Academic literature on the topic 'Bacteria producing lactic acid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacteria producing lactic acid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bacteria producing lactic acid"

1

Ha, Thi Quyen, and Thi Minh Tu Hoa. "Selection of lactic acid bacteria producing bacteriocin." Journal of Vietnamese Environment 8, no. 5 (January 17, 2017): 271–76. http://dx.doi.org/10.13141/jve.vol8.no5.pp271-276.

Full text
Abstract:
Lactic acid bacteria were isolated from 10 samples of the traditionally fermented foods (5 samples of Vietnamese fermented pork roll and 5 samples of the salted field cabbage) and 5 samples of fresh cow milks collected from households in Vietnam. 22 strains of lactic acid bacteria were isolated for inhibition to Lactobacillus plantarum JCM 1149. Of these, only 2 strains including DC1.8 and NC1.2 have rod shape, the others have coccus shape. 7 strains showing higher antibacterial activity were selected for checking spectrum of antibacteria with indicator bacteria consistting of Bacillus subtilis ATCC 6633, Enterococcus faecium JCM 5804 and Staphylococcus aureus TLU. By which, 3 strains including NC3.5 (from Vietnamese fermented pork roll), DC1.8 (from salted field cabbage) and MC3.19 (from fresh cow milk) were selected because of their higher antibacterial ability. However, the antibacterial activity of the lactic acid bacteria can be based on their disposable compounds and some other antibacterial compounds produced during their growth (such as lactic acid, H2O2, bacteriocins, etc.). For seeking lactic acid bacteria with capability of producing bacteriocins, antibacterial compounds with protein nature, 3 above strains were checked sensitiveness to proteases (including protease K, papain, α – chymotrypsin and trypsin). Because bacteriocins are proteinaceous antibacterial compounds, so their antibacterial activity will be reduced if proteases are added. The result showed DC1.8 and MC3.19 were capable of producing bacteriocin during culture process. They were identified as Lactobacillus acidophilus and Lactococcus lactis and classified, respectively, based on analysis chemical characterisitcs by standard API 50 CHL kit and phylogeny relationship by 16s rRNA sequences. Các chủng vi khuẩn lactic được phân lập từ 10 mẫu thực phẩm lên men truyền thống (5 mẫu nem chua, 5 mẫu dưa cải bẹ muối) và 5 mẫu sữa bò tươi được thu thập từ các hộ gia đình ở Việt Nam. 22 chủng vi khuẩn lactic đã được phân lập với tiêu chí có khả năng kháng lại vi khuẩn kiểm định Lactobacillus plantarum JCM 1149. Trong số đó, 2 chủng DC1.8 và NC1.2 có tế bào hình que, các chủng còn lại có tế bào hình cầu. 7 chủng thể hiện hoạt tính kháng khuẩn cao được lựa chọn để xác định phổ kháng khuẩn rộng hơn với ba loài vi khuẩn kiểm định Bacillus subtilis ATCC 6633, Enterococcus faecium JCM 5804 và Staphylococcus aureus TLU. Từ đó lựa chọn được 3 chủng có hoạt tính kháng khuẩn cao hơn hẳn. Các chủng này gồm NC3.5 phân lập từ nem chua, DC1.8 phân lập từ dưa cải bẹ muối và MC3.19 phân lập từ sữa bò tươi. Tuy nhiên, hoạt tính kháng khuẩn của vi khuẩn lactic bao gồm những hợp chất nội tại có trong nó và cả những hợp chất được sinh ra trong quá trình phát triển của nó (như axit lactic, H2O2, bacteriocin, …). Với định hướng tìm chủng vi khuẩn lactic có khả năng sinh bacteriocin, chất kháng khuẩn có bản chất protein, 3 chủng trên được kiểm tra độ nhạy cảm với các protease (gồm protease K, papain, α – chymotrypsin và trypsin). Do bacteriocin là chất kháng khuẩn có bản chất protein nên hoạt tính kháng khuẩn của chúng sẽ bị giảm nếu protease được bổ xung vào. Kết quả lựa chọn được chủng DC1.8 và MC3.19 có khả năng sinh bacteriocin. Hai chủng này được phân loại đến loài nhờ vào phân tích đặc điểm sinh hóa bằng kit API 50 CHL và mối quan hệ di truyền thông qua trình tự gen 16s rRNA. Kết quả phân loại đã xác định chủng DC1.8 thuộc loài Lactobacillus acidophilus và chủng MC3.19 thuộc loài Lactococcus lactis.
APA, Harvard, Vancouver, ISO, and other styles
2

MAURIELLO, GIANLUIGI, MARIA APONTE, ROSAMARIA ANDOLFI, GIANCARLO MOSCHETTI, and FRANCESCO VILLANI. "Spray-Drying of Bacteriocin-Producing Lactic Acid Bacteria." Journal of Food Protection 62, no. 7 (July 1, 1999): 773–77. http://dx.doi.org/10.4315/0362-028x-62.7.773.

Full text
Abstract:
Cell survival, cellular damage, and antagonistic activity were investigated after spray-drying of four bacteriocin-producing strains of lactic acid bacteria: Lactococcus lactis subsp. lactis 140, isolated from natural whey culture and producing a narrow-inhibitory spectrum bacteriocin); L. lactis subsp. lactis G35, isolated from pizza dough and producing nisin; Lactobacillus curvatus 32Y and Lactobacillus sp. 8Z, isolated from dry sausages. Trials were performed with bacteria suspended in skimmed milk or directly grown in whey. Three air temperatures at the inlet of the drier (160, 180, and 200°C) and three flow rates (10, 13, and 17 ml/min) were assayed. Cell viability and bacteriocin activity of the dried materials were determined immediately after the process and after 5, 15, 30, and 60 days of storage at 4°C. There was no significant difference between the two feeding suspensions in cell survival, always decreasing with the increase of inlet-air temperature. No loss of bacteriocin activity was detected in reconstituted powders, nor was any loss of ability to produce bacteriocin found after drying. Investigations of sensitivity to NaCl revealed only temporary damage to dried bacteria. During storage for 2 months at 4°C, all samples, but mainly the lactococcal strains, displayed a gradual decrease in cell survival. Bacteriocin activity remained at the same level, allowing powders to be considered as effective biopreservatives.
APA, Harvard, Vancouver, ISO, and other styles
3

McMULLEN, LYNN M., and MICHAEL E. STILES. "Potential for Use of Bacteriocin-Producing Lactic Acid Bacteria in the Preservation of Meats." Journal of Food Protection 59, no. 13 (December 1, 1996): 64–71. http://dx.doi.org/10.4315/0362-028x-59.13.64.

Full text
Abstract:
ABSTRACT Bacterial spoilage and safety are major concerns in the marketing of raw and processed meats. When meat is packaged under modified atmosphere with elevated levels of carbon dioxide (including vacuum packaging), the prevailing microflora of meat is changed from aerobic, putrefactive bacteria to lactic acid bacteria. Some “new generation” convenience foods rely almost entirely on refrigeration for assurance of safety against growth of pathogenic bacteria. With the emergence of cold-tolerant foodborne pathogens it is desirable to increase the “hurdles” to pathogen growth. Lactic acid bacteria preserve meats by competitive exclusion of other microorganisms but they also produce inhibitory substances, including lactic and acetic acids and bacteriocins. Bacteriocins are naturally produced peptides that are antagonistic to other closely related bacteria. Although bacteriocins are expected to have a narrow range of antibacterial activity, nisin is a bacteriocin that is active against a relatively broad spectrum of gram-positive bacteria, including inhibition of the outgrowth of Clostridium botulinum spores. Nisin is not effective in meat systems; as a result, research on the lactic acid bacteria of meat is focused on the selection of lactic acid bacteria that do not cause meat spoilage and that enhance product safety.
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Yong, Olga Babich, Stanislav Sukhikh, Mariya Zimina, and Irina Milentyeva. "Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms." Foods and Raw Materials 8, no. 2 (September 30, 2020): 377–84. http://dx.doi.org/10.21603/2308-4057-2020-2-377-384.

Full text
Abstract:
Introduction. Increased resistance of microorganisms to traditional antibiotics has created a practical need for isolating and synthesizing new antibiotics. We aimed to study the antibiotic activity and resistance of bacteriocins produced by lactic acid bacteria and other microorganisms. Study objects and methods. We studied the isolates of the following microorganism strains: Bacillus subtilis, Penicillium glabrum, Penicillium lagena, Pseudomonas koreenis, Penicillium ochrochloron, Leuconostoc lactis, Lactobacillus plantarum, Leuconostoc mesenteroides, Pediococcus acidilactici, Leuconostoc mesenteroides, Pediococcus pentosaceus, Lactobacillus casei, Lactobacillus fermentum, Bacteroides hypermegas, Bacteroides ruminicola, Pediococcus damnosus, Bacteroides paurosaccharolyticus, Halobacillus profundi, Geobacillus stearothermophilus, and Bacillus caldotenax. Pathogenic test strains included Escherichia coli, Salmonella enterica, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus mycoides, Alcaligenes faecalis, and Proteus vulgaris. The titer of microorganisms was determined by optical density measurements at 595 nm. Results and discussion. We found that eleven microorganisms out of twenty showed high antimicrobial activity against all test strains of pathogenic and opportunistic microorganisms. All the Bacteroides strains exhibited little antimicrobial activity against Gramnegative test strains, while Halobacillus profundi had an inhibitory effect on Gram-positive species only. The Penicillium strains also displayed a slight antimicrobial effect on pathogenic test strains. Conclusion. The antibiotic resistance of the studied lactic acid bacteria and other bacteriocin-producing microorganisms allows for their use in the production of pharmaceutical antibiotic drugs.
APA, Harvard, Vancouver, ISO, and other styles
5

Kačániová, Miroslava, Simona Kunova, Elena Horská, Ľudmila Nagyová, Czeslaw Puchalski, Peter Haščík, and Margarita Terentjeva. "Diversity of microorganisms in the traditional Slovak cheese." Potravinarstvo Slovak Journal of Food Sciences 13, no. 1 (June 28, 2019): 532–38. http://dx.doi.org/10.5219/1061.

Full text
Abstract:
The aim of the present study was to describe the microbial groups of the traditional Slovak cheese Parenica during rippening. The microbial group included the total bacterial count, coliform bacteria, enterococci, lactic acid bacteria, and microscopic filamentous fungi, which may affect the organoleptic characteristics of this product. A total of 42 cheese samples were collected from four different farms during three months. The total bacterial counts were cultivated on Plate count agar at 30 °C, lactic acid bacteria (LAB) on MRS, APT and MSE at 37 °C, coliform bacteria on VRBL at 37 °C. Gram-positive and Gram-negative isolates were identified by MALDI-TOF MS profiling. Bacillus sp. and Enterococcus faecium were the most frequently identified species of bacteria. Candida kefyr was the most distributed yeast according to microbiological methods. Lactic acid bacteria group was represented by Lactobacillus helveticus, L. jensenii, L. alimentarius, L. crispatus, L. curvatus, L. fermentum, L. suebicus, L. delbrueckii ssp. lactis, L. paracasei ssp. paracasei, Lactococcus lactis ssp. lactis, Leuconostoc lactis and Le. mesenteroides ssp. mesenteroides . This report describing the indigenous microbiota of the traditional raw milk cheeses from Slovakia. Our results provide useful information on occurrence of valuable microbial strain for the industrialization of producing of the traditional dairy products in Slovakia.
APA, Harvard, Vancouver, ISO, and other styles
6

Musikasang, H., N. Sohsomboon, A. Tani, and S. Maneerat. " Bacteriocin-producing lactic acid bacteria as a probiotic potential from Thai indigenous chickens." Czech Journal of Animal Science 57, No. 3 (March 27, 2012): 137–49. http://dx.doi.org/10.17221/5568-cjas.

Full text
Abstract:
Bacteriocin-producing lactic acid bacteria (LAB) were isolated and screened from the gastrointestinal tract (GIT) of Thai indigenous chickens. The bacteriocinogenic activities and the primary probiotic properties were determined. The bacteriocins produced by 14 strains of selected LAB displayed inhibitory activity against indicator strains after the supernatants were neutralized with NaOH in the following species: Lactobacillus sakei subsp. sakei JCM1157, Enterococcus faecalis VanB, Bacillus sp., and Listeria monocytogenes. The antagonistic acti-vity of selected LAB was inactivated or decreased after being treated with proteolytic enzymes (α-chymotrypsin and trypsin). CR5-1 strain exhibited the highest level of activity (5120 AU/ml) in the stationary phase against L. sakei subsp. sakei JCM1157 in MRS broth at 37°C. The nine isolates of selected LAB were investigated for primary probiotic properties. The survival of the nine isolates was found to decrease approximately by 3 log CFU/ml after passing through the gastrointestinal conditions. All isolates exhibited protein digestion on agar plates but no isolates showed the ability to digest starch and lipid. Most of them showed high susceptibilities to some antibiotics (penicillin G, tetracycline and erythromycin). Thirteen LAB strains producing bacteriocin with strongly inhibitory activity were identified as Lactobacillus salivarius and only one strain was identified by 16S rDNA sequence analysis as Lactobacillus agilis.    
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Shuang, and Lan Wei Zhang. "Effect of Exopolysaccharide Producing Lactic Acid Bacterial on the Gelation and Texture Properties of Yogurt." Advanced Materials Research 430-432 (January 2012): 890–93. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.890.

Full text
Abstract:
Lactic acid bacterial play a important role in yogurt texture and gel quality. The performance of lactic acid bacteria starter directly affected the quality of yogurt. Exopolysaccharide (EPS)-producing LAB may improve the texture of fermented milks, depending on the strain. EPS production was found to have a major effect on the texture properties and gelation properties, but varying textures with EPS production, structure and interaction with milk proteins. Yoghurts fermented with EPS-producing cultures showed different mouth thickness and ropiness rheological parameters and varying syneresis and gel firmness. The mechanism that how the metabolic properties of EPS producing lactic acid bacteria affect the texture and gel quality of yogurt is reviewed in the article.
APA, Harvard, Vancouver, ISO, and other styles
8

Sarbu, Ionela, Tatiana Vassu, Ileana Stoica, Emanuel Vamanu, and Diana Roxana Pelinescu. "Selection of lactic acid bacteria strains producing exopolysaccharides." Current Opinion in Biotechnology 22 (September 2011): S96—S97. http://dx.doi.org/10.1016/j.copbio.2011.05.302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khumbongmayum, Sumita Devi, and Veenagayathri Krishnaswamy. "Potential use of bacteriocin producing lactic acid bacterial strain isolated from milk products and its application as the fish feed." International Journal of Scientific World 4, no. 2 (November 15, 2016): 61. http://dx.doi.org/10.14419/ijsw.v4i2.6802.

Full text
Abstract:
Bacteriocins are gene-encoded inhibitory proteins and those produced by Gram-positive Lactic acid bacteria. Some bacteriocins even display antagonistic activity towards Gram-positive food borne pathogens and spoilage organisms. This present study involves isolation of Bacteriocin-producing lactic acid bacteria from a variety of milk and milk products. The physico-chemical properties of the isolated bacteriocin producing bacterial strains were screened. The isolated bacteriocin bacterial strains were biochemically characterized and identified. Further, the isolated effective bacterial strain was used as a fish feed and its effect on their growth was evaluated. The evaluated data continue to demonstrate that the bacteriocin producing bacterial strains will have greater potential in the food products industry.
APA, Harvard, Vancouver, ISO, and other styles
10

Palomba, Simona, Silvana Cavella, Elena Torrieri, Alessandro Piccolo, Pierluigi Mazzei, Giuseppe Blaiotta, Valeria Ventorino, and Olimpia Pepe. "Polyphasic Screening, Homopolysaccharide Composition, and Viscoelastic Behavior of Wheat Sourdough from a Leuconostoc lactis and Lactobacillus curvatus Exopolysaccharide-Producing Starter Culture." Applied and Environmental Microbiology 78, no. 8 (February 3, 2012): 2737–47. http://dx.doi.org/10.1128/aem.07302-11.

