Academic literature on the topic 'Bacterial diseases – Vaccination'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacterial diseases – Vaccination.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bacterial diseases – Vaccination"
Hone, D., and J. Hackett. "Vaccination Against Enteric Bacterial Diseases." Clinical Infectious Diseases 11, no. 6 (November 1, 1989): 853–77. http://dx.doi.org/10.1093/clinids/11.6.853.
Full textMohd-Aris, Aslizah, Mohd Hafiz Ngoo Muhamad-Sofie, Mohd Zamri-Saad, Hassan Mohd Daud, and Md Yasin Ina-Salwany. "Live vaccines against bacterial fish diseases: A review." November-2019 12, no. 11 (November 2019): 1806–15. http://dx.doi.org/10.14202/vetworld.2019.1806-1815.
Full textPAPADOPOULOS (Π. ΠΑΠΑΔΟΠΟΥΛΟΣ), P., K. BITCHAVA (Κ. ΜΠΙΤΧΑΒΑ), E. TZIRONI (Ε. ΤΖΙΡΩΝΗ), and F. ATHANASSOPOULOU (Φ. ΑΘΑΝΑΣΟΠΟΥΛΟΥ). "Fish vaccination." Journal of the Hellenic Veterinary Medical Society 59, no. 4 (November 22, 2017): 308. http://dx.doi.org/10.12681/jhvms.14965.
Full textPeltola, H. "Vaccination Against Bacterial Meningitis." International Journal of Infectious Diseases 14 (March 2010): e331. http://dx.doi.org/10.1016/j.ijid.2010.02.2229.
Full textFielder, Mark, and David J. M. Lewis. "Vaccination against bacterial gut infections." Current Opinion in Infectious Diseases 11, no. 5 (October 1998): 591–96. http://dx.doi.org/10.1097/00001432-199810000-00011.
Full textSharma, Nikhil, and Nitin Khuller. "Periodontal Vaccine: A New Paradigm for Prevention of Periodontal Diseases." Journal of Oral Health and Community Dentistry 4, Spl (2010): 23–28. http://dx.doi.org/10.5005/johcd-4-spl-23.
Full textZügel, Ulrich, Anne-Marit Sponaas, Jutta Neckermann, Bernd Schoel, and Stefan H. E. Kaufmann. "gp96-Peptide Vaccination of Mice against Intracellular Bacteria." Infection and Immunity 69, no. 6 (June 1, 2001): 4164–67. http://dx.doi.org/10.1128/iai.69.6.4164-4167.2001.
Full textGuo, Jianguo, Jun Tang, Taisheng Kang, Yi Xiong, Zhiguang Xiang, and Chuan Qin. "Different immunization methods lead to altered gut flora and varied responses to Mycobacterium tuberculosis infection in mice." Journal of Infection in Developing Countries 14, no. 10 (October 31, 2020): 1170–77. http://dx.doi.org/10.3855/jidc.12697.
Full textRoot-Bernstein, Robert. "Pneumococcal and Influenza Vaccination Rates and Pneumococcal Invasive Disease Rates Set Geographical and Ethnic Population Susceptibility to Serious COVID-19 Cases and Deaths." Vaccines 9, no. 5 (May 8, 2021): 474. http://dx.doi.org/10.3390/vaccines9050474.
Full textCesaro, Simone, Mareva Giacchino, Francesca Fioredda, Angelica Barone, Laura Battisti, Stefania Bezzio, Stefano Frenos, et al. "Guidelines on Vaccinations in Paediatric Haematology and Oncology Patients." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/707691.
Full textDissertations / Theses on the topic "Bacterial diseases – Vaccination"
Patel, Amit, Richard Veerman, Jodi Polaha, Leigh Johnson, Gina Flack, Michelle Goodman, Leona McAllister, and Monaco Briggs. "Addressing Gaps in Immunization Rates in a Family Medicine Residency Clinic." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/asrf/2018/schedule/200.
Full textMartin, Matthew David. "Time-dependent alterations in memory CD8 T cell function after infection." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3138.
Full textAngelin, Martin. "Travel – a risk factor for disease and spread of antibiotic resistance." Doctoral thesis, Umeå universitet, Infektionssjukdomar, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-111057.
Full textBruffaerts, Nicolas. "Preclinical studies on a new strategy combining the Bacillus of Calmette-Guérin with plasmid DNA-based subunit vaccines against tuberculosis." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209082.
Full textLe présent travail a eu pour but principal d’étudier une nouvelle approche de vaccination combinant le Bacille de Calmette-Guérin avec des vaccins sous-unitaires à ADN plasmidique dans différents modèles précliniques.
Plusieurs hypothèses tentent d’expliquer la faible efficacité du vaccin BCG, comme la faible induction de réponses immunitaires de type cellulaire T CD8+, le déclin de l’immunité protectrice induite au cours du temps, ou son répertoire antigénique limité. Les vaccins à ADN plasmidique induisant de telles réponses, le travail proposé a consisté au développement d’un nouveau protocole de vaccination basé sur la coadministration par la voie intradermique du vaccin BCG formulé avec un vaccin à ADN plasmidique codant pour un antigène mycobactérien. Nous avons observé dans plusieurs modèles murins (adulte et néonatal) une augmentation significative des réponses cellulaires de type CD4+ Th1 et CD8+, ainsi que de la réponse humorale spécifique. L’immunogénicité de cette approche a également été analysée dans un modèle animal de grande taille, à savoir le modèle porcin. Les résultats obtenus indiquent que les vaccins à ADN plasmidique sont capables d’augmenter les réponses spécifiques à l’antigène codé par le plasmide mais également celles spécifiques à d’autres antigènes exprimés par le vaccin BCG. Enfin, dans la deuxième partie du travail, nous avons développé des vaccins plasmidiques codant pour des combinaisons d’antigènes phase-spécifiques de M. tuberculosis et nous avons analysé leur immunogénicité en modèle murin.
En conclusion, nous avons montré que la stratégie de coadministration par la voie intradermique du vaccin BCG avec un vaccin à ADN plasmidique encodant des antigènes mycobactériens s’avère être un protocole de vaccination réaliste et efficace pour améliorer l’immunité induite par le vaccin BCG. Elle offre par ailleurs des perspectives pour être appliquée avec des plasmides codant pour des antigènes caractéristiques de la tuberculose latente, peu reconnus après vaccination BCG, pour protéger à la fois contre la tuberculose active d’une primo-infection et contre la réactivation d’une infection latente.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Carpenter, Stephen M. "Memory CD8+ T Cell Function during Mycobacterium Tuberculosis Infection: A Dissertation." eScholarship@UMMS, 2016. http://escholarship.umassmed.edu/gsbs_diss/860.
Full textMannam, Praveen. "Immune response and protection against Streptococcus pyogenes after vaccination with Lactococcus lactis that expresses conserved region of M6 protein." Thesis, 2003. http://hdl.handle.net/1957/30816.
Full textGraduation date: 2004
Cardoso, Cláudia Sofia Gomes. "Cyanobacterial Outer Membrane Vesicles and Lipopolysaccharides Virulence In Zebrafish Larvae: Towards The Development Of A New Vaccination Platform." Master's thesis, 2021. http://hdl.handle.net/10316/94260.
Full textAquaculture provides a controlled environment to produce aquatic animals and plants, aiming to answer human nutritional needs. Disease outbreaks in aquaculture production can represent significant constraints, with losses reaching 3 billion per year. Gram-negative bacteria are responsible for some of the most common bacterial diseases affecting aquaculture, including Aeromonas spp. (furunculosis; haemorrhagic septicaemia), Vibrio spp. (Vibriosis), Photobacterium damselae (photobacteriosis), or Tenacibaculum maritimum (tenacibaculosis), and Gram-positive bacteria such as Mycobacterium marinum (mycobacteriosis). Outer membrane vesicles (OMV) are naturally produced by Gram-negative bacteria, and nowadays, their potential as tools for carrying immunogenic antigens is being studied. Lipopolysaccharides (LPS), are an important constituent of Gram-negative bacteria outer membrane and are linked to strong immunogenic responses in fish. Cyanobacteria display less immunogenic LPS when compared with other Gram-negative bacteria. Several trials were carried out to evaluate how LPS and OMV affected zebrafish (Danio rerio) larvae survival. LPS from common fish pathogens, namely Aeromonas hydrophila, Vibrio harveyi, T. maritimum, and Photobacterium damselae subsp. damselae were extracted through a hot-phenol protocol and tested at different concentrations (50, 100, 250, 500, and 750 μg/mL) in 3 days post fertilization (dpf) zebrafish larvae, for five days. OMV and LPS from Synechocystis sp. PCC 6803 (WT) and its mutants, Synechocystis sp. PCC 6803 ΔTolC (ΔTolC), Synechocystis sp. PCC 6803 ΔTolCΔSpy (ΔTolCΔSpy) and Synechocystis sp. PCC 6803 ΔFucS (ΔFucS) were tested at 250 and 500 μg/mL concentrations, in 3 dpf zebrafish larvae, for five days. The results show that LPS from V. harveyi and T. maritimum are a major virulence factor, whereas the LPS from A. hydrophila and P. damselae are not. The results regarding the LPS from Synechocystis strains showed that LPS from ΔTolC and ΔTolCΔSpy are toxic for zebrafish larvae, while those from WT and ΔFucS are not. On the other hand, the OMVs isolated from the different Synechocystis strains did not affect zebrafish larvae survival. Overall, this study presents evidence that LPS is a highly virulent component in Gram-negative bacteria and the main virulent component of cyanobacterial OMVs. It was also possible to conclude that OMVs from ΔFucS present the most promising adjuvant effect, having the potential to be further developed as new vaccine delivery platforms.
A aquacultura promove um ambiente controlado para a produção de animais e plantas aquáticas, e foi criada com a intenção de responder às necessidades do Homem. O aparecimento de doenças nas produções de aquacultura representa um grande constrangimento, levando a perdas de 3 mil milhões de euros por ano. As doenças bacterianas mais comuns são causadas por bactérias Gram negativas, nomeadamente o género Aeromonas (septicemia hemorrágica), o género Vibrio (Vibriosis), a espécie Photobacterium damselae (photobacteriosis), ou a espécie Tenacibaculum maritimum (tenacibaculosis), e bactérias Gram positivas como a Mycobacterium marinum (micobacteriosis). As bactérias Gram negativas libertam vesículas extracelulares com origem na sua membrana externa, as OMVs, e têm sido usadas para o desenvolvimento do transporte de antigénios. Os lipopolissacarídeos (LPS) são um constituinte importante da membrana externa das bactérias Gram negativas e está associado a intensas respostas imunitárias em peixes. O LPS presente nas cianobactérias apresenta uma menor imunogenicidade quando comparado com o LPS de outras bactérias Gram negativas. Para avaliar o efeito do LPS e das OMVs foram feitos ensaios de imersão com larvas de peixe-zebra (Danio rerio). O LPS foi extraído de patogénicos comuns em peixes através de um protocolo de fenol quente, e as OMVs e o LPS de cianobactérias foram extraídos da espécie Synechocystis sp. PCC 6803 (S6803) e dos mutantes ΔTolC, ΔTolCΔSpy e ΔFucS. O LPS purificado de A. hydrophila, V. harveyi, T. maritimum e P. damselae foi testado em diferentes concentrações (50, 100, 250, 500 e 750 μg/mL) em larvas com 3 dias após a sua fertilização de peixe-zebra, enquanto que as OMVs e o LPS de Synechocystis e dos seus mutantes foram testados às concentrações de 250 e 500 μg/mL. Os resultados mostram que o LPS de V. harveyi e T. maritimum é um fator de virulência importante, enquanto que o LPS de A. hydrophila e P. damselae não é. Os resultados relativamente às OMVs e LPS de S6803 e dos seus mutantes mostram que o LPS de ΔTolC e ΔTolCΔSpy são nocivos para as larvas de peixe-zebra, enquanto que o LPS de S6803 e o mutante ΔFucS não são. Todas as OMVs testadas das diferentes estirpes de S6803 não causam mortalidade nas larvas de peixe-zebra. Concluindo, este estudo prova que o LPS é um componente altamente virulento nas bactérias Gram-negativas, como nas OMVs das cianobactérias. Também possível concluir que a estirpe ΔFucS tem as OMVs com o maior potencial de virem a ser desenvolvidas como novos meios de entrega de antigénios.
