Academic literature on the topic 'Bainite ; Bainitic steel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bainite ; Bainitic steel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bainite ; Bainitic steel"

1

Wang, Ke Lu, Xin Li, and Xian Juan Dong. "Effect of Tempering Temperature on Mechanical Properties and Microstructures of 800MPa Microalloy Low Carbon Bainitic Steel." Advanced Materials Research 893 (February 2014): 406–9. http://dx.doi.org/10.4028/www.scientific.net/amr.893.406.

Full text
Abstract:
The effect of tempering temperature on the microstructures and mechanical properties of a microalloy low carbon bainitic steel was investigated by microscopic analysis and testing of mechanical properties. The results show that the microstructures of the tested steel primarily consists of lath bainite, granular bainite, quasipolygonal ferrite and little acicular ferrite at different tempering temperatures. With the tempering temperature increasing, the proportion of lath bainitie decreases, while the volume of granular bainite and quasipolygonal ferrite increases. At the tempering temperatures of 550-650°C and tempering time of 1 hour, the steel was mostly composed of granular bainite, quasipolygonal ferrite and a little lath bainite, which a good combination of strength and toughness can be obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Pei, Wei, Wei Liu, Yue Zhang, Rongjian Qie, and Aimin Zhao. "Study on Kinetics of Transformation in Medium Carbon Steel Bainite at Different Isothermal Temperatures." Materials 14, no. 11 (May 21, 2021): 2721. http://dx.doi.org/10.3390/ma14112721.

Full text
Abstract:
Ultra-fine carbide-free bainitic (UCFB) steel, also known as nano-bainite (NB) steel, is composed of bainitic ferrite laths with nanoscale thickness and carbon-rich film-like retained austenite located between laths. The bainite transformation kinetic model can accurately describe the bainite transformation kinetics in conventional austempering (CA) processes based on the shear mechanism combined with the dilatometer test. UCFB steels with medium and high carbon composition are designed in this work to systematically study the transformation kinetics of bainite, and the evolution of its microstructure and properties, and reveal the influence of heat treatment processes on the microstructure and properties the UCFB steels. The results show that the activation energy for BF nucleation decreases during the CA process and isothermal transformation temperature decreases. The bainite transformation is first nucleated at the grain boundaries, and then nucleated at the newly formed bainitic ferrite/austenite interface.
APA, Harvard, Vancouver, ISO, and other styles
3

Timokhina, Ilana, Hossein Beladi, Xiang Yuan Xiong, Yoshitaka Adachi, and Peter D. Hodgson. "Application of Advanced Experimental Techniques for the Microstructural Characterization of Nanobainitic Steels." Solid State Phenomena 172-174 (June 2011): 1249–54. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.1249.

Full text
Abstract:
A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 350°C bainitic transformation temperature for 1 day to form fully bainitic structure with nano-layers of bainitic ferrite and retained austenite, while a 0.26C-1.96Si-2Mn-0.31Mo (wt%) steel was subjected to a successive isothermal heat treatment at 700°C for 300 min followed by 350°C for 120 min to form a hybrid microstructure consisting of ductile ferrite and fine scale bainite. The dislocation density and morphology of bainitic ferrite, and retained austenite characteristics such as size, and volume fraction were studied using Transmission Electron Microscopy. It was found that bainitic ferrite has high dislocation density for both steels. The retained austenite characteristics and bainite morphology were affected by composition of steels. Atom Probe Tomography (APT) has the high spatial resolution required for accurate determination of the carbon content of the bainitic ferrite and retained austenite, the solute distribution between these phases and calculation of the local composition of fine clusters and particles that allows to provide detailed insight into the bainite transformation of the steels. The carbon content of bainitic ferrite in both steels was found to be higher compared to the para-equilibrium level of carbon in ferrite. APT also revealed the presence of fine C-rich clusters and Fe-C carbides in bainitic ferrite of both steels.
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Hui, Xianying Feng, Aimin Zhao, Qiang Li, and Jun Ma. "Influence of Prior Martensite on Bainite Transformation, Microstructures, and Mechanical Properties in Ultra-Fine Bainitic Steel." Materials 12, no. 3 (February 12, 2019): 527. http://dx.doi.org/10.3390/ma12030527.

Full text
Abstract:
A multiphase microstructure comprising of different volume fractions of prior martensite and ultra-fine bainite (bainitic ferrite and retained austenite) was obtained by quenching to certain temperatures, followed by isothermal bainitic transformation. The effect of the prior martensite transformation on the bainitic transformation behavior, microstructures, and mechanical properties were discussed. The results showed that the prior martensite accelerated the subsequent low-temperature bainite transformation, and the incubation period and completion time of the bainite reaction were significantly shortened. This phenomenon was attributed to the enhanced nucleation ratio caused by the introduced strain in austenite, due to the formation of prior martensite and a carbon partitioning between the prior martensite and retained austenite. Moreover, the prior martensite could influence the crystal growth direction of bainite ferrite, refine bainitic ferrite plates, and reduce the dimension of blocky retained austenite, all of which were responsible for improving the mechanical properties of the ultra-fine bainitic steel. When the content of the prior martensite reached 15%, the investigated steels had the best performance, which were 1800 MPa and 21% for the tensile strength and elongation, respectively. Unfortunately, the increased content of the prior martensite could lead to a worsening of the impact toughness.
APA, Harvard, Vancouver, ISO, and other styles
5

Ansari, M. H. Sheikh, and M. Aghaie-Khafri. "Investigation of Microstructure and Mechanical Properties of Ultra High Strength Bainitic Steel." Applied Mechanics and Materials 313-314 (March 2013): 77–81. http://dx.doi.org/10.4028/www.scientific.net/amm.313-314.77.