Full text
Abstract:
ABSTRACTAfter isolation from different doughs and sourdoughs, 177 strains of lactic acid bacteria were screened at the phenotypic level for exopolysaccharide production on media containing different carbohydrate sources. Two exopolysaccharide-producing lactic acid bacteria (Lactobacillus curvatus69B2 andLeuconostoc lactis95A) were selected through quantitative analysis on solid media containing sucrose and yeast extract. The PCR detection of homopolysaccharide (gtfandlev) and heteropolysaccharide (epsA,epsB,epsDandepsE, andepsEFG) genes showed different distributions within species and strains of the lactic acid bacteria studied. Moreover, in some strains both homopolysaccharide and heteropolysaccharide genes were detected. Proton nuclear magnetic resonance spectra suggest thatLactobacillus curvatus69B2 andLeuconostoc lactis95A produced the same exopolysaccharide, which was constituted by a single repeating glucopyranosyl unit linked by an α-(1→6) glycosidic bond in a dextran-type carbohydrate. Microbial growth, acidification, and viscoelastic properties of sourdoughs obtained by exopolysaccharide-producing and nonproducing lactic acid bacterial strains were evaluated. Sourdough obtained after 15 h at 30°C with exopolysaccharide-producing lactic acid bacteria reached higher total titratable acidity as well as elastic and dissipative modulus curves with respect to the starter not producing exopolysaccharide, but they showed similar levels of pH and microbial growth. On increasing the fermentation time, no difference in the viscoelastic properties of exopolysaccharide-producing and nonproducing samples was observed. This study suggests that dextran-producingLeuconostoc lactis95A andLactobacillus curvatus69B2 can be employed to prepare sourdough, and this would be particularly useful to improve the quality of baked goods while avoiding the use of commercially available hydrocolloids as texturizing additives.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bacteria producing lactic acid"

1

Ha, Thi Quyen, and Thi Minh Tu Hoa. "Selection of lactic acid bacteria producing bacteriocin." Technische Universität Dresden, 2016. https://tud.qucosa.de/id/qucosa%3A32636.

Full text
Abstract:
Lactic acid bacteria were isolated from 10 samples of the traditionally fermented foods (5 samples of Vietnamese fermented pork roll and 5 samples of the salted field cabbage) and 5 samples of fresh cow milks collected from households in Vietnam. 22 strains of lactic acid bacteria were isolated for inhibition to Lactobacillus plantarum JCM 1149. Of these, only 2 strains including DC1.8 and NC1.2 have rod shape, the others have coccus shape. 7 strains showing higher antibacterial activity were selected for checking spectrum of antibacteria with indicator bacteria consistting of Bacillus subtilis ATCC 6633, Enterococcus faecium JCM 5804 and Staphylococcus aureus TLU. By which, 3 strains including NC3.5 (from Vietnamese fermented pork roll), DC1.8 (from salted field cabbage) and MC3.19 (from fresh cow milk) were selected because of their higher antibacterial ability. However, the antibacterial activity of the lactic acid bacteria can be based on their disposable compounds and some other antibacterial compounds produced during their growth (such as lactic acid, H2O2, bacteriocins, etc.). For seeking lactic acid bacteria with capability of producing bacteriocins, antibacterial compounds with protein nature, 3 above strains were checked sensitiveness to proteases (including protease K, papain, α – chymotrypsin and trypsin). Because bacteriocins are proteinaceous antibacterial compounds, so their antibacterial activity will be reduced if proteases are added. The result showed DC1.8 and MC3.19 were capable of producing bacteriocin during culture process. They were identified as Lactobacillus acidophilus and Lactococcus lactis and classified, respectively, based on analysis chemical characterisitcs by standard API 50 CHL kit and phylogeny relationship by 16s rRNA sequences.
Các chủng vi khuẩn lactic được phân lập từ 10 mẫu thực phẩm lên men truyền thống (5 mẫu nem chua, 5 mẫu dưa cải bẹ muối) và 5 mẫu sữa bò tươi được thu thập từ các hộ gia đình ở Việt Nam. 22 chủng vi khuẩn lactic đã được phân lập với tiêu chí có khả năng kháng lại vi khuẩn kiểm định Lactobacillus plantarum JCM 1149. Trong số đó, 2 chủng DC1.8 và NC1.2 có tế bào hình que, các chủng còn lại có tế bào hình cầu. 7 chủng thể hiện hoạt tính kháng khuẩn cao được lựa chọn để xác định phổ kháng khuẩn rộng hơn với ba loài vi khuẩn kiểm định Bacillus subtilis ATCC 6633, Enterococcus faecium JCM 5804 và Staphylococcus aureus TLU. Từ đó lựa chọn được 3 chủng có hoạt tính kháng khuẩn cao hơn hẳn. Các chủng này gồm NC3.5 phân lập từ nem chua, DC1.8 phân lập từ dưa cải bẹ muối và MC3.19 phân lập từ sữa bò tươi. Tuy nhiên, hoạt tính kháng khuẩn của vi khuẩn lactic bao gồm những hợp chất nội tại có trong nó và cả những hợp chất được sinh ra trong quá trình phát triển của nó (như axit lactic, H2O2, bacteriocin, …). Với định hướng tìm chủng vi khuẩn lactic có khả năng sinh bacteriocin, chất kháng khuẩn có bản chất protein, 3 chủng trên được kiểm tra độ nhạy cảm với các protease (gồm protease K, papain, α – chymotrypsin và trypsin). Do bacteriocin là chất kháng khuẩn có bản chất protein nên hoạt tính kháng khuẩn của chúng sẽ bị giảm nếu protease được bổ xung vào. Kết quả lựa chọn được chủng DC1.8 và MC3.19 có khả năng sinh bacteriocin. Hai chủng này được phân loại đến loài nhờ vào phân tích đặc điểm sinh hóa bằng kit API 50 CHL và mối quan hệ di truyền thông qua trình tự gen 16s rRNA. Kết quả phân loại đã xác định chủng DC1.8 thuộc loài Lactobacillus acidophilus và chủng MC3.19 thuộc loài Lactococcus lactis.
APA, Harvard, Vancouver, ISO, and other styles
2

Ambros, Sabine [Verfasser]. "Microwave-assisted drying of lactic acid-producing bacteria / Sabine Ambros." München : Verlag Dr. Hut, 2020. http://d-nb.info/1219477370/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rawson, Helen L. "Polysaccharide producing strains of lactic acid bacteria and their effects on aspects of yoghurt rheology." Thesis, University of Huddersfield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Jesseleine Cristine Monteiro da [UNESP]. "Síntese, caracterização e estudos da atividade biológica de peptídeos antimicrobianos derivados de Leucocinas TA33a." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151692.

