON TECHNIQUES OF STATIC FEEDFORWARD NETWORKS WITH SUPERVISED LEARNING." International Journal of Neural Systems 03, no. 03 (1992): 253–90. http://dx.doi.org/10.1142/s0129065792000218.
Full textO'Reilly, Randall C. "Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm." Neural Computation 8, no. 5 (1996): 895–938. http://dx.doi.org/10.1162/neco.1996.8.5.895.
Full textS. Manoha. "A Deep Dive into Training Algorithms for Deep Belief Networks." Journal of Information Systems Engineering and Management 10, no. 13s (2025): 178–86. https://doi.org/10.52783/jisem.v10i13s.2021.
Full textAbdel-Jaber, Hussein, Disha Devassy, Azhar Al Salam, Lamya Hidaytallah, and Malak EL-Amir. "A Review of Deep Learning Algorithms and Their Applications in Healthcare." Algorithms 15, no. 2 (2022): 71. http://dx.doi.org/10.3390/a15020071.
Full textAjay, A. Gidd, and S. Shewale Ajinkya. "One Look at Deep Learning Algorithms." Recent Innovations in Wireless Network Security 2, no. 1 (2020): 1–5. https://doi.org/10.5281/zenodo.3819806.
Full textWu, Zhiyong, Xiangqian Ding, and Guangrui Zhang. "A Novel Method for Classification of ECG Arrhythmias Using Deep Belief Networks." International Journal of Computational Intelligence and Applications 15, no. 04 (2016): 1650021. http://dx.doi.org/10.1142/s1469026816500218.
Full textReddy, G. Vinoda, Sreedevi Kadiyala, Chandra Srinivasan Potluri, et al. "An Intrusion Detection Using Machine Learning Algorithm Multi-Layer Perceptron (MlP): A Classification Enhancement in Wireless Sensor Network (WSN)." International Journal on Recent and Innovation Trends in Computing and Communication 10, no. 2s (2022): 139–45. http://dx.doi.org/10.17762/ijritcc.v10i2s.5920.
Full textHandari, Bevina D., Dewi Wulandari, Nessa A. Aquita, Shafira Leandra, Devvi Sarwinda, and Gatot F. Hertono. "Comparing Restricted Boltzmann Machine – Backpropagation Neural Networks, Artificial Neural Network – Genetic Algorithm and Artificial Neural Network – Particle Swarm Optimization for Predicting DHF Cases in DKI Jakarta." International Journal on Advanced Science, Engineering and Information Technology 12, no. 6 (2022): 2476. http://dx.doi.org/10.18517/ijaseit.12.6.16226.
Full textSingarimbun, Roy Nuary, Ondra Eka Putra, N. L. W. S. R. Ginantra, and Mariana Puspa Dewi. "Backpropagation Artificial Neural Network Enhancement using Beale-Powell Approach Technique." Journal of Physics: Conference Series 2394, no. 1 (2022): 012007. http://dx.doi.org/10.1088/1742-6596/2394/1/012007.
Full textLi, Yu, Yuan Zhang, and Yue Ji. "Privacy-Preserving Restricted Boltzmann Machine." Computational and Mathematical Methods in Medicine 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/138498.
Full textApolloni, Bruno, and Diego de Falco. "Learning by Asymmetric Parallel Boltzmann Machines." Neural Computation 3, no. 3 (1991): 402–8. http://dx.doi.org/10.1162/neco.1991.3.3.402.
Full textSantharooban, S., and S. P. Abeysundara. "Machine Learning Approach to Classify Breast Tissues: A Case Study Using Six-classed Breast Tissue Data." Sri Lankan Journal of Applied Statistics 23, no. 3 (2022): 133–53. http://dx.doi.org/10.4038/sljastats.v23i3.8081.
Full textSrinivas, V., K. Aditya, G. Prasanth, R. G.Babukarthik, S. Satheeshkumar, and G. Sambasivam. "A Novel Approach for Prediction of Heart Disease: Machine Learning Techniques." International Journal of Engineering & Technology 7, no. 2.32 (2018): 108. http://dx.doi.org/10.14419/ijet.v7i2.32.15380.
Full textFalah, Miftahul, Dian Palupi Rini, and Iwan Pahendra. "Kombinasi Algoritma Backpropagation Neural Network dengan Gravitational Search Algorithm Dalam Meningkatkan Akurasi." JURNAL MEDIA INFORMATIKA BUDIDARMA 5, no. 1 (2021): 90. http://dx.doi.org/10.30865/mib.v5i1.2597.
Full textMeir, Ronny. "ON DERIVING DETERMINISTIC LEARNING RULES FROM STOCHASTIC SYSTEMS." International Journal of Neural Systems 02, no. 04 (1991): 283–89. http://dx.doi.org/10.1142/s012906579100025x.
Full textWiederman, Meagan. "Biological Faithfulness is Unnecessary for Machine Learning." University of Western Ontario Medical Journal 87, no. 2 (2019): 27–29. http://dx.doi.org/10.5206/uwomj.v87i2.1134.
Full textAlbagmi, Faisal Mashel, Mehwish Hussain, Khurram Kamal, et al. "Predicting Multimorbidity Using Saudi Health Indicators (Sharik) Nationwide Data: Statistical and Machine Learning Approach." Healthcare 11, no. 15 (2023): 2176. http://dx.doi.org/10.3390/healthcare11152176.
Full textTamuntuan, Virginia, Kusrini Kusrini, and Kusnawi Kusnawi. "Analisis Perbandingan Kinerja Algoritma Klasifikasi Pada Mahasiswa Berpotensi Dropout." Building of Informatics, Technology and Science (BITS) 6, no. 2 (2024): 847–55. https://doi.org/10.47065/bits.v6i2.5658.
Full textSharma, Arvind Kumar, and Amrita Puri. "Study of machine learning based algorithms for active noise control of machinary noise." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, no. 5 (2023): 3414–25. http://dx.doi.org/10.3397/in_2023_0490.
Full textXu, Jiang, Siqian Liu, Zhikui Chen, and Yonglin Leng. "A Hybrid Imputation Method Based on Denoising Restricted Boltzmann Machine." International Journal of Grid and High Performance Computing 10, no. 2 (2018): 1–13. http://dx.doi.org/10.4018/ijghpc.2018040101.
Full textChaikovska, Maryna, and Oleksandr Shkeda. "Machine learning algorithm for an artificial neural network for building a model of managerial decision-making when developing a marketing strategy." Marketing and Digital Technologies 7, no. 2 (2023): 137–46. http://dx.doi.org/10.15276/mdt.7.2.2023.10.
Full textGómez Ramos, Marcos Yamir, J. Sergio Ruíz García, and Farid García Lamont. "Classification of corn plants and weed based on characteristics of color and texture using methods of segmentation Otsu and PCA." International Journal of Combinatorial Optimization Problems and Informatics 12, no. 3 (2021): 98–108. https://doi.org/10.61467/2007.1558.2021.v12i3.218.
Full textWang, Qianglong, Xiaoguang Gao, Kaifang Wan, Fei Li, and Zijian Hu. "A Novel Restricted Boltzmann Machine Training Algorithm with Fast Gibbs Sampling Policy." Mathematical Problems in Engineering 2020 (March 20, 2020): 1–19. http://dx.doi.org/10.1155/2020/4206457.
Full textLeema N., Khanna H. Nehemiah, Elgin Christo V. R., and Kannan A. "Evaluation of Parameter Settings for Training Neural Networks Using Backpropagation Algorithms." International Journal of Operations Research and Information Systems 11, no. 4 (2020): 62–85. http://dx.doi.org/10.4018/ijoris.2020100104.
Full textShaikh, Rumana M. "Cardiovascular Diseases Prediction Using Machine Learning Algorithms." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 6 (2021): 1083–88. http://dx.doi.org/10.17762/turcomat.v12i6.2426.
Full textPratiwi, Heny, and Kusno Harianto. "Perbandingan Algoritma ELM Dan Backpropagation Terhadap Prestasi Akademik Mahasiswa." J-SAKTI (Jurnal Sains Komputer dan Informatika) 3, no. 2 (2019): 282. http://dx.doi.org/10.30645/j-sakti.v3i2.147.
Full textSunil Basnet. "AI-ML algorithm for enhanced performance management: A comprehensive framework using Backpropagation (BP) Algorithm." International Journal of Science and Research Archive 11, no. 1 (2024): 1111–27. http://dx.doi.org/10.30574/ijsra.2024.11.1.0118.
Full textHolloway, Ian, Aihua Wood, and Alexander Alekseenko. "Acceleration of Boltzmann Collision Integral Calculation Using Machine Learning." Mathematics 9, no. 12 (2021): 1384. http://dx.doi.org/10.3390/math9121384.
Full textVinayakumar, Gopika. "A Comparison of KNN Algorithm and MNL Model for Mode Choice Modelling." European Transport/Trasporti Europei, no. 92 (March 2023): 1–14. http://dx.doi.org/10.48295/et.2023.92.3.
Full textEdi, Ismanto, Ab Ghani Hadhrami, Izrin Md Saleh Nurul, Al Amien Januar, and Gunawan Rahmad. "Recent systematic review on student performance prediction using backpropagation algorithms." TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 20, no. 3 (2022): 597–606. https://doi.org/10.12928/telkomnika.v20i3.21963.
Full textYang, Yanhua, Guiyong Liu, Haihong Zhang, Yan Zhang, and Xiaolong Yang. "Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms." Buildings 14, no. 1 (2024): 190. http://dx.doi.org/10.3390/buildings14010190.
Full textAbdurrakhman, Arief, Lilik Sutiarso, Makhmudun Ainuri, Mirwan Ushada, and Md Parvez Islam. "Prediction of Biogas Production from Agriculture Waste Biomass Based on Backpropagation Neural Network." BIO Web of Conferences 165 (2025): 06001. https://doi.org/10.1051/bioconf/202516506001.
Full textDurve, Mihir, Andriano Tiribocchi, Andrea Montessori, Marco Lauricella, and Sauro Succi. "Machine learning assisted droplet trajectories extraction in dense emulsions." Communications in Applied and Industrial Mathematics 13, no. 1 (2022): 70–77. http://dx.doi.org/10.2478/caim-2022-0006.
Full textZhong, Wei, Shuangli Wang, Tan Wu, Xiaolei Gao, and Tianshui Liang. "Optimized Machine Learning Model for Fire Consequence Prediction." Fire 7, no. 4 (2024): 114. http://dx.doi.org/10.3390/fire7040114.
Full textShao, Wei, Wenhan Yue, Ye Zhang, et al. "The Application of Machine Learning Techniques in Geotechnical Engineering: A Review and Comparison." Mathematics 11, no. 18 (2023): 3976. http://dx.doi.org/10.3390/math11183976.
Full textSahu, Ranu, and Khushboo Choubey. "Comparative Analysis of Supervised and Unsupervised Learning Methods for Pattern Classification." International Journal of Innovative Research in Computer and Communication Engineering 12, Special Is (2024): 58–63. http://dx.doi.org/10.15680/ijircce.2024.1203509.
Full textPanagiotou, Dimitrios K., and Anastasios I. Dounis. "Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network." Energies 15, no. 17 (2022): 6453. http://dx.doi.org/10.3390/en15176453.
Full textPaturi, Uma Maheshwera Reddy, Muhammad Ishtiaq, Pasupuleti Lakshmi Narayana, Anoop Kumar Maurya, Seong-Woo Choi, and Nagireddy Gari Subba Reddy. "Evaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys." Crystals 15, no. 5 (2025): 404. https://doi.org/10.3390/cryst15050404.
Full textRasna, Rasna, Moh Rahmat Irjii Matdoan, Junaidi Salat, Fitria Fitria, and Seno Lamsir. "Weather Classification and Prediction on Imagery Using Boltzmann Machine." International Journal of Engineering, Science and Information Technology 5, no. 2 (2025): 182–89. https://doi.org/10.52088/ijesty.v5i2.806.
Full textJammoussi, Imen, and Mounir Ben Nasr. "A Hybrid Method Based on Extreme Learning Machine and Self Organizing Map for Pattern Classification." Computational Intelligence and Neuroscience 2020 (August 25, 2020): 1–9. http://dx.doi.org/10.1155/2020/2918276.
Full textManasa K, Patta Sai, D Sai Balaji, and D Abhiram. "Phishing Website Detection using Machine Learning." international journal of engineering technology and management sciences 9, Special Issue 1 (2025): 90–95. https://doi.org/10.46647/ijetms.2025.v09si01.014.
Full textSyaharuddin, Fatmawati, Herry Suprajitno, and Ibrahim. "Hybrid Algorithm of Backpropagation and Relevance Vector Machine with Radial Basis Function Kernel for Hydro-Climatological Data Prediction." Mathematical Modelling of Engineering Problems 10, no. 5 (2023): 1706–16. http://dx.doi.org/10.18280/mmep.100521.
Full textJOHANSSON, THOMAS, and EWERT BENGTSSON. "DATA PARALLEL SUPERVISED CLASSIFICATION ALGORITHMS ON MULTISPECTRAL IMAGES." International Journal of Pattern Recognition and Artificial Intelligence 10, no. 07 (1996): 751–67. http://dx.doi.org/10.1142/s021800149600044x.
Full textZhang, Huimin. "Machine Learning Algorithms for Predicting and Estimating Book Borrowing in University Libraries." Journal of Advanced Computational Intelligence and Intelligent Informatics 28, no. 5 (2024): 1204–9. http://dx.doi.org/10.20965/jaciii.2024.p1204.
Full textLeng, Qian, Honggang Qi, Jun Miao, Wentao Zhu, and Guiping Su. "One-Class Classification with Extreme Learning Machine." Mathematical Problems in Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/412957.
Full textLiu, Qinghua, Lu Sun, Alain Kornhauser, Jiahui Sun, and Nick Sangwa. "Road roughness acquisition and classification using improved restricted Boltzmann machine deep learning algorithm." Sensor Review 39, no. 6 (2019): 733–42. http://dx.doi.org/10.1108/sr-05-2018-0132.
Full textMahecha-Gómez, Jorge E. "ARTIFICIAL INTELLIGENCE WITH NEURAL NETWORKS NOBEL PRIZES IN PHYSICS AND CHEMISTRY 2024." MOMENTO, no. 70 (January 30, 2025): I—XXI. https://doi.org/10.15446/mo.n70.118564.
Full text