Full text
Abstract:
In this study, medium carbon low alloy steel was used to obtain bainitic structures. The lower bainite and tempered martensite-lower bainite structures were achieved by isothermal austempering and up quenching treatment, respectively. Based on the results obtained these structures showed a very good combination of strength and toughness. Furthermore, it has been shown that austenitization time and temperature, as well as austempering time and temperature play a major role in achieving ultra-high strength bainitic steels.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zhi Fen, Yun Guan, Li Xin Wu, Yi Qiang Sun, and Rong Dong Han. "Influence of Cooling Rate on the Microstructure of Bainitic Steel." Advanced Materials Research 311-313 (August 2011): 886–90. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.886.

Full text
Abstract:
The microstructure of a bainitic steel after different cooling rates has been investigated by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The effect of cooling rate on the intermediate transformation microstructure was studied. The results showed that the final microstructure contained complex mixture of bainitic ferrite, granular bainite and polygonal ferrite. There was mainly lath-like bainitic ferrite at fast cooling rate (20Ks-1), while microstructure in samples cooled with intermediate rates (8~15 Ks-1) contained bainitic ferrite and granular bainite. When cooling rate decreased to less than 5Ks-1, polygonal ferrite occurred.
APA, Harvard, Vancouver, ISO, and other styles
7

Soliman, Mohamed, Mehdi Asadi, and Heinz Palkowski. "Role of Dilatometer in Designing New Bainitic Steels." Advanced Materials Research 89-91 (January 2010): 35–40. http://dx.doi.org/10.4028/www.scientific.net/amr.89-91.35.

Full text
Abstract:
Dilatometric measurements were used to design the processing parameters of two types of bainitic steels. The first type is a hypoeutectoid ultra fine bainite steel, for which the dilatometer was used to locate the temperature at which cementite is completely dissolved during intercritical annealing (TC). The intercritical annealing temperatures are then selected will above TC. To obtain the martensite start temperatures (MS), the steel is quenched to the room temperature (RT) from these selected temperatures and then the bainite transformation temperatures were selected to be well above MS. The dilatometer was then used to monitor the bainite transformation kinetics from which the required time frames for cessation of the bainitic reactions were estimated. In the second type, bimodal bainite had been produced in thermo-mechanically processed TRIP-steel. A deformation dilatometer is used to perform three deformation-steps before slow cooling to form approx. 30% polygonal ferrite. The material was then rapidly cooled to the first bainite formation temperature. During this step, the dilatometer was used to monitor the bainite reaction from which the required time for 50% decomposition of austenite is estimated. The martensite start of the undecomposed austenite was located by quenching to RT. The second bainite transformation step was then performed well above the new MSII to form a second generation of finer bainite.
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Guang, Tao Xiong, Yu Long Zhang, Ming Xing Zhou, and Yi Zhang. "The Effects of High Temperature Deformation on Bainite Transformation." Applied Mechanics and Materials 513-517 (February 2014): 206–9. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.206.

Full text
Abstract:
The effects of high temperature deformation on transformed microstructure and transformation amount in a high strength bainitic steel were investigated. It indicates that isothermal bainitic transformation is promoted by high temperature deformation. The transformed bainite microstructure is also affected by high temperature deformation, i.e. deformation retards the growth of bainite sheaves, leading to shorter banitie plates. The present study is useful to further understand the effects of ausforming on bainitic transformation.
APA, Harvard, Vancouver, ISO, and other styles
9

Fang, Hong Sheng, Gu Hui Gao, Yan Kang Zheng, Zhi Gang Yang, and Bing Zhe Bai. "The Development of Mn-Series Air-Cooled and Water-Quenched Bainitic Steels in China." Materials Science Forum 654-656 (June 2010): 57–61. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.57.

Full text
Abstract:
The origin and development of air-cooled Mn-series bainite steels are introduced. The invented idea, strengthening-toughening mechanism, mechanical performances, development and application of this kind of steel including granular bainitic steels, FGBA / BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cast bainitic steels are presented. The invented idea mechanical performances, development and application of second generation of Mn-series bainitic steels, i.e. water-quenched Mn-series bainitic steels invented by the authors newly are introduced. The water quenched Mn-series bainitic steels can meet the performance requirements of most steels used in engineering structure, reduce the amount of alloying content, increase harden capability and improve weldability. It should be pointed out that the application of both air-cold and water- quenched Mn-series bainitic steels are complementary and mutually reinforcing. Some newest technology of Mn-series bainitic steels in China are discussed in this paper. It is suggested that the significance of the development of the Mn-series bainitic steels can be summarized as: significantly reducing costs of both raw materials and production; good combination of strength and toughness; excellent weldability; simple procedure; large savings in energy resources and environmental pollution is reduced.
APA, Harvard, Vancouver, ISO, and other styles
10

Huo, Xiang Dong, Zhang Guo Lin, Yu Tao Zhao, and Yu Qian Li. "Development of Low Carbon Bainitic Cr-B Steel with High Strength and Good Toughness." Advanced Materials Research 146-147 (October 2010): 937–40. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.937.