Full text
Abstract:
Submitted by JESSELEINE CRISTINE MONTEIRO DA SILVA null (jesse_cris@hotmail.com) on 2017-09-20T20:56:09Z No. of bitstreams: 1 Dissertação final Jesseleine.pdf: 1516064 bytes, checksum: 56e50bf83bbdb465716b33121512f13f (MD5)
Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-27T17:48:51Z (GMT) No. of bitstreams: 1 silva_jcm_me_araiq.pdf: 1516064 bytes, checksum: 56e50bf83bbdb465716b33121512f13f (MD5)
Made available in DSpace on 2017-09-27T17:48:51Z (GMT). No. of bitstreams: 1 silva_jcm_me_araiq.pdf: 1516064 bytes, checksum: 56e50bf83bbdb465716b33121512f13f (MD5) Previous issue date: 2017-09-06
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Devido ao crescente aumento de doenças transmitidas por alimentos, a segurança microbiológica se torna uma questão de saúde pública pelas suas características de endemicidade, alta morbidade e pela dificuldade da adoção de medidas de controle desses microrganismos. Diante deste fato, o objetivo deste trabalho foi sintetizar e caracterizar os análogos peptídicos LeuB e LeuC-1 derivados de bacteriocinas naturais denominadas Leucocinas. Os peptídeos foram sintetizados manualmente pelo método de síntese em fase sólida, submetidos à desproteção total e clivagem, com liberação dos peptídeos brutos. Foram realizadas as análises comparativas usando HPLC e ESI-MS, e com os respectivos peptídeos puros foram feitos os ensaios antimicrobiano, enzimático, permeabilização, antioxidante, hemolítico e de espectroscopia de dicroísmo circular. Com isso, observou-se que o método de síntese dos análogos foi adequado e o processo de purificação possibilitou a obtenção dos peptídeos com alto grau de pureza. O peso molecular teórico dos peptídeos foi confirmado por espectrometria de massas. O LeuB apresentou uma maior capacidade em inibir o crescimento de Escherichia coli O157:H7 e em Salmonella sorovar Typhimurium, enquanto que LeuC-1 apresentou efeito de inibição de crescimento de Listeria monocytogenes e também de S. sorovar Typhimurium. É importante destacar que todas essas bactérias são de interesse na área de alimentos, já que são as causadoras da maioria dos casos de infecção alimentar. O ensaio de inibição enzimática com DNA girase e Topoisomerase IV mostrou que apenas o peptídeo LeuB possui capacidade de inibição destas enzimas bacterianas, sugerindo um possível mecanismo de ação deste derivado de Leucocina. Este peptídeo também apresentou a capacidade de permeabilizar miméticos de membrana bacteriana composto de POPC/POPG (75/25). Por sua vez, o peptídeo LeuC-1 não apresentou capacidade significativa de inibição da atividade das enzimas DNA girase e Topoisomerase IV e também não apresentou capacidade de permeabilização de miméticos de membrana. Porém, LeuC-1 apresentou uma boa atividade antioxidante, obtida pelo método de ABTS. Ambos os peptídeos apresentaram baixa toxicidade em eritrócitos, comprovadas pelos ensaios hemolíticos. Estruturalmente, os peptídeos LeuB e LeuC-1 tendem a se estruturar em α-hélice. Assim sendo, este trabalho possibilitou a obtenção de dois peptídeos com potencial de aplicação como conservantes alimentares a partir de mecanismos distintos de ação sem apresentar citotoxicidade para células vermelhas do sangue. LeuB possui uma suposta atuação como inibidor de topoisomerases bacterianas e capacidade de permeabilização de miméticos de membrana. LeuC-1 possivelmente atua em diferentes vias metabólicas da bactéria, porém ainda não foi possível elucidar o mecanismo alvo deste mimético peptídico.
Due to the increase of foodborne diseases, microbiological safety becomes a public health issue due to its characteristics of endemicity, high morbidity and the difficulty of adopting control measures of these microorganisms. In view of this fact, the objective of this work was to synthesize and characterize LeuB and LeuC-1 peptidics analogues derived from natural bacteriocins called Leucocins. The peptides were synthesized manually by the solid phase synthesis method, subjected to total deprotection and cleavage, with release of the crude peptides. Comparative analyzes were performed using HPLC and ESI-MS, and with the respective pure peptides the antimicrobial, enzymatic, permeabilization, antioxidant, hemolytic and circular dichroism spectroscopy. With this, it was observed that the method of synthesis of the analogs was adequate and the purification process allowed to obtain the peptides with high purity. The theoretical molecular weight of the peptides was confirmed by mass spectrometry. LeuB showed a greater capacity to inhibit the growth of Escherichia coli O157: H7 and Salmonella serovar Typhimurium, whereas LeuC-1 presented inhibition effect of growth of Listeria monocytogenes and also of S. serovar Typhimurium. It is important to highlight that all these bacteria are interesting in the area of food, since they are the cause of most cases of food infection. The enzyme inhibition assay with DNA gyrase and Topoisomerase IV showed that only the LeuB peptide has the ability to inhibit these bacterial enzymes, suggesting a possible mechanism of action of this Leucocin derivative. This peptide also showed the ability to permeabilize bacterial membrane mimetics composed of POPC/POPG (75/25). On the other hand, the LeuC- 1 peptide did not present significant capacity to inhibit the activity of the enzymes DNA gyrase and Topoisomerase IV and also did not present permeabilization capacity of membrane mimetics. However, LeuC-1 presented a good antioxidant activity, obtained by the ABTS method. Both peptides had low erythrocyte toxicity, as demonstrated by hemolytic assays. Structurally, the LeuB and LeuC-1 peptides tend to be α-helix structured. Therefore, this work enabled two peptides with application potential as food preservatives to be obtained from distinct mechanisms of action without presenting red blood cell cytotoxicity. LeuB has a supposed action as inhibitor of bacterial topoisomerases and permeabilization capacity of membrane mimetics. LeuC-1 possibly acts on different metabolic pathways of the bacterium, but it has not yet been possible to elucidate the target mechanism of this peptidic mimetic.
CNPq: 150928/2015-7
APA, Harvard, Vancouver, ISO, and other styles
5

Magnusson, Jesper. "Antifungal activity of lactic acid bacteria /." Uppsala : Dept. of Microbiology, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/a397.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Humphreys, S. "Glycopeptide resistance in lactic acid bacteria." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604779.

Full text
Abstract:
The glycopeptide antibiotics vancomycin and teicoplanin are used to treat infections caused by Gram positive bacteria. The formation of nascent peptidoglycan chains and cross linking of the cell wall is inhibited because the drugs bind specifically to the D-alanyl-D-alanine portion of the pentapeptide chain in peptidoglycan precursors. Plasmid-mediated, high-level resistance to both antibiotics in Enterococcus sp. is associated with production of a novel D-alanine:D-alanine (D-Ala:D-Ala) ligase of altered substrate specificity. This enzyme, VanA, synthesises the depsipeptide D-alanyl-D-lactate (D-Ala-D-Lac), which is incorporated into cell wall precursors, instead of D-Ala-D-Ala. Vancomycin has a 1000 fold lower affinity for cell wall precursors terminating in the hydroxyacid. VanA and other plasmid-borne van genes essential for high-level glycopeptide resistance in enterococci lie within the inverted repeats of a transposon; Tn1546, which has a distinctly different G+C ratio to enterococcal DNA, suggesting an exogenous origin. Lactic acid bacteria such as Lactobacillus sp. and Leuconostoc sp. are intrinsically resistant to glycopeptide antibiotics. Analysis of their cell wall precursors reveals that they terminate in D-Lac, suggesting a similar mechanism of resistance to that of the enterococci. The mechanism of cell wall synthesis in vancomycin-sensitive and resistant lactic acid bacteria and VanA-type enterococci was investigated. The D-Ala:D-Ala ligase from the glycopeptide-sensitive lactic acid bacterium, Lactobacillus delbrueckii, was purified directly from cell extracts and characterised. No D-Ala:D-hydroxyacid ligase activity was detected in extracts from the glycopeptide-resistant Lactobacillus brevis. Subsequently, the ligase of Leuconostoc mesenteroides (Lmddl), which had already been sequenced, was cloned and overexpressed, to allow purification and characterisation of the enzyme.
APA, Harvard, Vancouver, ISO, and other styles
7

Nuraida, Lilis. "Metabolic studies on lactic acid bacteria." Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gostick, Dominic Owen. "Transcription regulators of lactic acid bacteria." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmad, Khalid Akeel. "Cloning Lux genes into lactic acid bacteria." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jones, Rachael Ann. "Investigation of exopolysaccharide production by lactic acid bacteria." Thesis, Robert Gordon University, 2008. http://hdl.handle.net/10059/1252.

Full text
Abstract:
This thesis is an investigation into the production of exopolysaccharides (EPS) produced by strains of Lactobacillus delbrueckii ssp. bulgaricus and Lactococcus lactis ssp. cremoris. These are used in the dairy industry for the production of yoghurt and fermented drinks products. For many years EPS producing lactic acid bacteria have been used by the dairy industry as a thickening agent in the production of yoghurt. However, this EPS producing trait is unstable and is readily lost which can cause an alteration in the texture of the final product. It was found that all the strains of Lb. delbrueclcii ssp. bulgaricus and Le. /aetis ssp. eremoris produced quantities of EPS that could be used for further analysis. They were found to be in the molecular weight range of 6.6 x 1 06g /mol to 1.26 x 1011 glmol and were composed of different quantities of glucose, galactose and rhamnose. Temperature, carbon source and shaking all affected the quantities of EPS produced by all strains of Le. laetis ssp. eremoris. The firmness and viscosity of fermented milks produced by strains of Lb. delbrueckii ssp. bulgaricus were higher than those produced by strains of Le. laetis ssp. cremoris indicating that firmness and viscosity are not solely related to the levels of EPS production. A 40kb plasmid was found in all strains of Le. /aetis ssp. cremoris that could potentially contain the genes for EPS production. The plasmid could not be removed using elevated temperature or with the addition of acriflavin. Fourier transform infrared spectroscopy (FTIR) showed that it was possible to differentiate different strains based on their spectra and that differences were found in the protein and EPS regions of the spectra. It was also established that the age of culture, whether the growth medium was liquid or solid and the carbon source of the growth media had an effect on the FTIR spectra produced and the ability to differentiate between strains. There is further potential to develop this technique to provide a quick and easy method of identifying strains of lactic acid bacteria and monitor their EPS producing ability.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bacteria producing lactic acid"

1

Holzapfel, Wilhelm H., and Brian J. B. Wood, eds. Lactic Acid Bacteria. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118655252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kanauchi, Makoto, ed. Lactic Acid Bacteria. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8907-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Faruk Bozoğlu, T., and Bibek Ray, eds. Lactic Acid Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61462-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Heping, and Yimin Cai, eds. Lactic Acid Bacteria. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8841-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Wei, ed. Lactic Acid Bacteria. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7283-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Wei, ed. Lactic Acid Bacteria. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7832-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holzapfel, W. H. N. Genera of lactic acid bacteria. [S.l.]: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Vuyst, Luc, and Erick J. Vandamme, eds. Bacteriocins of Lactic Acid Bacteria. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2668-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wood, Brian J. B., and Philip J. Warner, eds. Genetics of Lactic Acid Bacteria. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0191-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sharma, Deepansh, Baljeet Singh Saharan, and Shailly Kapil. Biosurfactants of Lactic Acid Bacteria. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26215-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Bacteria producing lactic acid"

1

Cavalcanti de Albuquerque, Marcela Albuquerque, María del Milagro Teran, Luiz Henrique Groto Garutti, Ana Clara Candelaria Cucik, Susana Marta Isay Saad, Bernadette Dora Gombossy de Melo Franco, and Jean Guy LeBlanc. "B-Group Vitamin-Producing Lactic Acid Bacteria." In Lactic Acid Bacteria, 106–23. Boca Raton : CRC Press, Taylor & Francis Group, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422591-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richard, Jean A. "Use of bacteriocin producing starters advantageously in dairy industry." In Lactic Acid Bacteria, 137–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61462-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fritze, D., and D. Claus. "Spore-forming, lactic acid producing bacteria of the genera Bacillus and Sporolactobacillus." In The Genera of Lactic Acid Bacteria, 368–91. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-5817-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luchansky, John B. "Overview on applications for bacteriocin-producing lactic acid bacteria and their bacteriocins." In Lactic Acid Bacteria: Genetics, Metabolism and Applications, 335. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2027-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tanous, Catherine, Agnieszka Kieronczyk, Sandra Helinck, Emilie Chambellon, and Mireille Yvon. "Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains." In Lactic Acid Bacteria: Genetics, Metabolism and Applications, 271–78. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2029-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jelle, Birthe, and Nicolai Peitersen. "Bacteriocin Producing Lactic Acid Bacteria Used for Biopreservation of Food." In Developments in Food Engineering, 915–17. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

von Mollendorff, Johan W., Manuela Vaz-Velho, and Svetoslav D. Todorov. "Boza, a Traditional Cereal-Based Fermented Beverage: A Rich Source of Probiotics and Bacteriocin-Producing Lactic Acid Bacteria." In Functional Properties of Traditional Foods, 157–88. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7662-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Teuber, Michael. "Lactic Acid Bacteria." In Biotechnology, 325–66. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620821.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

da Silva, Neusely, Marta Hiromi Taniwaki, Valéria Christina Amstalden Junqueira, Neliane Ferraz de Arruda Silveira, Margarete Midori Okazaki, and Renato Abeilar Romeiro Gomes. "Lactic acid bacteria." In Microbiological Examination Methods of Food and Water, 189–206. Second edition. | Leiden, The Netherlands ; Boca Raton : CRC Press/Balkema, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315165011-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruiz-Rodríguez, Luciana, Juliana Bleckwedel, Maria Eugenia Ortiz, Micaela Pescuma, and Fernanda Mozzi. "Lactic Acid Bacteria." In Industrial Biotechnology, 395–451. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527807796.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bacteria producing lactic acid"

1

Khromova, Natalya, Victor Panfilov, Ekaterina Marinicheva, Julia Epishkina, and Irina Shakir. "A STUDY ON INDUSTRIAL STRAINS OF LACTIC ACID BACTERIA PRODUCING BACTERIOCINS." In 20th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2020. STEF92 Technology, 2020. http://dx.doi.org/10.5593/sgem2020/6.1/s25.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khair, Nedaa Kamalalden. "Activity of Antibiotic Producing Bacteria Isolated from Rhizosphere Soil Region of Different Medicinal Plants." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0093.

Full text
Abstract:
The rhizosphere soil of medicinal plants is rich in microorganisms that develop antibiotics as natural mechanism of protection against other microbes that live in their vicinity. The present study aims to explore the production of antibacterial agents from rhizosphere soil bacteria of 11 medicinal plants and determine their activity against Gram-negative (Pseudomonas aeruginosa, Escherichia coli) and Gram-positive (Bacillus cereus, Staphylococcus aureus) bacteria. Soil samples were collected and used to isolate antibiotic producing bacteria (APB). Those isolates (108) were first tested using Cross-streak method against test bacteria. Then, isolates that showed a positive antibacterial effect (12) were tested by antibiotic susceptibility test (AST) of their cell free supernatant (CFS) and their extracellular and intracellular secondary metabolites extraction which gave positive results. Staphylococcus aureus found to be the most sensitive test bacteria with inhibitory zones ranging from 13.5 - 19 mm. Moreover, combinatorial effect of isolates CFS with two organic acids (3% Acetic acid and 0.4 mg/ml Acetylsalicylic acid), two commercial antibiotics (0.016 mg/ml Augmentin and 0.128 mg/ml Doxycycline), and two pure antibiotics (10 mcg/disk Penicillin and 25mcg/disk Carbenicillin) was in vitro evaluated using AST. The combinations of CFS-carbenicillin showed a marked synergistic activity against all test bacteria. The presence of possible antibacterial agents as acetic acid, lactic acid and citric acid in CFS of APB was confirmed by HPLC analysis. Ultimately, in vitro antibacterial study for rhizosphere soil bacteria in this work suggests the possibility of using these bacterial metabolites in clinical infections caused by selected test bacteria, especially when they combine with antibiotics or organic acids.
APA, Harvard, Vancouver, ISO, and other styles
3

Borisenko, O. A. "MINIMUM NUTRIENT ENVIRONMENT FOR LACTIC ACID BACTERIA." In Aktualnye voprosy industrii napitkov. Izdatelstvo i tipografiya "Kniga-memuar", 2018. http://dx.doi.org/10.21323/978-5-6041190-3-7-2018-2-22-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fokina, N. A., G. T. Uryadova, and L. V. Karpunina. "Exopolysaccharides of lactic acid bacteria: applied aspects." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.075.

