Academic literature on the topic 'Bacteria producing lactic acid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacteria producing lactic acid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bacteria producing lactic acid"
Ha, Thi Quyen, and Thi Minh Tu Hoa. "Selection of lactic acid bacteria producing bacteriocin." Journal of Vietnamese Environment 8, no. 5 (January 17, 2017): 271–76. http://dx.doi.org/10.13141/jve.vol8.no5.pp271-276.
Full textMAURIELLO, GIANLUIGI, MARIA APONTE, ROSAMARIA ANDOLFI, GIANCARLO MOSCHETTI, and FRANCESCO VILLANI. "Spray-Drying of Bacteriocin-Producing Lactic Acid Bacteria." Journal of Food Protection 62, no. 7 (July 1, 1999): 773–77. http://dx.doi.org/10.4315/0362-028x-62.7.773.
Full textMcMULLEN, LYNN M., and MICHAEL E. STILES. "Potential for Use of Bacteriocin-Producing Lactic Acid Bacteria in the Preservation of Meats." Journal of Food Protection 59, no. 13 (December 1, 1996): 64–71. http://dx.doi.org/10.4315/0362-028x-59.13.64.
Full textYang, Yong, Olga Babich, Stanislav Sukhikh, Mariya Zimina, and Irina Milentyeva. "Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms." Foods and Raw Materials 8, no. 2 (September 30, 2020): 377–84. http://dx.doi.org/10.21603/2308-4057-2020-2-377-384.
Full textKačániová, Miroslava, Simona Kunova, Elena Horská, Ľudmila Nagyová, Czeslaw Puchalski, Peter Haščík, and Margarita Terentjeva. "Diversity of microorganisms in the traditional Slovak cheese." Potravinarstvo Slovak Journal of Food Sciences 13, no. 1 (June 28, 2019): 532–38. http://dx.doi.org/10.5219/1061.
Full textMusikasang, H., N. Sohsomboon, A. Tani, and S. Maneerat. " Bacteriocin-producing lactic acid bacteria as a probiotic potential from Thai indigenous chickens." Czech Journal of Animal Science 57, No. 3 (March 27, 2012): 137–49. http://dx.doi.org/10.17221/5568-cjas.
Full textZhang, Shuang, and Lan Wei Zhang. "Effect of Exopolysaccharide Producing Lactic Acid Bacterial on the Gelation and Texture Properties of Yogurt." Advanced Materials Research 430-432 (January 2012): 890–93. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.890.
Full textSarbu, Ionela, Tatiana Vassu, Ileana Stoica, Emanuel Vamanu, and Diana Roxana Pelinescu. "Selection of lactic acid bacteria strains producing exopolysaccharides." Current Opinion in Biotechnology 22 (September 2011): S96—S97. http://dx.doi.org/10.1016/j.copbio.2011.05.302.
Full textKhumbongmayum, Sumita Devi, and Veenagayathri Krishnaswamy. "Potential use of bacteriocin producing lactic acid bacterial strain isolated from milk products and its application as the fish feed." International Journal of Scientific World 4, no. 2 (November 15, 2016): 61. http://dx.doi.org/10.14419/ijsw.v4i2.6802.
Full textPalomba, Simona, Silvana Cavella, Elena Torrieri, Alessandro Piccolo, Pierluigi Mazzei, Giuseppe Blaiotta, Valeria Ventorino, and Olimpia Pepe. "Polyphasic Screening, Homopolysaccharide Composition, and Viscoelastic Behavior of Wheat Sourdough from a Leuconostoc lactis and Lactobacillus curvatus Exopolysaccharide-Producing Starter Culture." Applied and Environmental Microbiology 78, no. 8 (February 3, 2012): 2737–47. http://dx.doi.org/10.1128/aem.07302-11.
Full textDissertations / Theses on the topic "Bacteria producing lactic acid"
Ha, Thi Quyen, and Thi Minh Tu Hoa. "Selection of lactic acid bacteria producing bacteriocin." Technische Universität Dresden, 2016. https://tud.qucosa.de/id/qucosa%3A32636.
Full textCác chủng vi khuẩn lactic được phân lập từ 10 mẫu thực phẩm lên men truyền thống (5 mẫu nem chua, 5 mẫu dưa cải bẹ muối) và 5 mẫu sữa bò tươi được thu thập từ các hộ gia đình ở Việt Nam. 22 chủng vi khuẩn lactic đã được phân lập với tiêu chí có khả năng kháng lại vi khuẩn kiểm định Lactobacillus plantarum JCM 1149. Trong số đó, 2 chủng DC1.8 và NC1.2 có tế bào hình que, các chủng còn lại có tế bào hình cầu. 7 chủng thể hiện hoạt tính kháng khuẩn cao được lựa chọn để xác định phổ kháng khuẩn rộng hơn với ba loài vi khuẩn kiểm định Bacillus subtilis ATCC 6633, Enterococcus faecium JCM 5804 và Staphylococcus aureus TLU. Từ đó lựa chọn được 3 chủng có hoạt tính kháng khuẩn cao hơn hẳn. Các chủng này gồm NC3.5 phân lập từ nem chua, DC1.8 phân lập từ dưa cải bẹ muối và MC3.19 phân lập từ sữa bò tươi. Tuy nhiên, hoạt tính kháng khuẩn của vi khuẩn lactic bao gồm những hợp chất nội tại có trong nó và cả những hợp chất được sinh ra trong quá trình phát triển của nó (như axit lactic, H2O2, bacteriocin, …). Với định hướng tìm chủng vi khuẩn lactic có khả năng sinh bacteriocin, chất kháng khuẩn có bản chất protein, 3 chủng trên được kiểm tra độ nhạy cảm với các protease (gồm protease K, papain, α – chymotrypsin và trypsin). Do bacteriocin là chất kháng khuẩn có bản chất protein nên hoạt tính kháng khuẩn của chúng sẽ bị giảm nếu protease được bổ xung vào. Kết quả lựa chọn được chủng DC1.8 và MC3.19 có khả năng sinh bacteriocin. Hai chủng này được phân loại đến loài nhờ vào phân tích đặc điểm sinh hóa bằng kit API 50 CHL và mối quan hệ di truyền thông qua trình tự gen 16s rRNA. Kết quả phân loại đã xác định chủng DC1.8 thuộc loài Lactobacillus acidophilus và chủng MC3.19 thuộc loài Lactococcus lactis.
Ambros, Sabine [Verfasser]. "Microwave-assisted drying of lactic acid-producing bacteria / Sabine Ambros." München : Verlag Dr. Hut, 2020. http://d-nb.info/1219477370/34.
Full textRawson, Helen L. "Polysaccharide producing strains of lactic acid bacteria and their effects on aspects of yoghurt rheology." Thesis, University of Huddersfield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286083.
Full textSilva, Jesseleine Cristine Monteiro da [UNESP]. "Síntese, caracterização e estudos da atividade biológica de peptídeos antimicrobianos derivados de Leucocinas TA33a." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151692.
Full textApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-27T17:48:51Z (GMT) No. of bitstreams: 1 silva_jcm_me_araiq.pdf: 1516064 bytes, checksum: 56e50bf83bbdb465716b33121512f13f (MD5)
Made available in DSpace on 2017-09-27T17:48:51Z (GMT). No. of bitstreams: 1 silva_jcm_me_araiq.pdf: 1516064 bytes, checksum: 56e50bf83bbdb465716b33121512f13f (MD5) Previous issue date: 2017-09-06
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Devido ao crescente aumento de doenças transmitidas por alimentos, a segurança microbiológica se torna uma questão de saúde pública pelas suas características de endemicidade, alta morbidade e pela dificuldade da adoção de medidas de controle desses microrganismos. Diante deste fato, o objetivo deste trabalho foi sintetizar e caracterizar os análogos peptídicos LeuB e LeuC-1 derivados de bacteriocinas naturais denominadas Leucocinas. Os peptídeos foram sintetizados manualmente pelo método de síntese em fase sólida, submetidos à desproteção total e clivagem, com liberação dos peptídeos brutos. Foram realizadas as análises comparativas usando HPLC e ESI-MS, e com os respectivos peptídeos puros foram feitos os ensaios antimicrobiano, enzimático, permeabilização, antioxidante, hemolítico e de espectroscopia de dicroísmo circular. Com isso, observou-se que o método de síntese dos análogos foi adequado e o processo de purificação possibilitou a obtenção dos peptídeos com alto grau de pureza. O peso molecular teórico dos peptídeos foi confirmado por espectrometria de massas. O LeuB apresentou uma maior capacidade em inibir o crescimento de Escherichia coli O157:H7 e em Salmonella sorovar Typhimurium, enquanto que LeuC-1 apresentou efeito de inibição de crescimento de Listeria monocytogenes e também de S. sorovar Typhimurium. É importante destacar que todas essas bactérias são de interesse na área de alimentos, já que são as causadoras da maioria dos casos de infecção alimentar. O ensaio de inibição enzimática com DNA girase e Topoisomerase IV mostrou que apenas o peptídeo LeuB possui capacidade de inibição destas enzimas bacterianas, sugerindo um possível mecanismo de ação deste derivado de Leucocina. Este peptídeo também apresentou a capacidade de permeabilizar miméticos de membrana bacteriana composto de POPC/POPG (75/25). Por sua vez, o peptídeo LeuC-1 não apresentou capacidade significativa de inibição da atividade das enzimas DNA girase e Topoisomerase IV e também não apresentou capacidade de permeabilização de miméticos de membrana. Porém, LeuC-1 apresentou uma boa atividade antioxidante, obtida pelo método de ABTS. Ambos os peptídeos apresentaram baixa toxicidade em eritrócitos, comprovadas pelos ensaios hemolíticos. Estruturalmente, os peptídeos LeuB e LeuC-1 tendem a se estruturar em α-hélice. Assim sendo, este trabalho possibilitou a obtenção de dois peptídeos com potencial de aplicação como conservantes alimentares a partir de mecanismos distintos de ação sem apresentar citotoxicidade para células vermelhas do sangue. LeuB possui uma suposta atuação como inibidor de topoisomerases bacterianas e capacidade de permeabilização de miméticos de membrana. LeuC-1 possivelmente atua em diferentes vias metabólicas da bactéria, porém ainda não foi possível elucidar o mecanismo alvo deste mimético peptídico.
Due to the increase of foodborne diseases, microbiological safety becomes a public health issue due to its characteristics of endemicity, high morbidity and the difficulty of adopting control measures of these microorganisms. In view of this fact, the objective of this work was to synthesize and characterize LeuB and LeuC-1 peptidics analogues derived from natural bacteriocins called Leucocins. The peptides were synthesized manually by the solid phase synthesis method, subjected to total deprotection and cleavage, with release of the crude peptides. Comparative analyzes were performed using HPLC and ESI-MS, and with the respective pure peptides the antimicrobial, enzymatic, permeabilization, antioxidant, hemolytic and circular dichroism spectroscopy. With this, it was observed that the method of synthesis of the analogs was adequate and the purification process allowed to obtain the peptides with high purity. The theoretical molecular weight of the peptides was confirmed by mass spectrometry. LeuB showed a greater capacity to inhibit the growth of Escherichia coli O157: H7 and Salmonella serovar Typhimurium, whereas LeuC-1 presented inhibition effect of growth of Listeria monocytogenes and also of S. serovar Typhimurium. It is important to highlight that all these bacteria are interesting in the area of food, since they are the cause of most cases of food infection. The enzyme inhibition assay with DNA gyrase and Topoisomerase IV showed that only the LeuB peptide has the ability to inhibit these bacterial enzymes, suggesting a possible mechanism of action of this Leucocin derivative. This peptide also showed the ability to permeabilize bacterial membrane mimetics composed of POPC/POPG (75/25). On the other hand, the LeuC- 1 peptide did not present significant capacity to inhibit the activity of the enzymes DNA gyrase and Topoisomerase IV and also did not present permeabilization capacity of membrane mimetics. However, LeuC-1 presented a good antioxidant activity, obtained by the ABTS method. Both peptides had low erythrocyte toxicity, as demonstrated by hemolytic assays. Structurally, the LeuB and LeuC-1 peptides tend to be α-helix structured. Therefore, this work enabled two peptides with application potential as food preservatives to be obtained from distinct mechanisms of action without presenting red blood cell cytotoxicity. LeuB has a supposed action as inhibitor of bacterial topoisomerases and permeabilization capacity of membrane mimetics. LeuC-1 possibly acts on different metabolic pathways of the bacterium, but it has not yet been possible to elucidate the target mechanism of this peptidic mimetic.
CNPq: 150928/2015-7
Magnusson, Jesper. "Antifungal activity of lactic acid bacteria /." Uppsala : Dept. of Microbiology, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/a397.pdf.
Full textHumphreys, S. "Glycopeptide resistance in lactic acid bacteria." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604779.
Full textNuraida, Lilis. "Metabolic studies on lactic acid bacteria." Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314794.
Full textGostick, Dominic Owen. "Transcription regulators of lactic acid bacteria." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286585.
Full textAhmad, Khalid Akeel. "Cloning Lux genes into lactic acid bacteria." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280525.
Full textJones, Rachael Ann. "Investigation of exopolysaccharide production by lactic acid bacteria." Thesis, Robert Gordon University, 2008. http://hdl.handle.net/10059/1252.
Full textBooks on the topic "Bacteria producing lactic acid"
Holzapfel, Wilhelm H., and Brian J. B. Wood, eds. Lactic Acid Bacteria. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118655252.
Full textKanauchi, Makoto, ed. Lactic Acid Bacteria. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8907-2.
Full textFaruk Bozoğlu, T., and Bibek Ray, eds. Lactic Acid Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61462-0.
Full textZhang, Heping, and Yimin Cai, eds. Lactic Acid Bacteria. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8841-0.
Full textChen, Wei, ed. Lactic Acid Bacteria. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7283-4.
Full textChen, Wei, ed. Lactic Acid Bacteria. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7832-4.
Full textDe Vuyst, Luc, and Erick J. Vandamme, eds. Bacteriocins of Lactic Acid Bacteria. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2668-1.
Full textWood, Brian J. B., and Philip J. Warner, eds. Genetics of Lactic Acid Bacteria. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0191-6.
Full textSharma, Deepansh, Baljeet Singh Saharan, and Shailly Kapil. Biosurfactants of Lactic Acid Bacteria. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26215-4.
Full textBook chapters on the topic "Bacteria producing lactic acid"
Cavalcanti de Albuquerque, Marcela Albuquerque, María del Milagro Teran, Luiz Henrique Groto Garutti, Ana Clara Candelaria Cucik, Susana Marta Isay Saad, Bernadette Dora Gombossy de Melo Franco, and Jean Guy LeBlanc. "B-Group Vitamin-Producing Lactic Acid Bacteria." In Lactic Acid Bacteria, 106–23. Boca Raton : CRC Press, Taylor & Francis Group, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429422591-7.
Full textRichard, Jean A. "Use of bacteriocin producing starters advantageously in dairy industry." In Lactic Acid Bacteria, 137–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61462-0_7.
Full textFritze, D., and D. Claus. "Spore-forming, lactic acid producing bacteria of the genera Bacillus and Sporolactobacillus." In The Genera of Lactic Acid Bacteria, 368–91. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-5817-0_11.
Full textLuchansky, John B. "Overview on applications for bacteriocin-producing lactic acid bacteria and their bacteriocins." In Lactic Acid Bacteria: Genetics, Metabolism and Applications, 335. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2027-4_17.
Full textTanous, Catherine, Agnieszka Kieronczyk, Sandra Helinck, Emilie Chambellon, and Mireille Yvon. "Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains." In Lactic Acid Bacteria: Genetics, Metabolism and Applications, 271–78. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2029-8_17.
Full textJelle, Birthe, and Nicolai Peitersen. "Bacteriocin Producing Lactic Acid Bacteria Used for Biopreservation of Food." In Developments in Food Engineering, 915–17. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_299.
Full textvon Mollendorff, Johan W., Manuela Vaz-Velho, and Svetoslav D. Todorov. "Boza, a Traditional Cereal-Based Fermented Beverage: A Rich Source of Probiotics and Bacteriocin-Producing Lactic Acid Bacteria." In Functional Properties of Traditional Foods, 157–88. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7662-8_12.
Full textTeuber, Michael. "Lactic Acid Bacteria." In Biotechnology, 325–66. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620821.ch10.
Full textda Silva, Neusely, Marta Hiromi Taniwaki, Valéria Christina Amstalden Junqueira, Neliane Ferraz de Arruda Silveira, Margarete Midori Okazaki, and Renato Abeilar Romeiro Gomes. "Lactic acid bacteria." In Microbiological Examination Methods of Food and Water, 189–206. Second edition. | Leiden, The Netherlands ; Boca Raton : CRC Press/Balkema, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315165011-14.
Full textRuiz-Rodríguez, Luciana, Juliana Bleckwedel, Maria Eugenia Ortiz, Micaela Pescuma, and Fernanda Mozzi. "Lactic Acid Bacteria." In Industrial Biotechnology, 395–451. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527807796.ch11.
Full textConference papers on the topic "Bacteria producing lactic acid"
Khromova, Natalya, Victor Panfilov, Ekaterina Marinicheva, Julia Epishkina, and Irina Shakir. "A STUDY ON INDUSTRIAL STRAINS OF LACTIC ACID BACTERIA PRODUCING BACTERIOCINS." In 20th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2020. STEF92 Technology, 2020. http://dx.doi.org/10.5593/sgem2020/6.1/s25.020.
Full textKhair, Nedaa Kamalalden. "Activity of Antibiotic Producing Bacteria Isolated from Rhizosphere Soil Region of Different Medicinal Plants." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0093.
Full textBorisenko, O. A. "MINIMUM NUTRIENT ENVIRONMENT FOR LACTIC ACID BACTERIA." In Aktualnye voprosy industrii napitkov. Izdatelstvo i tipografiya "Kniga-memuar", 2018. http://dx.doi.org/10.21323/978-5-6041190-3-7-2018-2-22-24.
Full textFokina, N. A., G. T. Uryadova, and L. V. Karpunina. "Exopolysaccharides of lactic acid bacteria: applied aspects." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.075.
Full textLiu, Xuejun, Mengmeng Wang, Chang Zhu, Mengxing Gou, and Xiaohui Yan. "Research progress of functional lactic acid bacteria." In 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/iceesd-17.2017.116.
Full textÜnal, Emel, Selin Kalkan, and Zerrin Erginkaya. "Use of lactic acid bacteria biofilms as biocontrol agents." In Proceedings of the International Conference on Antimicrobial Research (ICAR2010). WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814354868_0040.
Full textGou, Jingxuan, Wenbin Dong, and Qiao Zeng. "Isolation and identification of probiotic lactic acid bacteria from pickles." In 2011 International Conference on Human Health and Biomedical Engineering (HHBE). IEEE, 2011. http://dx.doi.org/10.1109/hhbe.2011.6028979.
Full textReis, Nayara Alves, Norma Suely Evangelista-Barreto, Margarete Alice Fontes Saraiva, Marly Silveira Santos, Adriana Pereira Sampaio, and Alessandra Santana Silva. "Antimicrobial Resistance of Lactic Acid Bacteria Isolated From Human Milk." In XII Latin American Congress on Food Microbiology and Hygiene. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/foodsci-microal-305.
Full textAlipin, Kartiawati, and Ratu Safitri. "The potential of indigenous lactic acid bacteria against Salmonella sp." In TOWARDS THE SUSTAINABLE USE OF BIODIVERSITY IN A CHANGING ENVIRONMENT: FROM BASIC TO APPLIED RESEARCH: Proceeding of the 4th International Conference on Biological Science. Author(s), 2016. http://dx.doi.org/10.1063/1.4953505.
Full textLombogia, C. A., M. Tulung, J. Posangi, and T. E. Tallei. "Gut-associated Lactic Acid Bacteria (LAB) in Apis nigrocincta (Smith)." In 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210810.006.
Full textReports on the topic "Bacteria producing lactic acid"
Hutchinson, M. L., J. E. L. Corry, and R. H. Madden. A review of the impact of food processing on antimicrobial-resistant bacteria in secondary processed meats and meat products. Food Standards Agency, October 2020. http://dx.doi.org/10.46756/sci.fsa.bxn990.
Full text