Full text
Abstract:
In order to develop low carbon bainitic Cr-B steel, experimental procedures including melting, thermal simulation study and laboratory hot rolling were adopted. The dynamic CCT diagram was established, microstructure and properties of experimental steel were also analyzed. The transformation temperature of experimental steel lies between 650~400°C and final microstructure changes fromquasi-polygonal ferrite, granular bainite to lath bainite as cooling rate increases from 0.2 to 50°C.s-1. The microstructure of steel plates, air cooled or water cooled to 530°C then air cooled, is mainly composed of granular bainite and quasi-polygonal ferrite, and the large size islands in granular bainite are responsible for the low strength and poor toughness. However, steel plate with lath bainite, water cooled to roomtemperature, boasts high yield strength (672MPa) and superior impact toughness (127J at -20°C). Therefore, it is feasible to produce low carbon bainitic Cr-B steel with high strength and good toughness through controlling cooling parameters.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bainite ; Bainitic steel"

1

Peet, Mathew James. "Transformation and tempering of low-temperature bainite." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garnham, John Ernest. "The wear of bainitic and pearlitic steels." Thesis, University of Leicester, 1995. http://hdl.handle.net/2381/9148.

Full text
Abstract:
The rolling-sliding dry-wear behaviour of a series of bainitic steels and a standard pearlitic rail steel have been compared over a range of contact stress and creepage conditions applicable to the British Rail network. A rolling-sliding wear machine has been constructed - LEROS - which allows very high contact stresses to be combined with high creepages under well controlled conditions. Materials were tested on LEROS and on an Amsler machine. Limited vibration analyses were carried out on both machines and compared with the frequencies of disc surface periodic undulations. No direct linkage was determined. Despite better standard mechanical properties, the wear resistance of lower carbon bainitic steels was inferior to that of the pearlitic steel. A bainitic steel with the same carbon content as the pearlitic steel wore a little less, but at considerable expense to the pearlitic wheel steel counter-material in the wear couple. The wear resistance of bainitic steels depends upon the volume fraction of hard phase, such as carbide and martensite-austenite phase, for rolling-sliding as well as other types of dry wear loading. Pearlitic steel performs exceptionally well under certain rolling-sliding conditions, such as the majority seen in these tests, since the lamellar microstructure is modified so as to present a greater area fraction of carbide hard phase at the wear surface, a fraction in excess of bulk volume fraction. Recommendations are made for the dry wear applicability of the steels.
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Liou Chun. "Bainite transformation and novel bainitic rail steels." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dias, Joachim Octave Valentin. "The first high-strength bainitic steel designed for hydrogen embrittlement resistance." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273831.

Full text
Abstract:
The phenomenon of hydrogen embrittlement in steel has been known for over 150 years. Hydrogen-resistant alloys have been developed to mitigate this effect and three types of alloys with optimised structures have been enhanced over the years: nickel alloys, stainless steels, and quenched and tempered martensitic low alloy steels. Nevertheless, those alloys are limited in terms of strength and ductility. The aim of the work presented in this thesis was to design bainitic alloys with hydrogen embrittlement resistance, and with a better combination of strength and ductility than conventional alloys. In the novel alloys, two microstructural features were produced to mitigate the damaging effects of hydrogen: 1. A percolating austenite structure, in which hydrogen diffusion is orders of magnitude lower than in bainitic ferrite. This feature was introduced to impede the ingress of hydrogen through the structure. 2. Iron carbide traps, which can form at the bainite transformation temperature. This feature was introduced to trap diffusible hydrogen and prevent it from causing damage. The alloys, designed with the aid of computer models and phase transformation theory, contained a volume fraction of retained austenite above its percolation threshold, theorised as 0.1, which was proven to form an effcient barrier to hydrogen ingress. The effective diffusivity of hydrogen, measured using an electrochemical permeation technique, was shown to decrease with increasing austenite fraction up to the percolation threshold. It was seen to plateau for austenite fractions comprised between 0.1 and 0.18, and to decrease further for fractions above 0.18. The compositions of the alloys were precisely selected to allow for iron carbides to precipitate during the bainitic transformation reaction. Until the present work, only alloy carbides V4C3, TiC and NbC had been reported to strongly trap hydrogen. The literature was very inconsistent regarding the trapping ability of cementite, with reported trap binding energies ranging from 11 to 66 kJ mol−1. The carbides produced in the alloys were identified as cementite. The cementite fraction was measured to be 0.001 ± 0.0001 for one of the designed alloys, which is the lowest ever reported carbide fraction in steel measured using a simple X-ray diffraction technique. Experimental thermal desorption spectroscopy data were used to determine the binding energy of hydrogen to cementite to be 37.5 kJ mol−1, suggesting that cementite is not a strong hydrogen trap. Further tests performed after room temperature hydrogen degassing displayed insignifcant amount of trapped hydrogen, thus confrming the reversible nature of cementite traps. The comparison of two successive transients using the electrochemical permeation technique confirmed that result. The influence of the heat treatments on the microstructures and on the mechanical properties of the designed alloys was extensively studied. The novel alloys met all the set requirements, and successfully outperformed conventional alloys in terms of strength and ductility. They did not meet the NACE TM0316-2016 standard requirement for operation in hydrogen-rich environments, likely owing to the inadequate trapping ability of cementite. Future work should focus on exploring the possible use of alternative carbides for hydrogen trapping in bainitic structures.
APA, Harvard, Vancouver, ISO, and other styles
5

Yin, Jiaqing. "Formation of Bainite in Steels." Doctoral thesis, KTH, Metallografi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207596.

Full text
Abstract:
A systematic survey of morphology of bainite and proeutectoid ferrite was carried out in order to validate some old thoughts of bainite transformation mechanism. It is confirmed that there is no morphological evidence supporting a sharp change neither between Widmanstätten ferrite and the ferritic component of upper bainite, nor between upper and lower bainite. Both Widmanstätten ferrite and upper bainite start with precipitation of ferrite plates at a grain boundary while lower bainite starts with intragranular nucleation. In case of grain boundary nucleation, a group of parallel plates with same crystallographic orientation to the parent austenite grain forms. This process is followed by a second stage of decomposition of the austenitic interspace, which remained in between the primary ferrite plates. At high temperature, the austenitic interspace would either retain as thin slabs or transform into pearlite through a nodule originated from a grain boundary. At lower temperature, cementite precipitation starts to be possible and initiates simultaneous growth of ferrite. Generally, there are two modes of such eutectoid reactions operating in the second stage, i.e. a degenerate and a cooperative mode, which would lead to typical upper and lower bainite, respectively, in definition of carbides morphology. Both upper and lower bainite according to this definition are observed in a wide temperature range. A sharp temperature between the upper and lower bainite structures thus exists only when the definition is based on their nucleation sites, i.e. grain boundary nucleation for upper bainite and intragranular nucleation for lower bainite. Supposing that the first stage is a diffusionless process it should have a high growth rate to prevent carbon diffusion. This is not supported by lengthening rate obtained in current study as well as data from literature for Fe-C alloys. Finally, it is shown that the “subunits” play no role in the lengthening process of bainite.

QC 20170523

APA, Harvard, Vancouver, ISO, and other styles
6

Kolmskog, Peter. "Does Bainite form with or without diffusion? : The experimental and theoretical evidence." Doctoral thesis, KTH, Metallografi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121344.

Full text
Abstract:
With the increased interest in bainitic steels, fundamental understanding of the bainite transformationis of major importance. Unfortunately, the research on bainite has been hampered by an oldcontroversy on its formation mechanism. Over the years two quite different theories have developedclaiming to describe the bainite transformation i.e. the diffusionless and the diffusion controlledtheory. In this thesis, attention is directed towards fundamental understanding of the bainitetransformation and both experimental and theoretical approaches are used in order to reveal its truenatureIn the first part of this thesis the symmetry in the Fe-C phase diagram is studied. It is based on ametallographic mapping of microstructures using light optical microscopy and scanning electronmicroscopy in a high carbon steel. The mapping revealed symmetries both with respect to temperatureand carbon content and an acicular eutectoid with cementite as the leading phase was found andidentified as inverse bainite. By accepting that all the eutectoid microstructures forms by diffusion ofcarbon, one may explain the existence of symmetries in the Fe-C phase diagram. Additional supportof its existence is obtained from an observation of symmetries in an alloyed steel. From the performedwork it was concluded that the existence of symmetries among the eutectoid microstructures fromaustenite supports the idea that bainite forms by a diffusion controlled transformation.In the second part the growth of bainite is considered. An experimental study using laser scanningconfocal microscopy was performed and growth rates of the transformation products from austenite ina high carbon, high chromium steel was analysed. The growth rate measurements reveals the kineticrelation between Widmanstätten cementite and the acicular eutectoid previously identified as inversebainite which confirms its existence and the conclusions drawn in the first part. In addition, in-situobservations of bainite formation below Ms provide additional support for the diffusion controlledtheory for bainite formation.The final part of the work is a study of the critical conditions for the formation of acicular ferrite.Based on experimental information found in the literature a thermodynamic analysis is performed inview of the two theories. The results demonstrate that the governing process for Fe-C alloys cannot bediffusionless but both kinds of processes can formally be used for predicting Bs temperatures for Fe-Calloys.

QC 20130503

APA, Harvard, Vancouver, ISO, and other styles
7

Takahashi, Manabu. "Reaustenitisation from bainite in steels." Thesis, University of Cambridge, 1993. https://www.repository.cam.ac.uk/handle/1810/221917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krvač, Matěj. "Opravy vysokopevnostních ocelí pomocí technologie studené kinetizace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-432550.

Full text
Abstract:
This diploma thesis takes into account the possibility of repairing high-strength steels using coldspray method. The theoretical part is focused on the coldspray method, austenite transformation, bainitic steels and Rmat contact fatigue tests. In the experimental part evaluate the hardness, the structure of the supplied substrate. The hardness, adhesion and porosity of the test sprays are ranked. Furthermore, tests for contact fatigue are evaluated. Finally, the results of the experiments are summarized and measures are proposed to improve adhesion, or to continue this issue.
APA, Harvard, Vancouver, ISO, and other styles
9

Carvalho, Felipe Moreno Siqueira Borges de. "Efeito do molibdênio, boro e nióbio na cinética de decomposição da austenita no resfriamento contínuo de aços bainí­ticos destinados ao forjamento." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-18092018-151920/.

Full text
Abstract:
Foram realizados ensaios de dilatometria em ligas não comerciais que apresentam microestrutura bainítica após o resfriamento contínuo. As variações de composição química foram realizadas sobre o aço destinado para construção mecânica AISI 5120 com adições de molibdênio, boro e nióbio. Os ensaios foram conduzidos no dilatômetro com atmosfera e temperatura controlada. No dilatômetro, foram aplicados resfriamentos contínuos em diferentes velocidades a partir da temperatura em que normalmente peças forjadas são reaquecidas. Tradicionalmente, a classe dos aços apresentados neste trabalho é exposta ao tratamento térmico de têmpera e revenimento e apresentam microestrutura martensítica. Com o objetivo de eliminar o tratamento térmico realizado pós conformação, foi proposto como substituição os aços bainíticos. Aços bainíticos não exigem tratamento térmico pós conformação e, apenas com a aplicação de um resfriamento controlado, é possível obter uma microestrutura que apresenta propriedades (tensão de escoamento e tenacidade) iguais ou melhoradas em relação ao material temperado e revenido. As microestruturas obtidas nas diferentes ligas resfriadas de maneira contínua foram caracterizadas de modo a estabelecer relações entre a velocidade de resfriamento e produtos formados, morfologia e fração de microconstituíntes. A caracterização microestrutural foi realizada de maneira intensiva de modo a relacionar desde propriedades magnéticas com padrões de difração de raios X das amostras para medição da fração de austenita retida. O objetivo deste trabalho foi investigar qual é a influência do molibdênio, boro e nióbio no resfriamento contínuo de aços bainíticos, bem como estabelecer o intervalo de velocidades de resfriamento em que é possível obter de maneira homogênea a estrutura bainítica. Após o resfriamento, os corpos de prova foram caracterizados por metalografia (microscopia óptica e eletrônica de varredura), dureza, saturação magnética, difração de raios x e EBSD. De fato foi verificado o efeito do molibdênio, boro e nióbio na cinética de decomposição da austenita no resfriamento contínuo e estabelecido relações entre a microestrutura obtida, velocidade de resfriamento e composição química. Foi observado também o efeito do molibdênio, boro e nióbio em evitar a transformação ferrítica para baixas velocidades de resfriamento de modo a obter uma estrutura bainítica sob um maior intervalo de resfriamento.
Dilatometry tests were carried out in a non commercial alloy that showed bainitic microstructure after continuous cooling from the austenitization temperature. The chemical composition variations were performed on a base chemical composition of a commercial steel (AISI 5120), additions were of molybdenum, boron and niobium. The tests were conducted on the dilatometer with atmosphere and temperature control. In the dilatometer, continuous cooling was carried out at different rates from the temperature in which the reheating of forged parts is usually performed. Traditionally, the steels used for this application are quenched and tempered and present a predominantly tempered martensite microstructure; bainitic steels were proposed as a substitution in order to eliminate further heat treatments after forging. The bainitic steels do not require post-conformation heat treatment: only with the application of a controlled continous cooling is possible to obtain a homogenous bainitic microstructure which has equal or improved properties (yield strength and toughness) comparing to quenched and tempered material. The microstructures obtained from the different alloys continuously cooled were characterized in order to establish relations between the cooling rate and formed products, morphology and volume fraction of phases. The microstructural characterization was carried out intensively and correlated with magnetic properties and X-ray diffraction patterns of the samples. The objectives of this work were to investigate the influence of molybdenum, boron and niobium on the continuous cooling of bainitic steels, as well as to establish the range of cooling rates needed in order to obtain an homogeneous bainitic structure. After cooling, the specimens were characterized by metallography (optical and scanning electron microscopy), hardness, magnetic saturation, x-ray diffraction and EBSD. The effect of molybdenum, boron and niobium on the kinetics of austenite decomposition in the continuous cooling was verified and relationships established between the microstructure, cooling rate and chemical composition. It was also observed the effect of molybdenum, boron and niobium in avoiding ferritic transformation at low cooling rates in order to obtain a bainitic structure under a longer cooling interval.
APA, Harvard, Vancouver, ISO, and other styles
10

Korpala, Grzegorz. "Gefügeausbildung und mechanische Eigenschaften von unlegiertem bainitischem Warmband mit Restaustenit." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-229501.

Full text
Abstract:
Seit vielen Jahren wächst die Nachfrage bezüglich sparsamer Fahrzeuge; die Autohersteller konkurrieren miteinander und werben mit neuen Fahrzeugkonzepten, in denen hochmoderne Werkstoffe ihre Anwendung finden. In dieser Arbeit werden Legierungskonzepte und entsprechende Warmwalztechnologien einer ultrahochfesten bainitischen Stahlsorte mit Restaustenit vorgestellt, die der genannten Anwendung angepasst werden können. Der gewählte Werkstoff gehört zu den Stählen mit mittleren Kohlenstoffgehalten, die sich nach der - im Rahmen dieser Arbeit entwickelten - Behandlung durch hohe Zugfestigkeit bei vergleichsweise hoher Bruchdehnung auszeichnen. Es werden erweiterte Modelle zur Beschreibung der Phasenumwandlung von Stählen im Bainitgebiet vorgestellt. Die Ergebnisse aus den Experimenten wurden genutzt, um die Modelle zu ergänzen und zu evaluieren. Dabei wird nicht nur der Warmwalzprozess, sondern auch die chemische Zusammensetzung der Stähle selbst optimiert. Die hier präsentierte Arbeit erstreckt sich über die gesamte Produktionskette und zeigt geeignete Herstellungsbedingungen, die in Betriebsanlagen leicht realisierbar sind und umgesetzt wurden.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bainite ; Bainitic steel"

1

Bhadeshia, H. K. D. H. Bainite in steel: Transformations, microstructure and properties. London: Institute of Materials, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

H.K.D.H Bhadeshia. Bainite in steels: Transformations, microstructure and properties. London: Institute of Materials, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Beno, Michael L. Characterization of ultra-low carbon bainitic steels for use as weld wire consumables. Monterey, Calif: Naval Postgraduate School, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bainite in Steels: Theory and Practice. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bainite in Steels: Transformations, Microstructure and Properties. Institute of Materials, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

H. K. D. H. Bhadeshia. Bainite in Steels: Transformations, Microstructure and Properties. 2nd ed. Maney Publishing, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhadeshia, H. K. D. H. Bainite in Steels. Inst.of Metals, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ivanov, Yurii, Viktor Gromov, and Elena Nikitina. Bainitic Constructional Steel: Structure and Hardening Mechanisms. Cambridge International Science Publishing, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bohemen, Stefanus Van. Acoustic Emission Study Of Martensitic & Bainitic Transformations In Carbon Steel. Delft Univ Pr, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

American Welding Society. Committee on Filler Metals. and American Welding Society. Technical Activities Committee., eds. Standard methods for the determination of diffusible hydrogen content of martensitic, bainitic, and ferritic steel weld metal produced by arc welding. Miami, Fla: American Welding Society, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bainite ; Bainitic steel"

1

Bhadeshia, Harshad K. D. H. "Bainite." In Theory of Transformations in Steels, 329–48. Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003056782-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Durand-Charre, Madeleine. "The bainite transformation." In Microstructure of Steels and Cast Irons, 223–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08729-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhadeshia, H. K. D. H. "High Performance Bainitic Steels." In Materials Science Forum, 63–74. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-981-4.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garcia-Mateo, C., and F. G. Caballero. "Nanocrystalline Bainitic Steels for Industrial Applications." In Nanotechnology for Energy Sustainability, 707–24. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527696109.ch29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohrbacher, Hardy, Xinjun Sun, Qilong Yong, and Han Dong. "MoNb-Based Alloying Concepts for Low-Carbon Bainitic Steels." In Advanced Steels, 289–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17665-4_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Yu, and David Milbourn. "Vanadium in Bainitic Steels: A Review of Recent Developments." In Advanced Steels, 303–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17665-4_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Xinlai, and Chengjia Shang. "Microstructure Fining Theory of Low- carbon Bainitic Steel." In Ultra-Fine Grained Steels, 235–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-77230-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bai, Bingzhe. "Carbide-free Bainite/Martensite (CFB/M) Duplex Phase Steel." In Ultra-Fine Grained Steels, 350–430. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-77230-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xue Min, Xin Lai He, Shan Wu Yang, and Cheng Jia Shang. "The Ultra-Fine Bainitic Steels and Refinement Technology." In THERMEC 2006, 4566–71. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Si Xin, Wei Wang, and Da Li Mao. "Bainite Transformation in Fe-0.34%C-Nb Steels." In Advances in Composite Materials and Structures, 117–20. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bainite ; Bainitic steel"

1

Reichert, Jennifer M., Matthias Militzer, Warren J. Poole, and Laurie Collins. "A New Approach Using EBSD to Quantitatively Distinguish Complex Transformation Products Along the HAZ in X80 Linepipe Steel." In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33668.

Full text
Abstract:
State-of-the-art linepipe steels are microalloyed low-carbon steels that combine high strength and fracture toughness with good weldability. During welding of pipe sections the heat affected zone (HAZ) experiences rapid thermal cycles resulting in a graded microstructure that can be significantly different from that of the base metal. In particular a variety of bainitic microstructures can form in the HAZ. Depending on the type of bainite mechanical properties may be improved or may lead to poor fracture resistance and be detrimental to the overall HAZ performance. Optical microscopy is not sufficient to differentiate bainitic morphologies which vary with the transformation temperature. The investigated X80 linepipe steel also contains retained austenite at room temperature. Based on the retained austenite it is possible to characterize the orientation relationship (OR) between austenite and the transformation products. It is found that bainite shows an orientation relationship near Kurdjumov-Sachs with the prior austenite. Variant selection is related to the driving force for the bainite reaction and hence depends on the transformation temperature. In the current study Electron BackScatter Diffraction (EBSD) mapping is used to characterize transformation products based on their orientation relationship. This approach offers a quantitative way to determine volume fractions of different types of bainite in complex HAZ microstructures which is necessary to establish structure-property relationships of the HAZ.
APA, Harvard, Vancouver, ISO, and other styles
2

You, Haoxing, Mei Yang, Yishu Zhang, and Richard D. Sisson. "Austempering and Bainitic Transformation Kinetics of AISI 52100." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021p0203.

Full text
Abstract:
Abstract AISI 52100 is a high carbon alloy steel typically used in bearings. One hardening heat treatment method for AISI 52100 is austempering, in which the steel is heated to above austenitizing temperature, cooled to just above martensite starting (Ms) temperature in quench media (typically molten salt), held at that temperature until the transformation to bainite is completed and then cooled further to room temperature. Different austempering temperatures and holding times will develop different bainite percentages in the steel and result in different mechanical properties. In the present work, the bainitic transformation kinetics of AISI 52100 were investigated through experiments and simulation. Molten salt austempering trials of AISI 52100 were conducted at selected austempering temperatures and holding times. The austempered samples were characterized and the bainitic transformation kinetics were analyzed by Avrami equations using measured hardness data. The CHTE quench probe was used to measure the cooling curves in the molten salt from austenitizing temperature to the selected austempering temperatures. The heat transfer coefficient (HTC) was calculated with the measured cooling rates and used to calculate the bainitic transformation kinetics via DANTE software. The experimental results were compared with the calculated results and they had good agreement.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Ki Myung, and Andreas A. Polycarpou. "Micro/Nano Scale Wear Behavior of Pearlitic and Bainitic Rail Steels." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63735.

Full text
Abstract:
To develop rails with higher hardness and thus better durability and longer life, alternative microstructures have been suggested, since conventional pearlitic rail steels have reached their hardness limit. Such a newly developed material has a fine bainite microstructure (coded J6 bainitic steel) and showed higher initial hardness but poorer on-site wear performance, compared to conventional pearlitic steels. This was explained by the fact that pearlitic steels show significant work hardening under severe stress conditions, even though their initial hardness was lower. In this work, the wear behavior of pearlitic and J6 bainitic rail steels was investigated at the micro/nano scale, using the nanoscratch technique. It was found that pearlitic steel shows better wear performance at the micro scale as well, in agreement with large scale rail field tests.
APA, Harvard, Vancouver, ISO, and other styles
4

Gaudet, Michael J., and Warren J. Poole. "Tensile and Fracture Properties of X80 Steel Microstructures Relevant to the HAZ." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90485.

Full text
Abstract:
The girth welding of steel pipelines creates a substantial heat affected zone (HAZ) within the base pipeline steel. The HAZ can be considered to be a complex graded microstructure. While there is significant concern as to the fracture and mechanical properties of the HAZ as whole, detailed knowledge about the mechanical properties of the individual microstructures is lacking. For this study, X80 is heat treated in a Gleeble simulator to create samples of bulk microstructures with differing amounts and morphologies of bainite, ferrite and martensite-retained austenite (MA) with a total of 8 microstructures being investigated. The heat treatments were selected specifically to control the level of niobium in solid solution; that is to control whether niobium was fully in solution or contained mainly in niobium carbonitride precipitates. From the heat treated samples a matching tensile and fracture specimens were made. The strongest microstructure proved to be the finest bainitic microstructure, while the lowest strength microstructure was the coarsest bainite sample containing a significant amount of martensite-retained austenite connected along grain boundaries. The fracture behaviour at ambient temperature was studied using the Kahn tear test. The Kahn tear test is a machine notched, thin-sheet, slow strain rate fracture test which has the advantage of being a simple test to conduct. All Kahn tests failed in a ductile manner and it showed that the sample with the coarse bainite, with a connected martensite-retained austenite phase had the lowest unit propagation energy and tear strength while the fine, fully bainitic sample had the highest unit propagation energy and tear strength. Further investigation using SEM measurements of the final fracture surface from the tensile test to determine the tensile toughness. A comparison of the tensile toughness and unit propagation energies showed that there was a complex relationship between the two measurements. However, the samples which had the highest content of MA gave the in lowest unit propagation energy.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Ki Myung, and Andreas A. Polycarpou. "Micro and Nanoscale Experiments and Finite Element Studies of Rail Steels." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44357.

Full text
Abstract:
Recently rail steel with bainite microstructure was developed that had higher hardness compared to conventional pearlite microstructure steels and was expected to exhibit improved wear performance. However, it showed worse wear performance than pearlitic steel, and it was shown that conventional pearlitic steel work-hardened significantly more than bainitic steel under severe stress conditions. As the effects from the wheel/rail contact are confined to the topmost contact surface and sub-surface, convenient micro and nanowear experiments may also be used to predict the wear performance of rail steels. Such experiments were performed on rail samples and subsequently, a finite element model was developed to simulate repeated sliding contact/wear.
APA, Harvard, Vancouver, ISO, and other styles
6

Arai, Yuji, Kunio Kondo, Hiroyuki Hirata, Masahiko Hamada, Nobuyuki Hisamune, Keisuke Hitoshio, and Tsuneo Murase. "Metallurgical Design of Newly Developed Material for Seamless Pipes of X80–X100 Grades." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29183.

Full text
Abstract:
With the increasing development of oil and gas fields in deepwater or ultra-deepwater with deep well depth, the development of high strength seamless pipe has become necessary. This paper describes a metallurgical design of seamless pipe with high strength reaching X80–X100 grade (minimum yield strength, 552 MPa–689 MPa) manufactured by steel containing very low carbon and with a microstructure of uniform bainite. The effect of microstructure of quenched and tempered (QT) steel on strength and toughness is investigated in laboratory. Uniform bainitic structure without coarse martensite-austenite constituent (M-A) is obtained by lowering bainite transformation temperature during quenching process by controlling the alloying elements. Moreover the structure is very effective in obtaining good toughness for tempered steel even with the high strength X100 grade. Sufficiently low hardness and good toughness in heat affected zone (HAZ) are confirmed by welding tests. The trial production of developed steel is conducted by applying inline QT process in medium-size seamless mill according to an alloying design obtained in laboratory tests. The seamless pipes of the trial production achieve grades X80 to X100 by changing tempering temperature. Some data of mechanical properties of the produced pipes is introduced.
APA, Harvard, Vancouver, ISO, and other styles
7

Medina Almazán, A. Liliana, Lizandra S. Ovando Ramírez, and Thierry Auger. "Hardness and Microstructural Evolution of a JRQ A533 Cl.1 Steel Submitted to Thermal Annealing." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63303.

Full text
Abstract:
For operation of existing nuclear power plants (NPPs) beyond their design lifetime (up to 80 years), one of th7e main issues is the assessment of the performance of its structures, systems and components (SSC) during the period of extended operation. The reactor pressure vessel (RPV) is one of the components that could determine the lifetime of a NPP. Neutron irradiation at the temperature of operation of the nuclear reactors facilitates the chemical equilibrium of the alloying elements of the RPV steels, especially copper, while producing nanoscale precipitates (Cu, Mn-Ni-Si, and ∼M6C carbides) that leads to embrittlement [1–4]; by the other side, neutron irradiation also produces dislocation loops. Both, nanoscale precipitates and dislocation loops, produce loss of toughness and hardness increase. One of the proposals to manage the RPV time life is the thermal annealing, however there are still some concerns about its application, one of them is a possible detrimental effect by the development of new microstructural features that could lead to thermal embrittlement. Thus it is important to have data about the microstructural and hardness evolution of the RPV steels submitted to thermal annealing treatments. The results of thermal treatments (450°C, 500°C and 550°C) performed in a A533 C1.1 (JRQ) steel during 0.5 to 1000 hours are presented in this work. JRQ steel has a bainitic microstructure, but well separated ferrite and bainite islands are observed at high magnification. The hardness evolution of such islands as a function of the thermal treatment is correlated with the number of precipitates present after thermal treatment as well as with the chemical evolution in these microconstituents. Thermal treatments of JRQ steel at 450, 500 and 550°C promoted the increase of hardness in both, bainite and ferrite. For the thermal treatment at 550°C, it is observed a maximum of the number of precipitates per μm2 in the treatments during 500 hours, which coincides with the depletion of the alloying elements in the bainite matrix and a decrease of Vickers microhardness (HV) in bainite. Cooper rich nanoprecipitates have been observed in the samples treated at 550°C during 500 and 1000 hours. The Cu content in the nanoprecipitates increase according the ageing time.
APA, Harvard, Vancouver, ISO, and other styles
8

Ishikawa, Nobuyuki, Toyohisa Shinmiya, Shigeru Endo, Tsunemi Wada, and Joe Kondo. "Recent Development in High Strength Linepipe for Sour Environment." In ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2003. http://dx.doi.org/10.1115/omae2003-37065.

Full text
Abstract:
This paper firstly summarizes the design concepts for controlling crack resistant property and mechanical properties of high strength linepipe steels for sour gas service. Optimum conditions of controlled rolling and accelerated cooling that balances crack resistant property and toughness were investigated. It was demonstrated that higher cooling rate in accelerated cooling process brings tremendous advantages for balancing toughness and strength by fine bainitic microstructure even for heavy wall thick pipes. Production results of high strength sour resistant linepipes were introduced. In order to increase strength grade of sour linepipes, further investigation was made using the steels with different microstructures. It was found that precipitation hardened ferrite-bainite steels have extremely high resistance against HIC even for Grade X80. Mechanical properties and microstructural characteristics of this newly developed steel were introduced in this paper.
APA, Harvard, Vancouver, ISO, and other styles
9

Golan´ski, Grzegorz. "Microstructure and Mechanical Properties of G17CrMoV5 – 10 Cast Steel After Regenerative Heat Treatment." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77710.

Full text
Abstract:
The paper presents results of research on the influence of regenerative heat treatment on microstructure and properties of a cast steel after long term operation at the elevated temperature. The material under investigation was G17CrMoV5 – 10 cast steel taken out (in the form of a section) from an internal frame of steam turbine serviced for about 250 000 hours. Performed research has proved that, through the structure degradation, long-term service contributes to an increase of brittleness and decrease of mechanical properties — higher in the case of yield strength than tensile strength. The heat treatment, however, contributes to an increase of impact energy, regardless of the applied parameters. Is has also been proved that the optimum combination of mechanical properties and impact energy is ensured by the structure of high tempered bainite. Low mechanical properties and impact energy, however, were obtained for the structure which was slowly cooled from the austenitizing temperature, i.e. the ferritic – bainitic – ferritic structure.
APA, Harvard, Vancouver, ISO, and other styles
10

Ishikawa, Nobuyuki, Mitsuhiro Okatsu, Shigeru Endo, and Joe Kondo. "Design Concept and Production of High Deformability Linepipe." In 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10240.

Full text
Abstract:
Extensive studies to develop high deformability linepipe have been conducted. In the case of linepipes laid in seismic region or permafrost field, higher resistance to buckling against large strain induced by ground movement is required. In order to improve the deformability of pipes, two different types of microstructural control technologies were proposed, based on theoretical and analytical studies on the effect of microstructural characteristics on stress-strain behavior. Grade X65 to X100 linepipes with ferrite-bainite microstructure were manufactured by optimizing the microstructural characteristics. Grade X80 linepipe with bainitic microstructure containing dispersed fine MA constituents was also developed by applying new conceptual TMCP process. Deformability of developed linepipes with two different types of microstructure was evaluated by axial compression and bending tests, and all the developed linepipes showed superior resistance to buckling comparing with conventional pipes. Plate manufacturing technologies for producing recent high strength linepipe steel and the concept for microstructure control for improving deformability were also introduced in this paper.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bainite ; Bainitic steel"

1

Vigilante, G., M. Hespos, and S. Bartolucci. Evaluation of Flash Bainite in 4130 Steel. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada588144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garcia, C. I., and A. J. DeArdo. Ultra-Low Carbon Bainitic Steels for Heavy Plate Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada236859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kapp, J. A., J. Barranco, L. Meisel, P. J. Cote, and R. N. Wright. Unusually High Fracture Toughness of ASTM A723 Steel from a Mixed Martensite/Bainite Microstructure. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mao, S. X., and V. K. Sikka. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/886702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garcia, C. I., and A. J. DeArdo. Study of the BS Temperature in a Molybdenum-Containing Ultra-Low Carbon Bainitic Steel for Heavy Plate Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada177793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography