Journal articles on the topic 'Bacteriophage T4-like'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bacteriophage T4-like.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lo, Chen-Yu, and Yang Gao. "DNA Helicase–Polymerase Coupling in Bacteriophage DNA Replication." Viruses 13, no. 9 (2021): 1739. http://dx.doi.org/10.3390/v13091739.
Full textTang, F., Y. Li, W. Zhang, and C. Lu. "Complete Genome Sequence of T4-Like Escherichia coli Bacteriophage HX01." Journal of Virology 86, no. 24 (2012): 13871. http://dx.doi.org/10.1128/jvi.02698-12.
Full textShi, Ke, Fredy Kurniawan, Surajit Banerjee, Nicholas H. Moeller, and Hideki Aihara. "Crystal structure of bacteriophage T4 Spackle as determined by native SAD phasing." Acta Crystallographica Section D Structural Biology 76, no. 9 (2020): 899–904. http://dx.doi.org/10.1107/s2059798320010979.
Full textPeters, Danielle L., Paul Stothard, and Jonathan J. Dennis. "The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6." PLOS ONE 12, no. 3 (2017): e0173341. http://dx.doi.org/10.1371/journal.pone.0173341.
Full textSheng, Wang, Jiang Huanhuan, Chen Jiankui, et al. "Isolation and rapid genetic characterization of a novel T4-like bacteriophage." Journal of Medical Colleges of PLA 25, no. 6 (2010): 331–40. http://dx.doi.org/10.1016/s1000-1948(11)60002-6.
Full textJiang, Huanhuan, Xiaofang Jiang, Sheng Wang, et al. "The complete genome sequence of a novel T4-like bacteriophage, IME08." Archives of Virology 156, no. 8 (2011): 1489–92. http://dx.doi.org/10.1007/s00705-011-1033-9.
Full textGolomidova, A. K., E. E. Kulikov, A. D. Efimov, et al. "Isolation and complete genome sequence of Citrobacter bacteriophage Ursula." F1000Research 14 (January 15, 2025): 86. https://doi.org/10.12688/f1000research.159170.1.
Full textAppasani, Krishnarao, David S. Thaler, and Edward B. Goldberg. "Bacteriophage T4 gp2 Interferes with Cell Viability and with Bacteriophage Lambda Red Recombination." Journal of Bacteriology 181, no. 4 (1999): 1352–55. http://dx.doi.org/10.1128/jb.181.4.1352-1355.1999.
Full textZhang, Can, Wenli Li, Wenhua Liu, et al. "T4-Like Phage Bp7, a Potential Antimicrobial Agent for Controlling Drug-Resistant Escherichia coli in Chickens." Applied and Environmental Microbiology 79, no. 18 (2013): 5559–65. http://dx.doi.org/10.1128/aem.01505-13.
Full textKim, Jaegon, Jong Pyo Chae, Gyeong-Hwuii Kim та ін. "Isolation, characterization, and genomic analysis of the novel T4-like bacteriophage ΦCJ20". Food Science and Biotechnology 30, № 5 (2021): 735–44. http://dx.doi.org/10.1007/s10068-021-00906-y.
Full textReha-Krantz, L. J. "Genetic evidence for two protein domains and a potential new activity in bacteriophage T4 DNA polymerase." Genetics 124, no. 2 (1990): 213–20. http://dx.doi.org/10.1093/genetics/124.2.213.
Full textSantos, Patrícia, Ana T. P. C. Gomes, Leandro M. O. Lourenço, Maria A. F. Faustino, Maria G. P. M. S. Neves, and Adelaide Almeida. "Anti-Viral Photodynamic Inactivation of T4-like Bacteriophage as a Mammalian Virus Model in Blood." International Journal of Molecular Sciences 23, no. 19 (2022): 11548. http://dx.doi.org/10.3390/ijms231911548.
Full textKanamaru, Shuji, Kazuya Uchida, Mai Nemoto, Alec Fraser, Fumio Arisaka, and Petr G. Leiman. "Structure and Function of the T4 Spackle Protein Gp61.3." Viruses 12, no. 10 (2020): 1070. http://dx.doi.org/10.3390/v12101070.
Full textMiller, Eric S., John F. Heidelberg, Jonathan A. Eisen, et al. "Complete Genome Sequence of the Broad-Host-Range Vibriophage KVP40: Comparative Genomics of a T4-Related Bacteriophage." Journal of Bacteriology 185, no. 17 (2003): 5220–33. http://dx.doi.org/10.1128/jb.185.17.5220-5233.2003.
Full textBartolomeu, Maria, Cristiana Oliveira, Carla Pereira, M. Graça P. M. S. Neves, M. Amparo F. Faustino, and Adelaide Almeida. "Antimicrobial Photodynamic Approach in the Inactivation of Viruses in Wastewater: Influence of Alternative Adjuvants." Antibiotics 10, no. 7 (2021): 767. http://dx.doi.org/10.3390/antibiotics10070767.
Full textSilva, Jessica, Roberto Dias, José Ivo Junior, et al. "A Rapid Method for Performing a Multivariate Optimization of Phage Production Using the RCCD Approach." Pathogens 10, no. 9 (2021): 1100. http://dx.doi.org/10.3390/pathogens10091100.
Full textCiacci, Nagaia, Marco D’Andrea, Pasquale Marmo, et al. "Characterization of vB_Kpn_F48, a Newly Discovered Lytic Bacteriophage for Klebsiella pneumoniae of Sequence Type 101." Viruses 10, no. 9 (2018): 482. http://dx.doi.org/10.3390/v10090482.
Full textJiang, Xiaofang, Huanhuan Jiang, Cun Li, et al. "Sequence characteristics of T4-like bacteriophage IME08 benome termini revealed by high throughput sequencing." Virology Journal 8, no. 1 (2011): 194. http://dx.doi.org/10.1186/1743-422x-8-194.
Full textKim, J. H., J. S. Son, Y. J. Choi, et al. "Complete genomic sequence of a T4-like bacteriophage, phiAS4, infecting Aeromonas salmonicida subsp. salmonicida." Archives of Virology 157, no. 2 (2011): 391–95. http://dx.doi.org/10.1007/s00705-011-1175-9.
Full textLi, Meng, Mengzhe Li, Hong Lin, Jingxue Wang, Yanqiu Jin, and Feng Han. "Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin." Archives of Virology 161, no. 2 (2015): 377–84. http://dx.doi.org/10.1007/s00705-015-2647-0.
Full textLim, Jeong-A., Dong Hwan Lee, and Sunggi Heu. "Isolation and Genomic Characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium carotovorum subsp. carotovorum." Plant Pathology Journal 31, no. 1 (2015): 83–89. http://dx.doi.org/10.5423/ppj.nt.09.2014.0099.
Full textShamoo, Y., K. R. Webster, K. R. Williams, and W. H. Konigsberg. "A retrovirus-like zinc domain is essential for translational repression of bacteriophage T4 gene 32." Journal of Biological Chemistry 266, no. 13 (1991): 7967–70. http://dx.doi.org/10.1016/s0021-9258(18)92923-6.
Full textYap, Moh Lan, Kazuhiro Mio, Petr G. Leiman, Shuji Kanamaru, and Fumio Arisaka. "The Baseplate Wedges of Bacteriophage T4 Spontaneously Assemble into Hubless Baseplate-Like Structure In Vitro." Journal of Molecular Biology 395, no. 2 (2010): 349–60. http://dx.doi.org/10.1016/j.jmb.2009.10.071.
Full textLiu, Hui, Yan D. Niu, Jinquan Li, Kim Stanford, and Tim A. McAllister. "Rapid and Accurate Detection of Bacteriophage Activity againstEscherichia coliO157:H7 by Propidium Monoazide Real-Time PCR." BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/319351.
Full textRichardson, Alexandra, and Costa Georgopoulos. "Genetic Analysis of the Bacteriophage T4-Encoded Cochaperonin Gp31." Genetics 152, no. 4 (1999): 1449–57. http://dx.doi.org/10.1093/genetics/152.4.1449.
Full textTeng, Tieshan, Gai Zhang, Xiangyu Fan, et al. "Complete genome sequence analysis of PS2, a novel T4-like bacteriophage that infects Serratia marcescens clinical isolates." Archives of Virology 163, no. 7 (2018): 1997–2000. http://dx.doi.org/10.1007/s00705-018-3803-0.
Full textMüller, M., V. V. Mesyanzhinov, and U. Aebi. "In Vitro Maturation of Prehead-like Bacteriophage T4 Polyheads: Structural Changes Accompanying Proteolytic Cleavage and Lattice Expansion." Journal of Structural Biology 112, no. 3 (1994): 199–215. http://dx.doi.org/10.1006/jsbi.1994.1021.
Full textPotapov, Sergey Anatoljevich, Irina Vasilievna Tikhonova, Andrey Yurjevich Krasnopeev, et al. "Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography." PeerJ 10 (January 12, 2022): e12748. http://dx.doi.org/10.7717/peerj.12748.
Full textLossi, Nadine S., Rana Dajani, Paul Freemont, and Alain Filloux. "Structure–function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa." Microbiology 157, no. 12 (2011): 3292–305. http://dx.doi.org/10.1099/mic.0.051987-0.
Full textBarth, K. A., D. Powell, M. Trupin, and G. Mosig. "Regulation of two nested proteins from gene 49 (recombination endonuclease VII) and of a lambda RexA-like protein of bacteriophage T4." Genetics 120, no. 2 (1988): 329–43. http://dx.doi.org/10.1093/genetics/120.2.329.
Full textJin, Haixiao, Youhong Zhong, Yiting Wang, et al. "Two Novel Yersinia pestis Bacteriophages with a Broad Host Range: Potential as Biocontrol Agents in Plague Natural Foci." Viruses 14, no. 12 (2022): 2740. http://dx.doi.org/10.3390/v14122740.
Full textKim, Ji Hyung, Jee Soo Son, Yun Jaie Choi, et al. "Complete genome sequence and characterization of a broad-host range T4-like bacteriophage phiAS5 infecting Aeromonas salmonicida subsp. salmonicida." Veterinary Microbiology 157, no. 1-2 (2012): 164–71. http://dx.doi.org/10.1016/j.vetmic.2011.12.016.
Full textAkhter, Tahmina, Li Zhao, Atsushi Kohda, Kazuhiro Mio, Shuji Kanamaru, and Fumio Arisaka. "The neck of bacteriophage T4 is a ring-like structure formed by a hetero-oligomer of gp13 and gp14." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1774, no. 8 (2007): 1036–43. http://dx.doi.org/10.1016/j.bbapap.2007.05.011.
Full textDaegelen, P., and E. Brody. "The rIIA gene of bacteriophage T4. I. Its DNA sequence and discovery of a new open reading frame between genes 60 and rIIA." Genetics 125, no. 2 (1990): 237–48. http://dx.doi.org/10.1093/genetics/125.2.237.
Full textFokine, A., M. Z. Islam, Z. Zhang, V. D. Bowman, V. B. Rao, and M. G. Rossmann. "Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage." Journal of Virology 85, no. 16 (2011): 8141–48. http://dx.doi.org/10.1128/jvi.00847-11.
Full textPozhydaieva, Nadiia, Franziska Anna Billau, Maik Wolfram-Schauerte, et al. "Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications." PLOS Genetics 20, no. 9 (2024): e1011384. http://dx.doi.org/10.1371/journal.pgen.1011384.
Full textHinton, Deborah M., Suchira Pande, Neelowfar Wais та ін. "Transcriptional takeover by σ appropriation: remodelling of the σ 70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA". Microbiology 151, № 6 (2005): 1729–40. http://dx.doi.org/10.1099/mic.0.27972-0.
Full textYang, Shixin, Margaret S. VanLoock, Xiong Yu, and Edward H. Egelman. "Comparison of bacteriophage T4 UvsX and human Rad51 filaments suggests that RecA-like polymers may have evolved independently11Edited by M. Belfort." Journal of Molecular Biology 312, no. 5 (2001): 999–1009. http://dx.doi.org/10.1006/jmbi.2001.5025.
Full textChibani-Chennoufi, Sandra, Marie-Lise Dillmann, Laure Marvin-Guy, Sabrina Rami-Shojaei, and Harald Brüssow. "Lactobacillus plantarum Bacteriophage LP65: a New Member of the SPO1-Like Genus of the Family Myoviridae." Journal of Bacteriology 186, no. 21 (2004): 7069–83. http://dx.doi.org/10.1128/jb.186.21.7069-7083.2004.
Full textFokine, Andrei, Mohammad Zahidul Islam, Qianglin Fang, Zhenguo Chen, Lei Sun, and Venigalla B. Rao. "Structure and Function of Hoc—A Novel Environment Sensing Device Encoded by T4 and Other Bacteriophages." Viruses 15, no. 7 (2023): 1517. http://dx.doi.org/10.3390/v15071517.
Full textVieira, Cátia, Adriele Santos, Mariana Q. Mesquita, et al. "Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: Effectiveness on bacteria and fungi planktonic/biofilm forms and viruses." Journal of Porphyrins and Phthalocyanines 23, no. 04n05 (2019): 534–45. http://dx.doi.org/10.1142/s1088424619500408.
Full textHinton, Deborah M., Srilatha Vuthoori та Rebecca Mulamba. "The Bacteriophage T4 Inhibitor and Coactivator AsiA Inhibits Escherichia coli RNA Polymerase More Rapidly in the Absence of σ70 Region 1.1: Evidence that Region 1.1 Stabilizes the Interaction between σ70 and Core". Journal of Bacteriology 188, № 4 (2006): 1279–85. http://dx.doi.org/10.1128/jb.188.4.1279-1285.2006.
Full textTaslem Mourosi, Jarin, Ayobami Awe, Wenzheng Guo, et al. "Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key “Blueprint” for Reprogramming Phage Host Range." International Journal of Molecular Sciences 23, no. 20 (2022): 12146. http://dx.doi.org/10.3390/ijms232012146.
Full textQu, Yun, Paul Hyman, Timothy Harrah, and Edward Goldberg. "In Vivo Bypass of Chaperone by Extended Coiled-Coil Motif in T4 Tail Fiber." Journal of Bacteriology 186, no. 24 (2004): 8363–69. http://dx.doi.org/10.1128/jb.186.24.8363-8369.2004.
Full textHarven, Etienne de, and Davide Soligo. "Backscattered Electron Imaging of Colloidal Gold Markers For Leukocyte Surface Antigens." Proceedings, annual meeting, Electron Microscopy Society of America 43 (August 1985): 534–37. http://dx.doi.org/10.1017/s042482010011948x.
Full textSantoriello, Francis J., and Stefan Pukatzki. "When the pandemic opts for the lockdown: Secretion system evolution in the cholera bacterium." Microbial Cell 8, no. 3 (2021): 69–72. http://dx.doi.org/10.15698/mic2021.03.744.
Full textLove, Michael J., David Coombes, Sarah H. Manners, Gayan S. Abeysekera, Craig Billington, and Renwick C. J. Dobson. "The Molecular Basis for Escherichia coli O157:H7 Phage FAHEc1 Endolysin Function and Protein Engineering to Increase Thermal Stability." Viruses 13, no. 6 (2021): 1101. http://dx.doi.org/10.3390/v13061101.
Full textLin, Hongzhe, Yuxuan Jiang, Yan Li, et al. "Ferritin-Based HA DNA Vaccine Outperforms Conventional Designs in Inducing Protective Immunity Against Seasonal Influenza." Vaccines 13, no. 7 (2025): 745. https://doi.org/10.3390/vaccines13070745.
Full textPark, Eun Jeong, Seungki Lee, Jong Beom Na, et al. "Characterization of Broad Spectrum Bacteriophage vB ESM-pEJ01 and Its Antimicrobial Efficacy Against Shiga Toxin-Producing Escherichia coli in Green Juice." Microorganisms 13, no. 1 (2025): 103. https://doi.org/10.3390/microorganisms13010103.
Full textSissoëff, Ludmilla, Mohamed Mousli, Patrick England, and Christine Tuffereau. "Stable trimerization of recombinant rabies virus glycoprotein ectodomain is required for interaction with the p75NTR receptor." Journal of General Virology 86, no. 9 (2005): 2543–52. http://dx.doi.org/10.1099/vir.0.81063-0.
Full text