Academic literature on the topic 'Baker-Campbell-Hausdorff'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Baker-Campbell-Hausdorff.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Baker-Campbell-Hausdorff"

1

Van-Brunt, Alexander, and Matt Visser. "Explicit Baker–Campbell–Hausdorff Expansions." Mathematics 6, no. 8 (August 8, 2018): 135. http://dx.doi.org/10.3390/math6080135.

Full text
Abstract:
The Baker–Campbell–Hausdorff (BCH) expansion is a general purpose tool of use in many branches of mathematics and theoretical physics. Only in some special cases can the expansion be evaluated in closed form. In an earlier article we demonstrated that whenever [X,Y]=uX+vY+cI, BCH expansion reduces to the tractable closed-form expression Z(X,Y)=ln(eXeY)=X+Y+f(u,v)[X,Y], where f(u,v)=f(v,u) is explicitly given by the the function f(u,v)=(u−v)eu+v−(ueu−vev)uv(eu−ev)=(u−v)−(ue−v−ve−u)uv(e−v−e−u). This result is much more general than those usually presented for either the Heisenberg commutator, [P,Q]=−iℏI, or the creation-destruction commutator, [a,a†]=I. In the current article, we provide an explicit and pedagogical exposition and further generalize and extend this result, primarily by relaxing the input assumptions. Under suitable conditions, to be discussed more fully in the text, and taking LAB=[A,B] as usual, we obtain the explicit result ln(eXeY)=X+Y+Ie−LX−e+LYI−e−LXLX+I−e+LYLY[X,Y]. We then indicate some potential applications.
APA, Harvard, Vancouver, ISO, and other styles
2

CHUNG, WON-SANG. "q-DEFORMED BAKER-CAMPBELL-HAUSDORFF FORMULA." Modern Physics Letters A 08, no. 27 (September 7, 1993): 2569–71. http://dx.doi.org/10.1142/s0217732393002932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kostelecký, V. Alan, Michael Martin Nieto, and Rodney Truax. "Baker–Campbell–Hausdorff relations for supergroups." Journal of Mathematical Physics 27, no. 5 (May 1986): 1419–29. http://dx.doi.org/10.1063/1.527101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mostovoy, J., J. M. Pérez-Izquierdo, and I. P. Shestakov. "A non-associative Baker-Campbell-Hausdorff formula." Proceedings of the American Mathematical Society 145, no. 12 (June 16, 2017): 5109–22. http://dx.doi.org/10.1090/proc/13684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iacono, Donatella, and Marco Manetti. "Posetted Trees and Baker-Campbell-Hausdorff Product." Mediterranean Journal of Mathematics 10, no. 2 (November 30, 2012): 611–23. http://dx.doi.org/10.1007/s00009-012-0235-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Newman, Morris, Wasin So, and Robert C. Thompson. "Convergence domains for the campbell-baker-hausdorff formula." Linear and Multilinear Algebra 24, no. 4 (April 1989): 301–10. http://dx.doi.org/10.1080/03081088908817923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Day, J., W. So, and Robert C. Thompson. "Some properties of the campbell baker hausdorff series." Linear and Multilinear Algebra 29, no. 3-4 (July 1991): 207–24. http://dx.doi.org/10.1080/03081089108818072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Hyun Keun. "A Baker–Campbell–Hausdorff solution by differential equation." Journal of Physics A: Mathematical and Theoretical 42, no. 13 (March 4, 2009): 135202. http://dx.doi.org/10.1088/1751-8113/42/13/135202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kobayashi, Hiroto, Naomichi Hatanoau>, and Masuo Suzuki. "Goldberg’s theorem and the Baker–Campbell–Hausdorff formula." Physica A: Statistical Mechanics and its Applications 250, no. 1-4 (February 1998): 535–48. http://dx.doi.org/10.1016/s0378-4371(97)00557-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weigert, Stefan. "Baker - Campbell - Hausdorff relation for special unitary groups." Journal of Physics A: Mathematical and General 30, no. 24 (December 21, 1997): 8739–49. http://dx.doi.org/10.1088/0305-4470/30/24/032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Baker-Campbell-Hausdorff"

1

Ruffilli, Mirko. "Dimostrazione e Applicazioni del Teorema di Campbell, Baker e Hausdorff." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4634/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Graner, Nicholas. "Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7232.

Full text
Abstract:
Lie Groups occur in math and physics as representations of continuous symmetries and are often described in terms of their Lie Algebra. This thesis is concerned with finding a concrete description of a Lie group given its associated Lie algebra. Several calculations toward this end are developed and then implemented in the Maple Differential Geometry package. Examples of the calculations are given.
APA, Harvard, Vancouver, ISO, and other styles
3

Defourneau, Thibault. "Linéarisation de structures algébriques à l'aide d'opérades et de foncteurs polynomiaux : Les équivalences quadratiques et la formule de Baker-Campbell-Hausdorff pour les variétés 2-nilpotentes." Thesis, Valenciennes, 2017. http://www.theses.fr/2017VALE0024/document.

Full text
Abstract:
Le travail de thèse contribue à établir des liens entre structures algébriques non-linéaires, décrites par des théories algébriques, et des structures algébriques linéaires, encodées par des algèbres sur une opérade linéaire. Pour les théories algébriques dont les modèles forment une catégorie semi-abélienne (ce qui inclut la plupart des structures intéressantes), un tel lien a été exhibé récemment par M. Hartl, au niveau des objets gradués associés à une nouvelle notion de suite centrale descendante des modèles d'une théorie donnée : il s'avère qu'ils ont une structure naturelle d'algèbre graduée sur une certaine opérade de groupes abéliens associée à la théorie. Le sujet de thèse s'inscrit dans le projet d'étendre ce lien au niveau global, c'est-à-dire d'établir des correspondances du type Mal'cev et Lazard dans le cas des groupes, à savoir entre les modèles nilpotents suffisamment radicables et les algèbres nilpotentes sur l'opérade linéaire correspondante (après tensorisation avec un sous-anneau des rationnels approprié). Ces correspondances jouent un rôle fondamental en théorie des groupes et commencent à faire leurs preuves en théorie des loops grâce au développement plus récent d'une théorie de Lie non-associative; on peut s'attendre à ce qu'il en soit de même dans un contexte plus général. Il est important de noter qu'aussi bien dans les correspondances classiques de Mal'cev et Lazard que dans leurs généralisations à des variétés multiples de loops (Moufang, Bruck, Bol etc.), le passage des algèbres (de Lie, de Mal'cev etc.) appropriées aux objets non-linéaires (groupes, voire loops) qui leur correspondent, est donné par une formule de Baker-Campbell-Hausdorff appropriée, déduite d'une étude de fonctions exponentielles et logarithmes. Dans la thèse, une nouvelle approche est développée pour construire une correspondance (en fait, une équivalence de catégories) du type Lazard entre une variété (dite aussi catégorie algébrique) 2- nilpotente 2-radicable (dans un sens approprié) C donnée et les algèbres sur une opérade symétrique unitaire linéaire et 2-nilpotente AbOp(C) dépendant de la variété, vivant dans la catégorie monoïdale des Z[1/2]-modules à gauche. L'anneau de fraction Z[1/2] apparaît car notre définition de 2-divisibilité d'objets de C se traduit par la condition de 2-divisibilité classique sur le premier terme de l'opérade. L'équivalence de type Lazard se construit grâce à la théorie des foncteurs polynomiaux (plus précisément quadratiques) et à la notion d'extension linéaire de catégories. L'idée principale est de chercher une équivalence quadratique (i.e un foncteur quadratique qui est une équivalence de catégories) entre une variété semi-abélienne 2-nilpotente 2-radicable donnée C et la catégorie des algèbres sur AbOp(C), que nous appellerons le foncteur de Lazard. La nouveauté principale de cette approche est de ne pas construire ce foncteur explicitement sur tous les objets et les morphismes, en utilisant une formule de BCH établie au préalable; mais au contraire de construire l'"ADN" du foncteur de Lazard, c'est-à-dire un ensemble de données minimales le caractérisant étudié dans ce travail de thèse, et d'en déduire une formule de type BCH dans notre contexte. Cette démarche devrait pouvoir se généraliser et ainsi fournir une approche nouvelle et intéressante même de la formule BCH classique
The aim of this work consists of establishing the foundations and first steps of a research project which aims at a new understanding and generalization of the classical Baker-Campbell-Hausdorff formula with a conceptual approach, and its main application in group theory: refining a result of Mal'cev adapting the classical Lie correspondence to abstract groups, Lazard proved that the category of n-divisible n-step nilpotent groups is equivalent with the category of n-step nilpotent Lie algebras over the coefficient ring Z[1/2,…,1/n]. Generalizations to other algebraic structures than groups were obtained in the literature first for several varieties of loops (in particular Moufang, Bruck and Bol loops), and finally for all loops in recent work of Mostovoy, Pérez-Izquierdo and Shestakov. They invoke other types of algebras replacing Lie algebras in the respective context, namely Mal'cev algebras related with Moufang loops, Lie triple systems related with Bruck loops, Bol algebras with Bol algebras and finally Sabinin algebras with arbitrary loops. In each case, the associated type of algebras can be viewed as a linearization of the non-linear structure given by a given type of loops. This situation motivates a research program initiated by M. Hartl, namely of exhibiting suitable linearizations of all non-linear algebraic structures satisfying suitable conditions, namely all semiabelian varieties (of universal algebras, in the sense of universal algebra or of Lawvere). In fact, Hartl associated with any semi-abelian category C a multi-right exact (and hence multi-linear) functor operad on its abelian core. In the special case where C is a variety, this functor operad is even multicolimit preserving and by specialization is equivalent with an operad in abelian groups; the algebra type encoded by this operad provides a linearization of the given variety. Indeed, for each of the above-mentioned varieties of loops this algebra type coincides (over rational coefficients) with the one exhibited in the literature. These constructions and results are based on a new commutator theory in semi-abelian categories which itself relies on a calculus of functors in the framework of semi-abelian categories, both developed by Hartl in partial collaboration with B. Loiseau and T. Van der Linden. Now the project mentioned at the beginning constitutes the next major goal in this emerging general theory of linearization of algebraic structures: to generalize the Lazard equivalence and Baker- Campbell-Hausdorff formula to the context of semi-abelian varieties, and to deduce a way of explicitly computing the operad AbOp(C) from a given presentation of the variety C (more precisely, the operad obtained from AbOp(C) by tensoring its term of arity n with Z[1/2,…,1/n]). In the classical example of groups this would amount to deducing the structure of the Lie operad directly from the usual group axioms
APA, Harvard, Vancouver, ISO, and other styles
4

Perugini, Stefania. "Costruzione di Gruppi di Lie con tecniche di Equazioni Differenziali Ordinarie." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14698/.

Full text
Abstract:
Nel presente lavoro di tesi si vogliono caratterizzare le algebre di Lie di campi vettoriali C^{infinito} su R^{N} che coincidono con le algebre di Lie di gruppi di Lie definiti su R^{N} (con l'usuale struttura differenziabile). Per prima cosa si vanno ad individuare alcune condizioni necessarie affinché, data un'algebra di Lie g di campi vettoriali C^{infinito} su R^{N} sia possibile trovare un gruppo di Lie G=(R^{N}, *) tale che Lie(G)=g. Dopo aver osservato l'indipendenza delle condizioni trovate, lo scopo principale della tesi consite nel mostrare che queste condizioni necessarie sono in realtà anche sufficienti. Il Teorema di Campbell-Baker-Hausdorff-Dynkin per E.D.O. rende possibile la costruzione di un'operazione locale m. L'associatività locale di m permette inoltre di ottenere una notevole identità, simile ad una identità che compare in Teoria dei Gruppi di Lie, avente una profonda connessione con il Primo Teorema di Lie e che, grazie ad un argomento di prolungamento per E.D.O., porta ad ottenere un gruppo globale a partire dal gruppo locale. Una versione analitica del problema è già stata affrontata in un precedente lavoro di tesi (Tesi di Laurea Magistrale in Matematica: Applicazione ai Gruppi di Lie della Prolungabilità per Equazioni Differenziali Ordinarie, Sara Chiappelli, 2015-2016) in cui la "Unique Continuation" per le funzioni analitiche ha reso possibile l'estensione di tutte le proprietà di gruppo locali a proprietà globali. La novità della tesi sta quindi nell'estendere i risultati al caso C^{infinito}. A tal fine l'unicità della soluzione di un Problema di Cauchy gioca un ruolo fondamentale come strumento globalizzante, al posto della "Unique Continuation".
APA, Harvard, Vancouver, ISO, and other styles
5

Simi, Luca. "Higher structures in deformation theory." Doctoral thesis, 2019. http://hdl.handle.net/11573/1220497.

Full text
Abstract:
In questo lavoro vengono affrontati due problemi principali. Il primo è lo studio della formalità per algebre di Lie differenziali graduate (DGLA) ed algebre L-infinito, e il secondo è lo studio del prodotto di Baker-Campbell-Hausdorff. Ringuardo al primo problema vengono mostrati due risultati principali: il primo mette in relazione due ostruzioni alla formalità presenti in letteratura (la classe di Eulero e i prodotti tripli di Lie-Massey), e il secondo è un'estensione del criterio di formalità ottenuto attraverso la classe di Eulero, adattato alla nozione di formalità superiore. Nella seconda parte del lavoro, attraverso un approccio algebrico e combinatorio, otteniamo un algoritmo efficiente per calcolare i coefficienti del prodotto di Baker-Campbell-Hausdorff nella base di Lyndon dell'algebra di Lie libera su due generatori.
In this thesis we work on two main topics. The first one is the notion of formality for differential graded Lie algebras (DGLAs) and L-infinity algebras, and the second one is the study of the Baker-Campbell-Hausdorff product. Concerning the first problem we obtained two major results: the first one establishes a relation between two obstructions to formality which are present in literature (the Euler class and triple Lie-Massey products), and the second one is an exrtension of the formality criterion obtained from the Euler class, adapted to the notion of formality of higher degree. In the second part of this work, with and algebraic and combinatoric approach, we developed an efficient algorithm to compute the coefficients of the Baker-Campbell-Hausdorff product in the Lyndon basis of the free Lie algebra on two generators.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Baker-Campbell-Hausdorff"

1

Bonfiglioli, Andrea. Topics in noncommutative algebra: The theorem of Campbell, Baker, Hausdorff and Dynkin. Heidelberg: Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonfiglioli, Andrea, and Roberta Fulci. Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdorff and Dynkin. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Baker-Campbell-Hausdorff"

1

Hall, Brian C. "The Baker—Campbell—Hausdorff Formula." In Graduate Texts in Mathematics, 63–90. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21554-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, Brian C. "The Baker–Campbell–Hausdorff Formula and Its Consequences." In Graduate Texts in Mathematics, 109–37. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13467-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Condurache, Daniel, and Ioan-Adrian Ciureanu. "Closed Form of the Baker-Campbell-Hausdorff Formula for the Lie Algebra of Rigid Body Displacements." In Multibody Dynamics 2019, 307–14. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23132-3_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"The Campbell-Baker-Hausdorff Formula." In Introduction to Compact Lie Groups, 25–31. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439541_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"THE BAKER-CAMPBELL-HAUSDORFF FORMULA." In Paradoxes of Measures and Dimensions Originating in Felix Hausdorff's Ideas, 414–565. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814368193_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Associativity of the Baker-Campbell-Hausdorff-Dynkin law." In Hilbert’s Fifth Problem and Related Topics, 259–64. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/gsm/153/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"The Baker-Campbell-Hausdorff Formula and Some Exponential Formulas." In Chapman & Hall/CRC Applied Mathematics & Nonlinear Science, 315–16. Chapman and Hall/CRC, 2007. http://dx.doi.org/10.1201/9781584888833.axe.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Lie groups, Lie algebras, and the Baker-Campbell-Hausdorff formula." In Hilbert’s Fifth Problem and Related Topics, 25–51. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/gsm/153/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Baker-Campbell-Hausdorff"

1

Duleba, Ignacy, and Jacek Jagodzinski. "Generating Chen-Fliess-Sussmann equation via Campbell-Baker-Hausdorff-Dynkin formula." In Robotics (MMAR). IEEE, 2011. http://dx.doi.org/10.1109/mmar.2011.6031316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duleba, I. "On use of Campbell-Baker-Hausdorff-Dynkin formulas in nonholonomic motion planning." In Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353). IEEE, 1999. http://dx.doi.org/10.1109/romoco.1999.791072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography