Contents
Academic literature on the topic 'Bactéries – Paroi cellulaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bactéries – Paroi cellulaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bactéries – Paroi cellulaire"
Manuse, Sylvie, Andrew Fenton, and Christophe Grangeasse. "MacP, un régulateur de l’assemblage de la paroi cellulaire de la bactérie pathogène Streptococcus pneumoniae." médecine/sciences 34, no. 8-9 (August 2018): 642–45. http://dx.doi.org/10.1051/medsci/20183408004.
Full textGRENET, E. "Aspects microscopiques de la dégradation microbienne des tissus végétaux dans le rumen." INRAE Productions Animales 10, no. 3 (August 8, 1997): 241–49. http://dx.doi.org/10.20870/productions-animales.1997.10.3.3999.
Full textWoubit, Salah, M. Bayleyegn, Pascal Bonnet, and S. Jean-Baptiste. "Mammites du dromadaire (Camelus dromedarius) dans la région pastorale basse du Borana au sud-ouest de l’Ethiopie." Revue d’élevage et de médecine vétérinaire des pays tropicaux 54, no. 3-4 (March 1, 2001): 207. http://dx.doi.org/10.19182/remvt.9774.
Full textKaur, Bhavleen, and Henrietta Mann. "ULTRASTRUCTURE AND CHARACTERISTICS OF A DEEP-SEA BACTERIUM." Proceedings of the Nova Scotian Institute of Science (NSIS) 42, no. 2 (November 1, 2004). http://dx.doi.org/10.15273/pnsis.v42i2.3616.
Full textDissertations / Theses on the topic "Bactéries – Paroi cellulaire"
Godzaridis, Élénie. "Modélisation bio-informatique du mécanisme d'action d'inhibiteurs de la voie de biosynthèse du peptidoglycane." Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23561.
Full textSghairi, Amina. "Développement de modèles in silico pour la simulation de parois bactériennes." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29316/29316.pdf.
Full textAmrouche, Tahar. "Contribution à l'étude du pouvoir immunomodulateur des bifidobactéries : analyse in vitro et étude ex vivo des mécanismes moléculaires impliqués." Thesis, Université Laval, 2005. http://www.theses.ulaval.ca/2005/22772/22772.pdf.
Full textProbiotic bifidobacteria are known to have beneficial effects on host health. One of the interesting properties of these bacteria is their capacity to modulate the host immune function. However, the mechanisms by which the bifidobacteria influence the immune response are not well known. This project aimed to evaluate the immunodulatory potential of some bifidobacterial strains isolated from newborn feces. We tried to determine the cellular and molecular mechanisms involved in immune response induced by cytoplasmic content, cell wall and exopolysaccharides from bifidobacteria. Three exopolysaccharide-producing fecal strains of bifidobacteria (B. thermoacidophilum RBL81, RBL82, and RBL64) and a commercial available strain (Bifidobacterium lactis Bb12) were tested using mouse splenocytes. The results demonstrate that a high stimulation of cell proliferation and interferon-gamma (IFN-γ) production were induced by cell wall. In addition, a concomitant stimulation of interleukin-10 (IL-10) secretion was observed. The cytoplasmic content was also shown to be immunostimulating, but less than cell wall. However, the effects observed were dose or strain-species-dependent. B. lactis Bb12 was found to be significantly more immunostimulating than other bifidobacterial strains used. Partially fractionated peptides and acidic fraction from B. lactis Bb12 showed a low hydrophobicity and appeared heat stable and mitogenic. In contrast, no immunostimulating effects were induced by exopolysaccharides. The mitogenic properties of cell wall protein were then explored to develop specific monoclonal antibodies (Mab) able to detect bifidobacteria species in food. Common proteins were revealed in cell wall extracts from bifidobacteria (B. animalis, B. breve, B. longum, B. infantis, B. bifidum et B. pseudolongum). The proteins obtained were found to be immunonogenic in Balb/c mouse. Monoclonal antibodies (IgG) -anti-B. longum- produced cross-reacted with all bifidobacteria tested. The shared antigenicity shown by bifidobacteria was revealed by an epitope supported by a common protein of 58 kDa. This was confirmed by immune-transmission electron microscopy observation, which showed the specific interaction of these antibodies with bifidobacterial cell wall proteins. The Mab produced was also shown to be sensitive (105 cfu/ml) and specific to members of the bifidobacterial genus. The Mab developed allowed detection of viable cells of bifidobacteria using immuno-culture test.
Bifidubaktiri d iprubyuteken (probiotiques) i yetwassnen atas assagi, yeεni ţ-ţibaktiryin mara twarnunt i tgulliyin ţţakent ayen yelhan i tdawsa. Tibaktiriyin agi zemrent ad snernint kra n tsuγnin yeţhuddun γef tfekka mgal atanan n uεebbud d izerman n bnadem. D acu kan, ar assa, ur nessin ara amek tibaktiriyin stanent tafekka. Iswi n usenfar agi d anelmud n unezmar n usnerni n ustan n bifidubaktiri. Ayagi i wakken a d-naf isemduyen n kra n tsegrin n tsiluliyin (cellules) am iferdisen (éléments) yellan daxel, s-ufella neγ i d-deggirent ar berra γef tririt n uhuddu. Krad (3) n ccetlat n bifidubaktiri id-yekkan seg izerman llufan ţwalmendent ţwasdemrent ar yiwet n ccetla tamselγut Bifidobacterium lactis Bb12. Agmuden i d-nessufeγ qqaren-d d akken asnerni yelhan n ufadi n tsiluliyin n udihan (rate) n amumad, i d- yettabaε unerni amuqran n IFN-γ yakw d usennerni n usufeγ (sécrétion) n IL-10, yefkaten-id ulesi n tsilulit (paroi cellulaire). Ayen yellan daxel n tsilulit d tazunin-ines (ipeptidiyen yak tiprutiniyin) snernayent drus γef ulesi. Ma d ayen yεenan EPS (exopolysaccharides) ulac asnnerni i d-yekkan segsen. Ma d tiprutiniyin n ulesi n bifidubakiri (B. animalis, B. breve, B. longum, B. infantis, B. bifidum et B. pseudolongum) banent-ed d timesnerniyin timuqranin n uhareb γef tfekka n umumad (Balb/c) ssutuyent afares amuqran n tfekkamgalin. Tifekkamgalin i d-yeffγen d yiwet n txellalt (IgG) mgal B. longum ţwafursent-ed s trennawet u sknent-ed tasedmirt tanmidagt (réaction croisée) yakw d ccetlat nniden n bifidubakiri. Anecta yekka-d seg yiwet n teprutint (protéine) tamsihart i yezzayen 58 kd. Tulmist n tfekkamgalin i d-yefursen yeţwasentem-ed s usadez (test) ibaw i d- yelummzen mi ţ-nerεed yakkw d cctali nniden n tbaktiriyin. Tufin n bifidubaktiri yeddren s tfekkamgalin i d-yedran yefursen yedra-d s usadez n immuno-culture. Tifekkamgalin tulmisin i-d yekkan seg yiwet n txellayt id-nessenfel zemrent ad ţwaqedcent i tifin n cctali n bfidobktiri di tgwellyin.
Sweidan, Alaa. "Antibiofilm activity of lichen secondary metabolites." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1B017/document.
Full textThe oral bacteria do not only infect the mouth and reside there, but also travel via the blood and reach distant body organs. If left untreated, the dental biofilm that can cause destructive inflammation in the oral cavity may result in serious systemic medical complications. In dental biofilm, Streptococcus gordonii, a primary oral colonizer, constitutes the platform on which late pathogenic colonizers like Porphyromonas gingivalis, the causative agent of periodontal diseases, will bind. The aim of the first study was to determine the antibacterial activity of eleven natural lichen compounds belonging to different chemical families to uncover new antibiotics which can fight against the oral bacteria. Three compounds were shown to have promising antibacterial activities where psoromic acid had the lowest MICs of 11.72 and 5.86 µg/mL against S. gordonii and P. gingivalis, respectively. Novel butyrolactone analogues were then designed and synthesized based on the known lichen antibacterial compounds, lichesterinic acids (B-10 and B-11), by substituting different functional groups on the butyrolactone ring trying to enhance its activity on S. gordonii and P. gingivalis.. Among the derivatives, B-12 and B-13 had the lowest MIC of 9.38 µg/mL where they have shown to be stronger bactericidals, by 2-3 times, than the reference antibiotic, doxycycline. B-12 and B-13 were also the most efficient on P. gingivalis exhibiting MIC of 0.037 and 0.293 µg/mL and MBC of 1.17 and 0.586 µg/mL, respectively. These 2 compounds were then checked for their cytotoxicity against human gingival epithelial cells and macrophages by MTT and LDH assays which confirmed their safety against the tested cell lines. A preliminary study of the structure-activity relationships unveiled the important dual role contributed by two substituents, alkyl chain at C4 and carboxyl group at C5 positions, in their mechanism of action. This was followed by the investigation of B-12 and B-13 for their antibiofilm activity against both oral strains using crystal violet assay and confocal microscopy. Both derivatives displayed a lowest concentration with maximal biofilm inhibition, LCMI, of 9.38 µg/mL against S. gordonii and 1.17 µg/mL against P. gingivalis. However, when sub-inhibitory concentrations of B-12 and B-13 were used, we demonstrated that the two investigated strains were able to form biofilms in vitro. Indeed, this antibiofilm activity decreased as indicated by the expression of the genes implicated in adhesion and biofilm formation. To better understand the mechanism of action of butyrolactones, we have investigated B-13 bacterial localization by synthesizing a fluorescently labeled B-13 with NBD (4-nitro-benzo[1,2,5]oxadiazole) conserving its antibacterial activity. By confocal microscope, we showed that this compound binds to S. gordonii cell surface and this was also demonstrated by HPLC analysis. By adhering to cell surface, B-13 induced cell wall disruption leading to the release of bacterial constituents and consequently, the death of S. gordonii, a Gram-positive bacterium. The expression of two genes, murA and alr, implicated in cell wall synthesis, was modified in the presence of this butyrolactone. Gram-negative bacteria such as P. gingivalis showed also cracked and ruptured cells in the presence of B-13, suggesting that this butyrolactone acts on Gram-positive and Gram-negative strains, but with greater efficacy against the Gram-negatives. Besides, we also demonstrated that the analogue of B-13, B-12, has also induced disruption of P. gingivalis and S. gordonii. All these studies demonstrated that butyrolactones derived from a lichen metabolite can be proposed as potent antibacterial agents against oral pathogens causing serious medical complications
Delangle, Aurélie. "Contribution à l'analyse du pouvoir pathogène d'Erwinia chrysanthemi." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-81.pdf.
Full textBaeta, Tiago. "Activité régulée d'une machinerie de transenveloppe bactérienne : le système de transport du LPS." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALV037.
Full textBacteria display several intrinsic mechanisms which confers them the ability to cope with disadvantageous situations, such as nutrient deprivation, environmental inter/intra-species competition, managing adaptation to detrimental conditions, and handling effects of antibacterial compounds.In a global context of antibiotic resistance accelerated by anthropogenic activities, gram negative bacteria display intrinsic resistance mechanisms. The complex and dynamic multilayered envelope, coated with lipopolysaccharides (LPS), confers these bacteria increased survivability. Biosynthesis of these complex glycolipids is initiated in the cytoplasm, and its transport proceeds along the inner membrane, periplasm, until reaching the outer membrane, with a dedicated biosynthetic pathway and transport machinery.The Lipopolysaccharide Transport (Lpt) machinery comprises 7 fundamental proteins (LptA to LptG) that span the entire envelope. More specifically, at the inner membrane, LptB2FG ABC transporter couples ATP hydrolysis with LPS extraction. LptB2 cycles ATP while LptF/G interact with LPS and carry it towards LptC and LptA in the periplasm.This machinery uses a conserved architecture with dedicated jellyroll domains present on LptF, LptG, LptC and LptA that assemble into a bridge that allow LPS flow to the outer membrane.Molecules that would disrupt protein-protein interactions between the different jellyroll domains of the Lpt system could become potent cell wall inhibitors. Thanatin, a natural occurring antimicrobial peptide, has been described as targeting the jellyroll domains of the machinery. We screened its effect in the disruption of LptC-LptA complex. Thanatin binds to LptA but not LptC and inhibits the assembly of the complex at low nM concentrations, showing the potential of targeting Lpt Jellyroll-jellyroll interactions.The network of interactions between the Inner membrane complex, LptB2FG and periplasmic LptC and LptA is not fully understood. LptB2FG was produced in detergent micelles and within nanodisc particles, to probe interactions with LptC and LptA at an atomic scale, using Nuclear Magnetic Resonance (NMR) and biophysical techniques.In the assembly of the LptB2FGCA bridge, LptC and LptF interact mostly through the jellyroll domains. A mutation in the LptF jellyroll (R212 residue) rendered LptC presence facultative in vivo.Biophysical and biochemical characterization showed unaltered interaction of mutant LptB2FG with LptC and LptA, whereas ATPase activity showed lack of regulation by presence of its partners. This led us to propose that R212 is a checkpoint in the LptF jellyroll, acting as a hub for LptB2FG to sense proper assembly of the machinery.When LptB2FGCA complex is assembled in vitro, LptB2 was found capable of catalyzing phosphotransfer between ADP molecules, generating ATP and AMP, a novel activity (Adenylate Kinase) previously undescribed for this protein. Being a topic of very recent interest in the literature, the role of dual-function transporters is not understood. To characterize the balance between ATPase and AK, we mutated LptB2 on key ABC motifs to probe possible location for AK activity. LptB2FG studied in nanodisc particles, suggests that balance between activities depends on the dynamic assembly of LptB2FGCA, with regulatory mechanisms possibly not being shared between both activities. Structural characterization of LptB2 in apo and nucleotide bound-state was initiated .This project, focused on the essential Lpt system, sheds light on the importance of protein-protein interactions as targets for designing future antimicrobial compounds. It could also be worth evaluating if dual-function transporters, involved in cell wall synthesis and drug export, are valid targets for future drug screenings
Afi, Latifa. "Influence de la nature des parois cellulaires sur la dégradation bactérienne chez deux chlorophycées (Chlorella vulgaris et Chlorella emersonii)." Paris 6, 1997. http://www.theses.fr/1997PA066004.
Full textMéry, Alexandre. "Métabolisme des glycannes pariétaux impliqués dans les relations hôte-pathogène : étude sur les genres Candida et Mycobacterium." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1S116.
Full textThe glycans are essential actors of the host-pathogen connections that are established during the infection and the influence of these complex compounds is far from being elucidated. In this project, these interactions were studied by focusing on glycans from two major pathogenic organisms for humans, namely Mycobacterium tuberculosis and Candida albicans. On one side, Mycobacterium tuberculosis, which causes human tuberculosis, is the leading cause of death in the world linked to a single pathogen and the emergence of multi-resistant strains has highlighted the urgent need of new drug targets. In this context, our work focused on the research of glycosidases involved in the catabolism of the mycobacterial cell wall and more particularly of arabinogalactan (AG), which represents a very little documented side of mycobacterial cell wall biology for the moment. The investigations allowed us to identify an exo-galactofuranohydrolase but also, in the context of this thesis, a galactose mutarotase involved in the recycling of galactose from the galactan chain of AG following the action of the first enzyme. On the other hand, Candida albicans has been studied in the context of invasive candidiasis (IC) encountered mainly in intensive care units. This fungal infection is very worrying because mortality rates remain extremely high due to an early diagnosis that is sorely lacking. Indeed, the gold standard used for their diagnosis is the blood culture but it is only positive in 50 % of cases. Other diagnostic tests have been developed by targeting Candida cell wall components such as β-D-1,3 glucans or mannan, but they represent an exorbitant cost for hospitals and are very heterogeneous in term of performance. It is therefore in this context that we participated in the development of an IC diagnostic test based on mass spectrometry analysis and quantification of a serum disaccharide derived from the metabolism of C. albicans glycans. Different local but also European cohorts have been set up to study the performance of this new test. A more fundamental side also highlighted trehalose as the disaccharide found in the sera of infected patients
Ferdinand, Pierre-Henri. "Adhérence et colonisation des fibres de cellulose par la bactérie cellulolytique Clostridium cellulolyticum. : étude du rôle des protéines CipC et HycP." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4729.
Full textClostridium cellulolyticum is a strict anaerobe, cellulolytic bacteria. It produces multienzymatic complexes, called cellulosomes, which are able to efficiently degrade the plant cell wall polysaccharides. Cellulolytic bacteria, including C. cellulolyticum do binds to cellulose since early growth stage. For most of the studied cellulolytic bacteria, adherence to cellulose seems to be mediated by their cellulosomes. However, molecular factors involved in C. cellulolyticum adherence to cellulose remain unknown.My Ph.D. aimed to implement different but complementary strategies to study adhesion and colonization of cellulose fibers by C. cellulolyticum and to identify the molecular mechanism(s) by which the bacteria bind to cellulose. In order to identify some proteins encoding genes involved in adhesion, I firstly developed random mutagenesis and isolated two adhesion deficient mutants. I also used a targeted mutagenesis tool to inactivate some candidate genes.My studies highlight C. cellulolyticum adheres with both high specificity and affinity to cellulose. Colonization of cellulose fibers by C. cellulolyticum forms a mono-layer of segregated cells on cellulose surface and may occur through cycles of adhesion-release-re-adhesion to substrate. Inactivation of the CipC encoding gene led to a short decrease of the mutant strain's adherence level. This result suggests some other proteins may be involved in C. cellulolyticum adhesion to cellulose. Finally, I studied HycP, a produced and secreted CBM3 encoding protein of unknown function. HycP is a unique protein among databases and may have a phagic origin
Marrakchi, Hedia. "Implication de deux protéines de mycobactérium tuberculosis, InhA et MabA, dans un système d'élongation d'acides gras, cible de l'antituberculeux isoniazide." Toulouse 3, 2000. http://www.theses.fr/2000TOU30231.
Full textEmergence of tubercle bacilli resistant to multiple drugs has prompted the search for a new generation of antibiotics effective against Mycobacterium tuberculosis. Among the first line antituberculous drugs, isoniazid (INH) is highly specific of mycobacteria, and its primary effect corresponds to inhibition of a characteristic metabolism of these bacteria, the mycolic acid biosynthesis. Mycolic acids are very long-chain fatty acids and are major components of mycobacterial cell-wall. It was established that an isoniazid target, the InhA protein, is a 2-trans-enoyl-ACP reductase probably involved in the mycolic acid pathway. However, the exact role of InhA in mycobacteria is still unclear. Reduction of enoyl compounds corresponds to one step of fatty acid biosynthesis. We therefore isolated an enzymatic complex which contains the InhA protein, and using InhA inhibitors, we showed that the elongation activity of the system is InhA-dependent. Moreover, the inhibition of mycolic acid biosynthesis in cell-wall extracts by InhA inhibitors strongly suggests that the InhA-containing elongation system participates in the mycolic acid production in mycobacteria. .
Books on the topic "Bactéries – Paroi cellulaire"
A, Hoch James, and Silhavy Thomas J, eds. Two-component signal transduction. Washington, D.C: ASM Press, 1995.
Find full text