Outro - Projeto POCI-01-0145-FEDER-029540 (PTDC/BIAOUT/29540/2017), “Vesículas de membrana externa de Cianobactérias como plataformas inovadoras para a tecnologia de Vacinas” financiado pelo Portugal 2020, no âmbito do Programa Operacional Competitividade e Internacionalização (COMPETE 2020) - e através da Fundação para a Ciência e a Tecnologia,
Haelle, Tara Susan. "Overlooked casualties : stories of families affected by vaccine-preventable diseases." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5167.
Full texttext
Chen, Chih-Yuan, and 陳志遠. "Effects of Multispecies Combinations of Lactic Acid Bacteria on the Protective Effect Against Salmonella Infection of Mice and Chicks as well as their Application to the Vaccination for Newcastle Disease Vaccine." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/38t6yv.
Full text國立中興大學
食品暨應用生物科技學系所
101
Day old chicks and immature animals are susceptible to the infection of Salmonella enteric subspecies and other pathogen bacteria species. It has been reported that multistrain probiotics are more effective than monostrain probiotics due to the additive and synergistic effects. In this study, we evaluated the function of two multistrain formulas (MF), ie, MFA and MFB. Each formula consisted of four lactic acid bacteria (LAB) strains. These strains were selected by the ability to enhance the TNF-α production in mouse macrophage 264.7 cells, and the ability to adhere human intestinal epithelium cell line Caco-2 and to chicken crop epithelial cells. Assessments of the functions of these two MFs we assayed include: The function to inhibit Salmonella invasion of chicks organs, and the enhancement of anti-inflammatory cytokines in Salmonella challenged chicks; The function to inhibit common parasitic infections in chicken, such as Eimeria infection. The effects on antibody response to Newcastle disease vaccine in broiler chicken. Results showed that MF are able to reduce the Salmonella invasion of chick organs, such as livers and spleens, e.g. reduction of Salmonella counts 1~2 log CFU/per organ; to reduce the expression of proinflammatory cytokine genes, ie, IL-1β, IL-6, IFN-γ, and enhance the anti-inflammatory cytokine gene, ie, IL-10 in cecal tonsil of chicks after Salmonella invasion. MF could reduce the Eimeria infection of chicken. MF could enhance the vaccine efficacy against Newcastle disease in broiler chickens, e.g., by increase of the sera NDV antibody titer of broiler chickens. Both MFA and MFB showed anti-Salmonella and anti-Eimeria infection effects, however, MFA showed better efficacy than MFB. Thus, MFA was formulated to feed supplement for field trial use. Results showed that MFA powder, could inhibit the invasion of Salmonella, reduce the inflammatory responses, and enhance the anti-inflammatory response in chicks after invasion, and moreover, may increase the growth rate of chicken. Compared to live probiotics, heat killed (HK) LAB are easier for storage and transportation. Both MFA and MFB were heat-killed (HKMFA and HKMFB), and their adherent properties and immunomodulatory activities were evaluated. In vitro assays showed that HKMFA and HKMFB could induce high levels of interleukin 12 (IL-12) production in mouse macrophages. No difference was observed for the adherent capabilities to Caco-2 cells between HK-LAB and viable LAB. In vivo assay showed that HKMFA and HKMFB could reduce Salmonella invasion of mice, reduce the inflammatory cytokines, ie, IL-6 and TNF-α, and enhance the anti-inflammatory cytokine response, ie, IL-10, in mouse serum after Salmonella infection. Finally, long-term (2 months) feeding HKMFA and HKMFB results showed that HKMFA and HKMFB could enhance the phagocytic activity in peritoneal macrophage cells. In conclusion, these results showed that the MFs of LAB use developed are with potential for feed supplement use.
Books on the topic "Bacterial diseases – Vaccination"
Amargier, Jean-Claude. Vaccination against brucellosis in ruminants using inactivated H 38 vaccine. New Delhi: Translated and published under an agreement for the United States Dept. of Agriculture, Washington, D.C., by Amerind Pub. Co., 1987.
Find full textR, Stratton Kathleen, ed. Adverse effects of vaccines: Evidence and causality. Washington, D.C: National Academies Press, 2012.
Find full textKaattari, S. L. Development of a vaccine for bacterial kidney disease in salmon: Final report. Portland, Or: U.S. Dept. of Energy, Bonneville Power Administration, Division of Fish & Wildlife, 1991.
Find full textVaccines 88: New Chemical And Genetic Approaches to Vaccination : Prevention of AIDS And Other Viral, Bacterial, And Parasitic Diseases (Vaccines). Cold Spring Harbor Laboratory Pr, 1988.
Find full textZoysa, Aruni De. Other bacterial diseasesDiseases caused by corynebacteria and related organisms. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0019.
Full textStephen, Kaattari, United States. Bonneville Power Administration. Division of Fish and Wildlife., and Oregon State University. Dept. of Microbiology., eds. Development of a vaccine for bacterial kidney disease in salmon: Annual report FY 1984. Portland, Or: U.S. Dept. of Energy, Bonneville Power Administration, Division of Fish & Wildlife, 1985.
Find full textBaillie, Les, and Theresa Huwar. Anthrax. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0006.
Full textJacquet, Gabrielle, and Andrea Dugas. Influenza. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199976805.003.0026.
Full textBook chapters on the topic "Bacterial diseases – Vaccination"
Elliott, Diane G., Gregory D. Wiens, K. Larry Hammell, and Linda D. Rhodes. "Vaccination against Bacterial Kidney Disease." In Fish Vaccination, 255–72. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118806913.ch22.
Full textSwanton, Claudia L., Barbara J. Timm, and Heidi K. Roeber Rice. "Immunization." In Mayo Clinic Preventive Medicine and Public Health Board Review, 93–109. Oxford University Press, 2010. http://dx.doi.org/10.1093/med/9780199743018.003.0007.
Full textGoldblatt, David, and Mary Ramsay. "Immunization." In Oxford Textbook of Medicine, edited by Christopher P. Conlon, 706–12. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0074.
Full textHumphreys, Hilary. "Case 8." In Oxford Case Histories in Infectious Diseases and Microbiology, edited by Maheshi Ramasamy, 47–54. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846482.003.0008.
Full textShin, Gee Yen. "Vaccination Schedules." In Tutorial Topics in Infection for the Combined Infection Training Programme. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198801740.003.0062.
Full textAustin, B. "Developments in vaccination against fish bacterial disease." In Infectious Disease in Aquaculture, 218–43. Elsevier, 2012. http://dx.doi.org/10.1533/9780857095732.2.218.
Full textThwaites, C. Louise, and Lam Minh Yen. "Tetanus." In Oxford Textbook of Medicine, edited by Christopher P. Conlon, 1109–15. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0127.
Full textOldstone, Michael B. A. "Introduction to the Principles of Immunology." In Viruses, Plagues, and History, 23–34. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190056780.003.0003.
Full textSohail, M. Rizwan. "Select Anaerobic Bacteria: Clostridium tetani and Clostridium botulinum." In Mayo Clinic Infectious Diseases Board Review, 102–9. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199827626.003.0008.
Full textWoodhouse, Andrew. "Case 11." In Oxford Case Histories in Infectious Diseases and Microbiology, edited by Maheshi Ramasamy, 69–73. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846482.003.0011.
Full text