Full text
Abstract:
Exopolysaccharides Lactococcus lactis B-1662 and, to a greater extent, Streptococcus thermophilus have a healing effect on burns in rats. The exopolysaccharide Streptococcus thermophilus also has a prebiotic effect in the poultry body.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Xuejun, Mengmeng Wang, Chang Zhu, Mengxing Gou, and Xiaohui Yan. "Research progress of functional lactic acid bacteria." In 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/iceesd-17.2017.116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ünal, Emel, Selin Kalkan, and Zerrin Erginkaya. "Use of lactic acid bacteria biofilms as biocontrol agents." In Proceedings of the International Conference on Antimicrobial Research (ICAR2010). WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814354868_0040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gou, Jingxuan, Wenbin Dong, and Qiao Zeng. "Isolation and identification of probiotic lactic acid bacteria from pickles." In 2011 International Conference on Human Health and Biomedical Engineering (HHBE). IEEE, 2011. http://dx.doi.org/10.1109/hhbe.2011.6028979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reis, Nayara Alves, Norma Suely Evangelista-Barreto, Margarete Alice Fontes Saraiva, Marly Silveira Santos, Adriana Pereira Sampaio, and Alessandra Santana Silva. "Antimicrobial Resistance of Lactic Acid Bacteria Isolated From Human Milk." In XII Latin American Congress on Food Microbiology and Hygiene. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/foodsci-microal-305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alipin, Kartiawati, and Ratu Safitri. "The potential of indigenous lactic acid bacteria against Salmonella sp." In TOWARDS THE SUSTAINABLE USE OF BIODIVERSITY IN A CHANGING ENVIRONMENT: FROM BASIC TO APPLIED RESEARCH: Proceeding of the 4th International Conference on Biological Science. Author(s), 2016. http://dx.doi.org/10.1063/1.4953505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lombogia, C. A., M. Tulung, J. Posangi, and T. E. Tallei. "Gut-associated Lactic Acid Bacteria (LAB) in Apis nigrocincta (Smith)." In 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210810.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bacteria producing lactic acid"

1

Hutchinson, M. L., J. E. L. Corry, and R. H. Madden. A review of the impact of food processing on antimicrobial-resistant bacteria in secondary processed meats and meat products. Food Standards Agency, October 2020. http://dx.doi.org/10.46756/sci.fsa.bxn990.

Full text
Abstract:
For meat and meat products, secondary processes are those that relate to the downstream of the primary chilling of carcasses. Secondary processes include maturation chilling, deboning, portioning, mincing and other operations such as thermal processing (cooking) that create fresh meat, meat preparations and ready-to-eat meat products. This review systematically identified and summarised information relating to antimicrobial resistance (AMR) during the manufacture of secondary processed meatand meat products (SPMMP). Systematic searching of eight literature databases was undertaken and the resultantpapers were appraised for relevance to AMR and SPMMP. Consideration was made that the appraisal scores, undertaken by different reviewers, were consistent. Appraisal reduced the 11,000 initially identified documents to 74, which indicated that literature relating to AMR and SPMMP was not plentiful. A wide range of laboratory methods and breakpoint values (i.e. the concentration of antimicrobial used to assess sensitivity, tolerance or resistance) were used for the isolation of AMR bacteria.The identified papers provided evidence that AMR bacteria could be routinely isolated from SPMMP. There was no evidence that either confirmed or refuted that genetic materials capable of increasing AMR in non-AMR bacteria were present unprotected (i.e. outside of a cell or a capsid) in SPMMP. Statistical analyses were not straightforward because different authors used different laboratory methodologies.However, analyses using antibiotic organised into broadly-related groups indicated that Enterobacteriaceaeresistant to third generation cephalosporins might be an area of upcoming concern in SPMMP. The effective treatment of patients infected with Enterobacteriaceaeresistant to cephalosporins are a known clinical issue. No AMR associations with geography were observed and most of the publications identified tended to be from Europe and the far east.AMR Listeria monocytogenes and lactic acid bacteria could be tolerant to cleaning and disinfection in secondary processing environments. The basis of the tolerance could be genetic (e.g. efflux pumps) or environmental (e.g. biofilm growth). Persistent, plant resident, AMR L. monocytogenes were shown by one study to be the source of final product contamination. 4 AMR genes can be present in bacterial cultures used for the manufacture of fermented SPMMP. Furthermore, there was broad evidence that AMR loci could be transferred during meat fermentation, with refrigeration temperatures curtailing transfer rates. Given the potential for AMR transfer, it may be prudent to advise food business operators (FBOs) to use fermentation starter cultures that are AMR-free or not contained within easily mobilisable genetic elements. Thermal processing was seen to be the only secondary processing stage that served as a critical control point for numbers of AMR bacteria. There were significant linkages between some AMR genes in Salmonella. Quaternary ammonium compound (QAC) resistance genes were associated with copper, tetracycline and sulphonamide resistance by virtue of co-location on the same plasmid. No evidence was found that either supported or refuted that there was any association between AMR genes and genes that encoded an altered stress response or enhanced the survival of AMR bacteria exposed to harmful environmental conditions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography