Academic literature on the topic 'Bamboo diseases and pests'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bamboo diseases and pests.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bamboo diseases and pests"

1

Maksimov, A. P., N. N. Trikoz, and M. S. Kovalev. "FEATURES OF THE CULTIVATION OF BAMBOO (BAMBUSA SCHREB.) ON THE SOUTHERN COAST OF CRIMEA." Bulletin of Nizhnevartovsk State University, no. 1 (December 15, 2020): 26–33. http://dx.doi.org/10.36906/2311-4444/20-1/05.

Full text
Abstract:
For the first time, a summary of long-term production experience in the cultivation of bamboo in the Crimea and the Caucasus was carried out. Based on the study of the biology and ecology of bamboo, recommendations were given on their use in gardening in southern Russia and, above all, on the Southern Coast of Crimea and on the Caucasian Riviera. Winter hardiness of bamboos largely depends on soil and microclimatic conditions. Improper planting care can also lead to a decrease in the frost resistance of individuals. The best for the culture of bamboo are flat areas along the banks of rivers and streams. It is recommended to lay windbreaks on windy places. In areas with a pronounced hilly terrain, eastern and northern slopes of steepness up to 15-20° can be considered favorable for bamboos, as well as beams and damp ravines where there is no stagnation of cold air. Bamboos grow and develop best on rich and well-drained loamy soils with a neutral environment. On alkaline and very acidic soils, as well as marshy (with stagnant moisture) and stony patches, bamboo grows poorly. Soil types formed on the alluvium of river sediments as well as on the deluvium of the soil and hill sections can be considered the best for bamboos. By the nature of flowering and fruiting, bamboos are divided into 3 groups: 1 - monocarpic (species of the genera Bambusa , Dendrocalamus , Thamnocalamus , etc.); 2 - polycarpic (species of the genera Sasa , Pseudosasa , etc.); 3 - transitional between them (species of the genera Phyllostachys , Semiarundinaria ). Bamboos are propagated by seeds and separation of rhizomes. Recommendations are given on the creation, maintenance, cultivation and protection of bamboos against pests and fungal diseases on the Southern Coast of Crimea and on the Caucasian Riviera.
APA, Harvard, Vancouver, ISO, and other styles
2

Thu, Pham Quang, Dao Ngoc Quang, Nguyen Minh Chi, Tran Xuan Hung, Le Van Binh, and Bernard Dell. "New and Emerging Insect Pest and Disease Threats to Forest Plantations in Vietnam." Forests 12, no. 10 (2021): 1301. http://dx.doi.org/10.3390/f12101301.

Full text
Abstract:
The planted forest area in Vietnam increased from 3.0 to 4.4 million hectares in the period 2010–2020, but the loss of productivity from pests and diseases continues to be a problem. During this period, frequent and systematic plantation forest health surveys were conducted on 12 native and 4 exotic genera of trees as well as bamboo across eight forest geographic regions of Vietnam. Damage caused by insects and pathogens was quantified in the field and laboratory in Hanoi. The threats of greatest concern were from folivores (Antheraea frithi, Arthroschista hilaralis, Atteva fabriciella, Hieroglyphus tonkinensis, Lycaria westermanni,Krananda semihyalina, and Moduza procris), wood borers (Batocera lineolata, Euwallacea fornicatus, Tapinolachnus lacordairei, Xyleborus perforans, and Xystrocera festiva), sap-sucking insects (Aulacaspis tubercularis and Helopeltis theivora) and pathogens (Ceratocystis manginecans, Fusarium solani, and Phytophthora acaciivora). The number of new and emerging pests and pathogens increased over time from 2 in 2011 to 17 in 2020, as the damage became more widespread. To manage these pests and diseases, it is necessary to further invest in the selection and breeding of resistant genotypes, improve nursery hygiene and silvicultural operations, and adopt integrated pest management schemes. Consideration should be given to developing forest health monitoring protocols for forest reserves and other special-purpose forests.
APA, Harvard, Vancouver, ISO, and other styles
3

Walida, Hilwa, Fitra Syawal Harahap, and Badrul Ainy Dalimunthe. "ISOLASI DAN UJI ANTAGONIS MIKROORGANISME LOKAL (MOL) REBUNG BAMBU TERHADAP CENDAWAN Fusarium sp." JURNAL AGROPLASMA 6, no. 2 (2020): 1–6. http://dx.doi.org/10.36987/agroplasma.v6i2.1564.

Full text
Abstract:
Efforts to increase the production of chilli plants are still experiencing obstacles. One of the diseases caused by fungi is fusarium wilt disease caused by Fusarium sp. The existence of this fungus attack makes one of the limiting factors that cause a decrease in red chili production. Local microorganism (MOL) solution is a fermented solution made from various local available resources. MOL solution contains micro and macro nutrients and also contains bacteria that have the potential to remodel organic matter, stimulate growth, and as a controlling agent for pests and plant diseases, so that MOL can be used both as a decomposer, biological fertilizer and as an organic pesticide, especially as a fungicide.In this research, bacterial isolation from MOL bamboo shoots will be carried out and then tested the isolates on Fusarium sp. The data of this research were analyzed descriptive. The results of isolation from bamboo shoot MOL which has been fermented for use as POC, obtained 8 bacterial isolates with different macroscopic and microscopic characteristics. All obtained bacterial isolates have the potential to inhibit the growth of fusarium fungal colonies. The most potential bacterial isolate was M6 isolate with a diameter of a pathogenic fungal colony that grew only by 2.1 cm. Keywords: Fusarium sp., Local Microorganisms, Bamboo Shoots
APA, Harvard, Vancouver, ISO, and other styles
4

Chakma, Nikhil, Noor Jahan Sarker, Steven Belmain, Sohrab Uddin Sarker, Ken Aplin, and Sontosh Kumar Sarker. "New records of rodent species in Bangladesh: taxonomic studies from rodent outbreak areas in the Chittagong hill tracts." Bangladesh Journal of Zoology 46, no. 2 (2018): 217–30. http://dx.doi.org/10.3329/bjz.v46i2.39055.

Full text
Abstract:
Rodents are regarded as crop pests, significant reservoirs and vectors for many zoonotic diseases around the world. Basic taxonomic information of rodents present in a locality can help understand which species are responsible as crop pest in that habitat. The phenomenon of the 50-year cycle of gregarious bamboo flowering and rodent outbreaks in the Chittagong Hill Tracts (CHT) of Bangladesh, rodents trapping were carried out in four habitats from March, 2009 to December, 2011 in Ruma upazila of Bandarban hill district. Variety of traps were used to capture small mammals. The captured species were measured and identified using taxonomical dichotomous keys and DNA bar-coding performed in Australia. A total of 14 different small mammalian species were captured of which nine belonging to the Muridae family, and one species each of Spalacidae, Sciuridae, Tupaiidae and Soricidae families. The dominant small mammal species captured were Rattus rattus (54.06%) followed by Mus musculus (26.39%), Rattus nitidus (10.98%), Suncus murinus (5.45%), Mus terricolor (1.09%), Mus cookii nagarum (0.97%), Cannomys badius (0.16%), Leopoldamys edwardsi (0.12%), Berylmys bowersi (0.12%), Vernaya fulva (0.08%), Rattus andamanensis (0.08%), Tupaia glis (0.04%) and Callosciurus pygerythrus (0.04%). Rattus nitidus, Leopoldamys edwardsi, Vernaya fulva, Rattus andamanensis, Berylmys bowersi and Mus cookii nagarum are new records of rodent species in Bangladesh. Ten individuals of Mus spp. (0.40%) were not identified to species level, requiring further genetic analysis to determine their species. The implications of these discoveries are discussed in terms of agricultural pests. Bangladesh J. Zool. 46(2): 217-230, 2018
APA, Harvard, Vancouver, ISO, and other styles
5

Wainaina, James M., Elijah Ateka, Timothy Makori, Monica A. Kehoe, and Laura M. Boykin. "A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya." PeerJ 7 (March 15, 2019): e6465. http://dx.doi.org/10.7717/peerj.6465.

Full text
Abstract:
Common bean (Phaseolus vulgaris L.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production. To date, the majority of viruses reported in beans have been RNA viruses. In this study, we carried out a viral metagenomic analysis on virus symptomatic bean plants. Our virus detection pipeline identified three viral fragments of the double-stranded DNA virus Pelargonium vein banding virus (PVBV) (family, Caulimoviridae, genus Badnavirus). This is the first report of the dsDNA virus and specifically PVBV in legumes to our knowledge. In addition two previously reported +ssRNA viruses the bean common mosaic necrosis virus (BCMNVA) (Potyviridae) and aphid lethal paralysis virus (ALPV) (Dicistroviridae) were identified. Bayesian phylogenetic analysis of the Badnavirus (PVBV) using amino acid sequences of the RT/RNA-dependent DNA polymerase region showed the Kenyan sequence (SRF019_MK014483) was closely matched with two Badnavirus viruses: Dracaena mottle virus (DrMV) (YP_610965) and Lucky bamboo bacilliform virus (ABR01170). Phylogenetic analysis of BCMNVA was based on amino acid sequences of the Nib region. The BCMNVA phylogenetic tree resolved two clades identified as clade (I and II). Sequence from this study SRF35_MK014482, clustered within clade I with other Kenyan sequences. Conversely, Bayesian phylogenetic analysis of ALPV was based on nucleotide sequences of the hypothetical protein gene 1 and 2. Three main clades were resolved and identified as clades I–III. The Kenyan sequence from this study (SRF35_MK014481) clustered within clade II, and nested within a sub-clade; comprising of sequences from China and an earlier ALPV sequences from Kenya isolated from maize (MF458892). Our findings support the use of viral metagenomics to reveal the nascent viruses, their viral diversity and evolutionary history of these viruses. The detection of ALPV and PVBV indicate that these viruses have likely been underreported due to the unavailability of diagnostic tools.
APA, Harvard, Vancouver, ISO, and other styles
6

Raman, K. V. "SURVEY OF DISEASES AND PESTS IN AFRICA: PESTS." Acta Horticulturae, no. 213 (September 1987): 145–50. http://dx.doi.org/10.17660/actahortic.1987.213.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heitefuss, Rudolf. "Wheat Diseases and Pests." Journal of Phytopathology 159, no. 4 (2010): 324. http://dx.doi.org/10.1111/j.1439-0434.2010.01750.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kidd, Hamish, and Len Copping. "BCPC Conference 2000 - Pests and Diseases." Pesticide Outlook 12, no. 1 (2001): 36–39. http://dx.doi.org/10.1039/b100807m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Heitefuss, Rudolf. "Compendium of Hop Diseases and Pests." Journal of Phytopathology 158, no. 5 (2010): 391. http://dx.doi.org/10.1111/j.1439-0434.2009.01617.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heitefuss, Rudolf. "Compendium of Beet Diseases and Pests." Journal of Phytopathology 158, no. 5 (2010): 392. http://dx.doi.org/10.1111/j.1439-0434.2009.01626.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bamboo diseases and pests"

1

Terry, Alan J. "Control of pests and diseases." Thesis, University of Surrey, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

George, Adrienne. "Cataloguing Diseases and Pests in Captive Corals." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3115.

Full text
Abstract:
Stony corals (Order Scleractinia) are susceptible to a variety of diseases, which can occur from abiotic or biotic factors, or a combination of both. Public aquaria provide opportunities to study coral disease. Because coral mucus is the first line of defense against disease, the Biolog EcoplateTM is a useful tool to detect differences in microbial assemblages in the surface mucopolysaccharide (mucus) layer when comparing healthy and diseased corals. Histological examination is essential to document structural changes in coral tissue in response to diseases. This study identifies and characterizes diseases in captive corals through visual recognition, characterization of carbon utilization by microbial assemblages in coral mucus samples, and histological examination. In March 2010, surveys were sent to public aquaria throughout the United States that house corals. If the survey was returned indicating that the aquarium had diseased coral specimens present, sample kits were sent to the aquarium to acquire photographs, mucus samples for microbial carbon utilization analysis, and tissue samples for histological examination. Eighteen aquaria participated in the survey and 25 sets of samples were provided. The gross lesions from diseased samples fit into six categories: discoloration associated with darkening of the tissue or with color loss (bleaching), growth anomalies, and tissue loss associated with pests, with brown jelly, or with no obvious cause. Seven categories of possible contributing factors were reported: addition of inadequately quarantined corals to the tank, damage during transport, change of location, manual stress, and variations in light, salinity, or temperature. Introduction of inadequately quarantined specimens was the most common possible contributing factor to pest introduction. Significant differences in carbon source utilization were found between tank-water samples and mucus from both healthy and diseased areas of sampled corals. Although mucus samples from healthy and diseased samples did not differ in carbon source utilization overall, D-mannitol was used by 52% of microbial assemblages from mucus from diseased areas compared with only 17% of microbial assemblages from healthy mucus samples. Histologically, the most commonly observed features across all samples were healthy zooxanthellae, endolithic organisms, and nematocysts, all of which are normal features that can be influenced by stress factors. Brown granular material and ciliates were found associated with some anomalies, primarily the three categories of tissue loss. The presence of dense aggregates of zooxanthellate-engorged ciliates in corals afflicted with brown jelly was highly similar to histological observations of brown band syndrome, previously described from natural coral reefs.
APA, Harvard, Vancouver, ISO, and other styles
3

Denman, Sandra. "Botryosphaeria diseases of proteaceae." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52721.

Full text
Abstract:
Dissertation (PhD (Agric))--University of Stellenbosch, 2002.
ENGLISH ABSTRACT: Fungi belonging to the genus Botryosphaeria are heterotrophic micromycetes that can be pathogens on woody plants. They cause serious, and in some cases devastating losses to crops through leaf necrosis, stem cankers and plant death. The Proteaceae cut-flower industry in South Africa accounts for 70% of the national cut-flower enterprise. Botryosphaeria diseases are a major impediment to production and trade of Proteaceae and there is an urgent need to investigate the etiology, epidemiology and control of these diseases. Losses of one of the most important proteas, P. magnifica, amount to 50% or more, locally. The main aims of this study were therefore to establish the etiology and aspects of epidemiology of Botryosphaeria stem cankers on P. magnifica and other Proteaceae, and to investigate methods of disease control. Although there is a vast body of information pertaining to this fungus, which was reviewed in Chapter 1, there is relatively little information available on Botryosphaeria on Proteaceae. The taxonomy of Botryosphaeria requires thorough review, and molecular techniques need to be employed to resolve species identities. In Chapter 2, it was found that Phyllachora proteae, a leaf pathogen of proteas, produced a Fusicoccum anamorph, which is described as F. proteae. A sphaeropsis-like synanamorph was associated with F. proteae and a new combination for P. proteae is proposed in Botryosphaeria, as B. proteae. The taxonomy of Botryosphaeria is in disarray at both the generic and the specific level. In Chapter 3 the taxonomic history of Botryosphaeria is reviewed, and the genus circumscribed and distinguished from other morphologically similar genera. Although several anamorph genera have been linked to Botryosphaeria, based on morphological observations and phylogenetic analysis of lTS rDNA sequence data, two anamorph genera are now recognised, those with pigmented conidia (Diplodia), and those with hyaline conidia (Fusicoccum). Botryosphaeria proteae should thus be excluded from Botryosphaeria. Several pathogenic Botryosphaeria spp. have an endophytic phase within their hosts. They are therefore imported unwittingly into other countries where they may pose a risk to agriculture and indigenous vegetation. The current global distribution of Botryosphaeria spp. associated with Proteaceae is clarified and a key to these taxa associated with Proteaceae is provided in Chapter 4. Five Botryosphaeria spp. are associated with cut-flower Proteaceae worldwide viz. B. lute a, B. obtusa, B. protearum, B. proteae and B. rib is. B. protearum is described as a new species. A thorough understanding of disease epidemiology is essential to effect a reduction of losses. In Chapter 5, I show that on P. magnifica, lesions caused by Botryosphaeria protearum, which lead to the formation of stem cankers, are initiated in the mid-rib vein or margin of leaves. Koch's postulates were satisfied and it was found that the number of lesions that developed from artificial inoculations correlated with starch levels present in leaves at the time of inoculation. In Chapter 6 it is shown that B. protearum exists as an endophyte in leaves of P. magnifica in naturally occurring as well as cultivated plants. In natural stands of proteas stem cankers are rare, but in cultivated plantations the incidence is high. Nutritional analyses indicate that higher levels of nitrogen occur in leaves of cultivated plants in spring, which could enhance disease development. High levels of sodium in the leaves of wild plants may restrict disease development. The severe economic losses caused by B. protearum make the search for improved methods of disease control essential. Fungicide applications form an important component of an integrated approach to disease management. In Chapter 7, in vitro tests demonstrate that tebuconazole, benomyl, prochloraz me, iprodione and fenarimol reduce the mycelial growth of B. protearum effectively. In the field there was a 25-85% reduction in the occurrence of stem cankers by applying fungicides or sanitation pruning. The best control was achieved by using benomyl, bitertanol, fenarimol, iprodione, prochloraz manganese chloride alternated with mancozeb and tebuconazole prophylactically. If sanitation pruning is combined with regular applications of fungicides, disease can be combated.
AFRIKAANSE OPSOMMING: Mikrofungi wat tot die genus Botryosphaeria behoort, is heterotrofiese organismes, wat patogenies op houtagtige plante kan wees. Hulle veroorsaak ernstige, en in sommige gevalle, verwoestende verliese, deur blaarnekrose, stamkankers en plantafsterwing. Die Proteaceae snyblom-industrie in Suid-Afrika maak 70% van die nasionale snyblomindustrie uit. Botryosphaeria siektes is 'n belangrike struikelblok in die produksie en handeldryf van Proteaceae, en daar is 'n ernstige behoefte om die etiologie, epidemiologie en beheer van siektes te ondersoek. Verliese van een van die belangrikste proteas, P. magnifica, beloop plaaslik 50% of meer. Die hoof doelstellings van hierdie studie was dus om die etiologie en epidemiologie van Botryosphaeria stamkankers op P. magnifica en ander Proteaceae vas te stel en metodes van siektebeheer te ondersoek. Hoewel daar 'n wye hoeveelheid inligting rakende die swam bestaan, wat in Hoofstuk I hersien is, is daar relatief min inligting oor Botryosphaeria op Proteaceae beskikbaar. Die taksonomie van Botryosphaeria benodig deeglike hersiening, en molekulêre tegnieke word benodig om spesie-identiteite op te klaar. In Hoofstuk 2 is gevind dat Phyllachora proteae, 'n blaarpatogeen van proteas, 'n Fusicoccum anamorf produseer, wat as F. proteae beskryf word. 'n Sphaeropsis-agtige synanamorf is met F. proteae geassosieer en 'n nuwe kombinasie vir P. proteae is as B. proteae in Botryosphaeria voorgestel. Die taksonomie van Botryosphaeria is, beide op die genus- as die spesievlak, in wanorde. In Hoofstuk 3 word die taksonomiese geskiedenis van Botryosphaeria hersien, en die genus word omskryf en van ander morfologies soortgelyke genera onderskei. Hoewel verskeie anamorf genera al met Botryosphaeria op grond van morfologiese waarnemings en filogenetiese analise van ITS rDNA volgorde data verbind is, word twee anamorf genera nou herken, dié met gepigmenteerde konidia (Diplodia), en dié met deurskynende konidia (Fusicoccum). Botryosphaeria proteae moet dus van Botryosphaeria uitgesluit word. Verskeie patogeniese Botryosphaeria spp. het 'n endofitiese fase in hul lewenssiklus. Hulle word dus onwetend in ander lande ingevoer waar hulle 'n gevaar vir landbou en inheemse plantegroei kan inhou. Die huidige wêreldverspreiding van Botryosphaeria spp. wat met Proteaceae geassosieer word is opgeklaar, en in Hoofstuk 4 word 'n sleutel tot die taksa wat met Proteaceae geassosieer word verskaf. Vyf Botryosphaeria spp. word met snyblom Proteaceae wêreldwyd geassosieer, naamlik B. lutea, B. protearum, B. proteae, B. ribis en B. obtusa. B. protearum word as 'n nuwe spesie beskryf. 'n Deeglike kennis van siekte-epidemiologie is noodsaaklik ten einde verliese te verminder. In Hoofstuk 5 dui ek aan dat letsels wat lei tot stamkankers, veroorsaak deur Botryosphaeria protearum op P. magnifica, in die hoofnerf of rant van blare ontstaan. Koch se postulate is uitgevoer en daar is vasgestel dat die aantal letsels wat vanuit kunsmatige inokulasies ontwikkel het korreleer met die styselvlakke teenwoordig in die blare ten tye van die inokulasie. In Hoofstuk 6 word getoon dat B. protearum as 'n endofiet in die blare van P. magnifica. In natuurlike standplase van proteas is stamkankers skaars, maar in verboude plantasies is die voorkoms hoog. Voedingsanalises dui aan dat hoër vlakke van stikstof in die blare van verboude plante in die lente voorkom, wat siekte-ontwikkeling moontlik kan bevorder. Hoë vlakke van natrium in die blare van natuurlike plante mag siekteontwikkeling beperk. Die ernstige ekonomiese verliese wat deur B. protearum veroorsaak word, maak die soektog na verbeterde metodes van siektebeheer noodsaaklik. Fungisiedtoedienings maak 'n belangrike deel uit van 'n geïntegreerde benadering tot siektebeheer. In Hoofstuk 7 dui in vitro toetse aan dat tebuconazole, benomyl, prochloraz me, iprodione en fenarimol die miseliumgroei van B. protearum effektief verminder. 'n Vermindering van 25-85% is aangetoon in die voorkoms van stamkankers in die veld, deur die toediening van fungisiedes en sanitasiesnoei. Die beste beheer is verkry deur die voorkomende toediening van benomyl, bitertanol, fenarimol, iprodione en prochloraz manganese chloride, afgewissel met mancozeb en tebuconazole, op plante in die veld. Indien sanitasiesnoei met gereelde toedienings van fungisiedes gekombineer word, kan die siekte bekamp word.
APA, Harvard, Vancouver, ISO, and other styles
4

Lubbe, Carolien M. "Colletotrichum diseases of Proteaceae." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53732.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2004.
ENGLISH ABSTRACT: This thesis consists of four chapters that present research findings on Colletotrichum diseases associated with Proteaceae worldwide. The first chapter is a review of literature regarding the taxonomy and histology of Colletotrichum species associated with Proteaceae. The literature is not restricted to Proteaceae hosts, as information regarding Colletotrichum on Proteaceae is very limited. In chapter two, Colletotrichum spp. associated with proteaceous hosts growing in various parts of the world were identified based on morphology, sequence data of the internal transcribed spacer region (ITS-I, ITS-2), the 5.8S gene, and partial sequences of the B-tubulin gene. Four species of Colletotrichum were associated with Proteaceae. Colletotrichum gloeosporioides was isolated from Protea cynaroides cultivated in South Africa and Zimbabwe and from a Leucospermum sp. in Portugal, but is known to occur worldwide on numerous hosts. A recently described species, C. boninense, was associated with Zimbabwean and Australian Proteaceae, but also occurred on a Eucalyptus sp. in South Africa. This represents a major geographical and host extension for the species, and a description of the African strains is provided. Colletotrichum crassipes was represented by a single isolate obtained from a Dryandra plant in Madeira. Colletotrichum acutatum was isolated from Protea and Leucadendron in South Africa as well as from other proteaceous hosts occurring elsewhere. Colletotrichum acutatum f. sp. hakea was isolated from Hakea in South Africa. In chapter three, pathogenicity of these Colletotrichum species to certain proteas was established, relative aggressiveness of the different species tested and host response to them were compared as well as the effect that wounding had on host response. From the results obtained it is concluded that C. acutatum and C. gloeosporioides are the primary pathogens associated with Colletotrichum leaf necrosis, and C. acutatum is the main cause of anthracnose and stem necrosis of Proteaceae in South Africa. A histological study was performed in chapter four in response to the findings from the previous chapter. The behaviour of two C. acutatum isolates (one originating from Protea and the other from Hakea, C. acuataum f.sp. hakea) was studied on inoculated Protea leaf surfaces using light and scanning electron microscopy. Colletotrichum acutatum from Protea formed melanised appressoria on the leaf surface, whereas C. acutatum from Hakea formed very low numbers of both melanised and unmelanised appressoria. Most of the appressoria formed by C. acutatum from Protea were formed on the cell junctions and on the periclinal walls of the epidermal cells. From this study it is clear that C. acutatum f. sp. hakea is not a pathogen of Protea. Consequently the current use of this isolate as a biological control agent of Hakea in South Africa poses no threat to indigenous Protea species. Colletotrichum acutatum from Protea (although closely related to C. acutatum f. sp. hakea), is a pathogen of Protea, which was confirmed by histological observations. In conclusion, the present study has shown that several species of Colletotrichum are associated with diseased Proteaceae. These species differed in their pathogenicity and aggressiveness when inoculated onto certain protea cultivars. These differences could be partially explained by examining the behaviour of C. acutatum on the leaf surface. It is clear, however, that the distribution of the different species, their aggressrveness on different Proteaceae and their modes of infection needs to be investigated further. This work provides a basis for future research on the long-term effective management of these pathogens in fynbos production.
AFRIKAANSE OPSOMMING: Hierdie tesis bestaan uit vier hoofstukke wat handeloor navorsing van Colletotrichum siektes van Proteaceae wêreldwyd. Die eerste hoofstuk is 'n oorsig van literatuur rakende die taksonomie en histologie van die Colletotrichum spesies wat met Proteaceae geassosieer word. Die literatuur oorsig is nie beperk tot die Proteaceae nie aangesien baie min inligting rakende Colletotrichum op Proteaceae bestaan. In die tweede hoofstuk word die Colletotrichum spesies wat met proteas in verskeie dele van die wêreld geassosieer word, op grond van morfologie, DNS volgorde data van die interne getranskribeerde spasieerder area ("ITS-I, ITS-2"), die 5.8S geen, en gedeeltelike DNS volgordes van die B-tubulin geen geïdentifiseer. Vier Colletotrichum spesies is met die Proteaceae geassosieer. Colletotrichum gloeosporioides is geïsoleer vanaf Protea cynaroides wat in Suid-Afrika en Zimbabwe gekweek is en vanaf 'n Leucospermum sp. in Portugal, maar is bekend op verskeie gashere wêreldwyd. 'n Spesie wat onlangs beskryf is, C. boninense, is met Zimbabwiese en Australiaanse Proteaceae geassosieer, maar kom ook op 'n Eucalyptus sp. in Suid-Afrika voor. Dit is 'n groot uitbreiding van die geografiese voorkoms en gasheerreeks van hierdie spesie en 'n beskrywing van die Afrikaanse rasse word gegee. Colletotrichum crassipes is verteenwoordig deur 'n enkele isolaat wat vanaf 'n Dryandra plant in Madeira verkry is. Colletotrichum acutatum is vanaf Protea en Leucadendron in Suid-Afrika asook vanaf ander proteas wat elders voorkom, geïsoleer. Colletotrichum acutatum f. sp. hakea is vanaf Hakea in Suid-Afrika geïsoleer. In hoofstuk drie is die patogenisiteit van hierdie Colletotrichum spesies teenoor sekere proteas getoets, die relatiewe aggressiwiteit van die verskillende spesies is vergelyk, asook die gasheer se reaksie teenoor die spesies en die effek wat verwonding op die gasheer gehad het. Daar kan afgelei word vanaf die resultate dat C. acutatum en C. gloeosporioides die primêre patogene is wat met Colletotrichum blaarnekrose geassosieer word, en dat C. acutatum die hoof oorsaak is van antraknose en lootnekrose van Proteaceae in Suid-Afrika. 'n Histologiese studie is in hoofstuk vier uitgevoer in reaksie op die bevindings van die vorige hoofstuk. Die gedrag van twee C. acutatum isolate (een vanaf Protea en die ander vanaf Hakea, C. acutatum f.sp. hakea) op die oppervlaktes van geïnokuleerde Protea blare is bestudeer deur gebruik te maak van lig- en skandeer-elektronmikroskopie. Colletotrichum acutatum vanaf Protea vorm gemelaniseerde appressoria op die blaaroppervlak, terwyl C. acutatum vanaf Hakea klein hoeveelhede van beide gemelaniseerde en ongemelaniseerde appressoria vorm. Meeste van die appressoria wat deur C. acutatum vanaf Protea gevorm word, vorm op die aanhegtingspunte tussen selle en op die periklinale wande van die epidermale selle. Vanuit hierdie studie is dit duidelik dat C. acutatum f. sp. hakea nie 'n patogeen van Protea is nie. Gevolglik hou die huidige gebruik van hierdie isolaat as biologiese beheer agent van Hakea in Suid-Afrika geen gevaar in vir inheemse Protea spesies nie. Colletotrichum acutatum vanaf Protea (alhoewel dit naverwant is aan C. acutatum f. sp. hakea) is 'n patogeen van Protea en hierdie stelling is ook bevestig deur histologiese waarnemmgs. Ter samevatting het hierdie studie getoon dat verskeie Colletotrichum spesies geassosieer word met siektes van Proteaceae. Hierdie spesies het van mekaar verskil rakende patogenisiteit en aggressiwiteit nadat hulle op sekere protea kultivars geïnokuleer is. Hierdie verskille kon gedeeltelik verklaar word deur die gedrag van C. acutatum op die blaaroppervlaktes van verskillende protea kultivars. Dit is duidelik dat die verspreiding van die verskillende spesies, hulle aggressiwiteit op verskillende Proteaceae en hul infeksie metodes verder ondersoek moet word. Hierdie studie verskaf 'n basis vir toekomstige navorsing rakende lang-termyn effektiewe bestuur van hierdie patogene in fynbos aanplantings.
APA, Harvard, Vancouver, ISO, and other styles
5

Noronha, Christine M. (Christine Mary). "Effects of density and host plant type on fecundity and survival of Delia radicum (Bouché), D. Antiqua (Meigen) and D. Platura (Meigen) (Diptera: Anthomyiidae)." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41017.

Full text
Abstract:
The effects of intraspecific and interspecific competition, host plant, and prior host plant experience on fecundity, rate of oviposition and mortality of adults and larval survival of Delia radicum Bouche (Cabbage Maggot (CM)), D. antiqua Meigen (Onion Maggot (OM)), and D. platura Meigen (Seed Corn Maggot (SCM)), were studied on cabbage, onion and bean plants.
An optimum density for maximum fecundity per female was observed when the four experimental densities were compared. This optimum density was higher on host than on non-host plants. CM females were host specific and did not oviposit on non-host plants. Rates of oviposition and mortality over a 30-day period were calculated for each density. The rate of oviposition was slower at higher densities on host plants for CM, OM and SCM. The rate of mortality increased at the highest density for CM (cabbage), OM (bean) and SCM (cabbage), but remained unaffected for OM on onion and cabbage and for SCM on onion and bean, when densities were compared. For OM, a delay in the rate of oviposition and mortality on cabbage (non-host plant) when compared with onion (host plant), suggests that cabbage was not as readily accepted as an oviposition site. Interspecific competition experiments at six density ratio's of SCM:OM indicated increased fecundity, or an increase in the rate of oviposition for OM, at the lower densities when single and mixed species were compared. For SCM no effects on fecundity were recorded, but the rate of oviposition was slower and rate of mortality faster at the lowest density in the presence of OM. Similar studies with SCM and CM showed no such effects of competition.
Host plant exposure of SCM females during the pre-oviposition period resulted in a delay in initial acceptance of subsequent host plants as oviposition sites. This happened only when females were exposed to a secondary host during the pre-oviposition period. Once oviposition began, host discrimination ceased and a switch in oviposition sites to the preferred host did not alter the rate of oviposition. In CM, the rate of larval development increased at density 6 (optimum density). Above this density a decrease in the rate of development and a significant reduction in pupal weight was observed. Time required for fly emergence was not affected by increasing larval densities.
APA, Harvard, Vancouver, ISO, and other styles
6

Wakgari, Waktola (Waktola Muleta). "Biology, ecology and management of white wax scale, Ceroplastes destructor Newstead (Hemiptera: Coccidae), on citrus and syzygium." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51637.

Full text
Abstract:
Thesis (PhD)--University of Stellenbosch, 2000.
ENGLISH ABSTRACT: The population density of the white wax scale, Ceroplastes destructor Newstead, has increased since 1994 in certain areas of Western and parts of Eastern Cape Provinces of South Africa where citrus is grown, particularly on Citrus reticulata (Blanco). A study was conducted to investigate its morphology, biology and ecology as contributions to the development of a sound integrated management programme. Characteristics of the immature stages and adult females were described and illustrated from field-collected and slide-mounted specimens. A key to the different stages and morphometeric characteristics useful for separating them are provided. No significant differences in female fecundity were found between orchards (P > 0.05). However, fecundity varied significantly between female size classes from the same orchard (P < 0.001). Female body-size also differed significantly between orchards (P < 0.05) and was significantly positively correlated with fecundity (P < 0.01). C. destructor has one discrete generation per year in South Africa. Oviposition commenced in November and continued through to the end of December with a few females ovipositing until mid January. Population density of the second instar peaked in February while the third instar extended from March to the end of July, followed by a peak population of adults in August. Seven primary and three secondary parasitoids, as well as four predator species attacking C. destructor were identified. Aprostocetus (= Tetrastichus) ceroplastae (Girault) was the dominant species, accounting for 78.87% of the total primary parasitoids reared. Peak numbers of parasitoids and predators were synchronized with peak emergence of susceptible scale stages, indicating that the host-parasitoid/predator system contained a density-dependent regulatory mechanism. Key mortality factors varied slightly between two of the orchards. Key stage mortality determined from a cohort life table was generally in the third instar (LIlI) and preovipositional female (POF) stage. Significant density-dependent mortality factors were demonstrated for the first instar (LI) and PDF stage. Dispersal of C. destructor is by first instar nymphs and the numbers caught on a series of yellow sticky traps varied significantly between crawler densities at the source, trap distances and trap directions from the source (P < 0.001). The numbers caught were positively correlated to the initial crawler density at the source (P < 0.01), suggesting that dispersal was density dependent. Trap distance and the numbers caught were inversely correlated (P < 0.01). Evaluation of effects of different densities of C. destructor on growth, survivorship and reproduction of scales as well as on leaf bearing ability of trees and area of leaf surface covered with sooty mould fungus was carried out on naturally infested Syzygium (= Eugenia) malaccensis (L.) plants. Scale body size and fecundity were inversely related to scale density (P < 0.01), suggesting density-dependent intraspecific competition. Scale survivorship generally declined with increasing density whereas scale parasitism and predation were positively correlated with density (P < 0.05). At high scale densities production of new leaves was significantly reduced (P < 0.01), reducing the resource base for subsequent generations of scale. Scale density and leaf area covered with sooty mould fungus were significantly positively correlated (P < 0.05). The toxicity of four synthetic insecticides against the three immature stages of C. destructor and of eight insecticides against the parasitoid A. ceroplastae was evaluated. Development of the first and second instars of C. destructor was completely arrested by the chemicals. Female fecundity, fertility and body sizes of survivors of treatments applied at the LIII stage were not significantly affected by any of the chemicals (P > 0.05). All the chemicals exhibited high toxicity to A. ceroplastae and hence are not recommended for integrated management of C. destructor in citrus orchards where A. ceroplastae plays an important role.
AFRIKAANSE OPSOMMING: Die populasiedigtheid van die witwasdopluis, Ceroplastes destructor Newstead, het sedert 1994 toegeneem in sekere gebiede van die Weskaap en Ooskaap provinsies van Suid-Afrika waar sitrus verbou word, veralop Citrus reticulata (Blanco). 'n Studie van hierdie insek se morfologie, biologie en ekologie is onderneem as bydrae tot die ontwikkeling van 'n geïntegreerde bestuursprogram. Die karaktertrekke van die onvolwasse stadia en die volwasse wyfies is beskryf en geïllustreer vanaf eksemplare wat in die veld versamel is en op g1asplaatjies gemonteer is. 'n Sleutel vir die verskillende stadia en morfometriese kenmerke wat nuttig is om hulle te onderskei, word voorsien. Geen beduidende verskille in die vrugbaarheid van wyfies van verskillende boorde is gevind nie (P < 0.05). Vrugbaarheid het egter betekenisvol verskil by die verskillende grootteklasse van wyfies uit dieselfde boord (P < 0.001). Die liggaamsgrootte van wyfies uit verskillende boorde het betekenisvol verskil (P < 0.05) en was betekenisvol positief gekorreleer met vrugbaarheid (P < 0.01). C. destructor het een generasie per jaar in Suid-Afrika. Eierlegging het in November begin en aangehou tot aan die einde van Desember, met enkele wyfies wat nog tot in middel Januarie eiers gelê het. Die populasiedigtheid van die tweede instar het 'n hoogtepunt in Februarie bereik, terwyl die derde instar van Maart tot aan die einde van Julie geduur het, gevolg deur 'n piekbevolking van volwassenes in Augustus. Sewe primêre en drie sekondêre parasitoïde asook vier predator spesies wat C destructor aanval, is geïdentifiseer. Aprostocetus (=Tetrastichus) ceroplastae (Girault) was die dominante spesies wat 78.87% van die totale aantal primêre parasitoïde wat uitgeteel is, uitgemaak het. Die pieke in die getalle van parasitoïde en predatore was gesinchroniseer met pieke in die verskyning van die gevoelige stadia, wat dui op die aanwesigheid van 'n digtheidsafhanklike regulatoriese meganisme. Die sleutel mortaliteitsfaktore het effens gevarieer tussen twee van die boorde. Die sleutelstadium van mortaliteit, soos bepaal m.b.v. 'n kohort lewenstabel, was gewoonlik die derde instar (LIlI) en die preoviposisionele wyfie (POW). Betekenisvolle digtheidsafhanklike mortaliteitsfaktore IS aangetoon vir die eerste instar (LI) en die POW. Die verspreiding van C.destructor vind plaas deur die eerste instar nimfe en die getalle wat op 'n reeks van taai geel valle gevang is, het betekenisvol gewissel volgens kruiperdigthede by die bron, asook die afstand en rigting van die valle vanaf die bron (P < 0.001). Die getalle wat gevang is, was positief gekorreleer met die aanvanklike kruiperdigtheid by die bron (P < 0.01), wat daarop dui dat verspreiding digtheidsafhanklik was. Die afstand van die valle en die aantal wat gevang is, was omgekeerd gekorreleer (P < 0.01). 'n Evaluering van die invloed van verskillende digthede van C. destructor op die groei, oorlewing en reproduksie van dopluise, asook die vermoë van bome om blare te dra en die area van die blaaroppervlak wat met roetskimmel besmet is, is uitgevoer op plante van Syzygium (= Eugenia) malaccensis (L.) met 'n natuurlike besmetting. Die liggaamsgrootte en vrugbaarheid van die dopluise was omgekeerd gekorreleer met hulle digtheid (P < 0.01), wat dui op digtheidsafhanklike intraspesifieke kompetisie. Die oorlewing van die dopluise het oor die algemeen afgeneem met toenemende digtheid, terwyl parasitisme en predasie positief gekorreleer was met digtheid (P < 0.05). By hoë dopluisdigthede het die produksie van nuwe blare betekenisvol afgeneem (P < 0.01), wat die hulpbronbasis vir daaropvolgende generasies van dopluise verswak. Die dopluisdigtheid en blaaroppervlak wat met roetskimmel bedek was, was positief gekorreleer (P < 0.05). Die toksisiteit van vier sintetiese insektemiddels teenoor die drie onvolwasse stadia van C. destructor en van agt insektemiddels teenoor die parasitoïd A. ceroplastae is geëvalueer. Die ontwikkeling van die eerste en tweede instars van C. destructor is heeltemal stopgesit deur die middels. Die fekunditeit, fertiliteit en liggaamsgrootte van wyfies wat toedienings op die LIIl stadium oorleef het, is nie betekenisvol ge-affekteer deur enige van die middels nie (P < 0.05). Al die middels was baie toksies teenoor A. ceroplastae en word dus nie aanbeveel vir die geïntegreerde bestuur van C. destructor waar A. ceroplastae 'n belangrike rol speel nie.
APA, Harvard, Vancouver, ISO, and other styles
7

Rodriguez, Juan Jose. "Movement and Accumulation of Candidatus Liberibacter Solanacearum in Potato Plants." Diss., North Dakota State University, 2012. https://hdl.handle.net/10365/26726.

Full text
Abstract:
A new disease affecting potatoes was first detected in Mexico in 1993. Affected plants had aerial symptoms similar to those caused by potato purple top and psyllid yellows, but tubers had internal brown discoloration when sliced and dark stripes and streaks when processed to produce potato chips. The disease has been found in many potato production areas in Guatemala, Mexico, Honduras, New Zealand and the United States. The disease, termed Zebra Chip (ZC), has been associated with the presence of heavy infestations of the potato-tomato psyllid (Bactericera cockerelli). In 2009, a research group in New Zealand discovered that a new disease in tomato and pepper plants was caused by Candidatus Liberibacter solanacearum (Lso) and subsequently this same bacterium was associated with ZC in potato samples from Texas. The objectives of this study were: to assess the accumulation of Lso in various potato organs, to determine the effect of plant age on detection of Lso, symptom development and plant death, and (iii) to determine the effect of phosphorous acid on the development of ZC. Results from these studies showed significant differences in Lso populations between above and below ground tissues of the potato plant, with Lso populations in stolons and tubers being three to four times higher than those of leaf tissue and over seventy times greater than in stems. Time for detection of Lso by PCR in potato leaves of different ages at the time of inoculation ranged from 21 to 26 days after inoculation, symptoms development took 23 to 36 days. Plant death, took 24 to 47 days in plants of different age groups at the time of inoculation. In plants 15 weeks old at the time of inoculation, Lso was detected after 14 days in one plant out of 18; in plants 16 weeks old at the time of inoculation, Lso was detected after seven days in two plants out of 18. Phosphorous acid applications had no effect on the populations of Lso in potato tubers, onset of symptoms or plant death. All tubers showed ZC symptoms, making them unacceptable for the market.
North Dakota State University. Department of Plant Pathology
APA, Harvard, Vancouver, ISO, and other styles
8

Jensen, Paul. "An evaluation of potential apple replant disease treatments for Quebec /." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Yi-Chen. "EVALUATION OF SOYBEAN DISEASES AND PESTS USING TWO ADVANCED BREEDING POPULATIONS." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/dissertations/1927.

Full text
Abstract:
Soybean (Glycine max [L.] Merr.) is one of the most important crops in the world. The average annual yield losses due to soybean diseases and pests are estimated to be around 11% in the United States. Soybean yield losses due to sudden death syndrome (SDS), caused by the fungus Fusarium virguliforme O'Donnell & T. Aoki have been problematic in majority of the soybean producing states. In recent years, reniform nematode (RN, Rotylenchulus reniformis Linford and Oliveira) and frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara have emerged as a major problem in the southern soybean producing states. Planting resistant cultivars is one of the most cost-efficient methods in managing SDS, RN, and FLS, therefore it would be critical to identify and map the quantitative trait loci (QTL) that underlie their resistances. Two soybean populations were evaluated in this study. The ‘Essex’ × ‘Forrest’ 77 near-isogenic lines were screened in the field to evaluate the disease index of SDS. The Essex × Forrest and ‘Flyer’ × ‘Hartwig’ recombinant inbred lines were screened in the greenhouse to assess the reproduction index of RN and the disease severity of FLS. The BARCSoySNP6k chip was used to genotype the two populations. Four QTL that underlie SDS resistances were mapped in the same region as Rfv06-01, Rfv06-02, Rfv13-01, and Rfv19-01. The Rfv06-02 interval in this study was smaller than the one previously reported. Rrr08-01, Rrr13-01, Rrr15-01, Rrr18-01, and Rrr18-02 were reported to confer resistances to RN. Rrr08-01, Rrr13-01 and Rrr15-01 were novel whereas Rrr18-01, and Rrr18-02 were mapped in previous studies. cqSCN-001 (soybean cyst nematode, Heterodera glycines Ichinohe) was identified in the same region as Rrr18-01, and Rrr18-02 whereas cqSCN-006 was identified in the same region as Rrr15-01. These findings provide further evidence that there are common sources of genetic resistances to RN and SCN. Rcs15-01 and Rcs15-02 were reported to confer resistances to FLS. Rcs15-01 was novel and Rcs15-02 was mapped at the same region as an Rcs mapped in a previous study. This indicated that Rcs15-02 has dual resistances to C. sojina races. Candidate genes were inferred in this study. The QTL mapped in this study could potentially be used in soybean breeding programs that aim to introgress genetic resources that confer resistances to SDS, RN, and FLS.
APA, Harvard, Vancouver, ISO, and other styles
10

Chauhan, Ramola. "A study of filamentous viruses in maize and smallgrains." Master's thesis, University of Cape Town, 1985. http://hdl.handle.net/11427/22013.

Full text
Abstract:
Bibliography: pages 175-184.
The occurrence of maize dwarf mosaic virus (MDMV) in field grown maize was investigated. For this purpose, maize showing mosiac symptoms was collected from different maize growing areas in South Africa by Prof. M.B. von Wechmar. These samples from Transvaal, Orange Free State and Natal were then investigated for the presence of MDMV and possible strains of this virus. Three virus isolates were purified and partially characterised. These isolates were serologically compared together with a fourth isolate SCMV 4975, obtained from the U.S., to establish strain relationships.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bamboo diseases and pests"

1

Mohanan, C. Diseases of bamboos in Asia: An illustrated manual. International Network for Bamboo and Rattan, International Development Research Centre, 1997.

APA, Harvard, Vancouver, ISO, and other styles
2

Haojie, Wang. Insect pests of bamboos in Asia: An illustrated manual. International Network for Bamboo and Rattan, 1998.

APA, Harvard, Vancouver, ISO, and other styles
3

Andrew, Halstead, and Royal Horticultural Society (Great Britain), eds. Pests & diseases. Dorling Kindersley, 1997.

APA, Harvard, Vancouver, ISO, and other styles
4

Beatrice, Henricot, ed. Pests and diseases. DK Publishing, 2010.

APA, Harvard, Vancouver, ISO, and other styles
5

Pests and diseases. Aura, 1998.

APA, Harvard, Vancouver, ISO, and other styles
6

Andrew, Halstead, and Royal Horticultural Society, eds. Garden pests & diseases. Mitchell Beazley, 1992.

APA, Harvard, Vancouver, ISO, and other styles
7

Society, American Horticultural, ed. Pests and diseases. Dorling Kindersley, 2000.

APA, Harvard, Vancouver, ISO, and other styles
8

Books, Sunset, ed. Garden pests & diseases. Sunset Pub. Corp., 1993.

APA, Harvard, Vancouver, ISO, and other styles
9

Sathe, T. V. Sugarcane pests and diseases. Manglam Publications, 2009.

APA, Harvard, Vancouver, ISO, and other styles
10

A, Gilkeson Linda, ed. Controlling pests and diseases. Rodale Press, 1994.

APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Bamboo diseases and pests"

1

Shu, Jinping, and Haojie Wang. "Pests and Diseases of Bamboos." In Tropical Forestry. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14133-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laksono, N. D., U. Setiawati, F. Nur, et al. "Pests and diseases." In Nursery practices in oil palm: a manual. CABI, 2019. http://dx.doi.org/10.1079/9781789242140.0077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Anthony Keith, and Ibok Oduro. "Diseases and pests." In Yams: botany, production and uses. CABI, 2021. http://dx.doi.org/10.1079/9781789249279.0006.

Full text
Abstract:
Abstract This chapter describes the different diseases and pests that affect yams and various methods for their control. It particularly covers the following aspects: field fungal diseases; postharvest fungal diseases; specific fungal diseases; control of fungal diseases; bacterial diseases; viral diseases; physiological disorders; insect pests; and nematode pests.
APA, Harvard, Vancouver, ISO, and other styles
4

Sipes, Brent, and Koon-Hui Wang. "Pests, diseases and weeds." In Handbook of Pineapple Technology. John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118967355.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thompson, A. K., R. K. Prange, R. D. Bancroft, and T. Puttongsiri. "Pests, diseases and disorders." In Controlled atmosphere storage of fruit and vegetables. CABI, 2018. http://dx.doi.org/10.1079/9781786393739.0064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lebot, V. "Cassava: pests and diseases." In Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI, 2020. http://dx.doi.org/10.1079/9781789243369.0073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lebot, V. "Yams: pests and diseases." In Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI, 2020. http://dx.doi.org/10.1079/9781789243369.0293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lebot, V. "Aroids: pests and diseases." In Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI, 2020. http://dx.doi.org/10.1079/9781789243369.0406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sipes, B., and A. P. de Matos. "Pests, diseases and weeds." In The pineapple: botany, production and uses. CABI, 2018. http://dx.doi.org/10.1079/9781786393302.0269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohler, J. G. "5. Diseases; Vertebrate Pests." In Modern Coconut Management. Practical Action Publishing, 1998. http://dx.doi.org/10.3362/9781780445502.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bamboo diseases and pests"

1

Munkvold, Gary P. "Managing Diseases and Pests with Seed Treatments." In Proceedings of the 16th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2007. http://dx.doi.org/10.31274/icm-180809-893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tumang, Gina S. "Pests and Diseases Identification in Mango using MATLAB." In 2019 5th International conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2019. http://dx.doi.org/10.1109/iceast.2019.8802579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Qiyao, Guiqing He, Feng Li, and Haixi Zhang. "A novel database for plant diseases and pests classification." In 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2020. http://dx.doi.org/10.1109/icspcc50002.2020.9259502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patel, Pruthvi P., and Dineshkumar B. Vaghela. "Crop Diseases and Pests Detection Using Convolutional Neural Network." In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2019. http://dx.doi.org/10.1109/icecct.2019.8869510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kulikov, M. A., A. N. Kulikova, and A. V. Goncharov. "Resistance of sunflower hybrids to herbicides, diseases, pests and weeds." In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiaopeng, Dai, and Li Donghui. "Research on Rice Pests and Diseases Warning Based on CBR." In 2013 Fifth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2013. http://dx.doi.org/10.1109/iccis.2013.454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alfarisy, Ahmad Arib, Quan Chen, and Minyi Guo. "Deep learning based classification for paddy pests & diseases recognition." In ICMAI '18: 2018 International Conference on Mathematics and Artificial Intelligence. ACM, 2018. http://dx.doi.org/10.1145/3208788.3208795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Ning, Zuochang Ye, and Yan Wang. "An End-to-end System for Pests and Diseases Identification." In IVSP '20: 2020 2nd International Conference on Image, Video and Signal Processing. ACM, 2020. http://dx.doi.org/10.1145/3388818.3389155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shijie, Jia, Jia Peiyi, Hu Siping, and sLiu Haibo. "Automatic detection of tomato diseases and pests based on leaf images." In 2017 Chinese Automation Congress (CAC). IEEE, 2017. http://dx.doi.org/10.1109/cac.2017.8243388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Materne, Ntihemuka, and Masahiro Inoue. "IoT Monitoring System for Early Detection of Agricultural Pests and Diseases." In 2018 12th South East Asian Technical University Consortium (SEATUC). IEEE, 2018. http://dx.doi.org/10.1109/seatuc.2018.8788860.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bamboo diseases and pests"

1

Solomon, J. D., T. D. Leininger, A. D. Wilson, R. L. Anderson, L. C. Thompson, and F. I. McCracken. Ash pests: a guide to major insects, diseases, air pollution injury, and chemical injury. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1993. http://dx.doi.org/10.2737/so-gtr-096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Solomon, J. D., T. D. Leininger, A. D. Wilson, R. L. Anderson, L. C. Thompson, and F. I. McCracken. Ash pests: a guide to major insects, diseases, air pollution injury, and chemical injury. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1993. http://dx.doi.org/10.2737/so-gtr-96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kosiba, Alexandra, Emma Tait, Gene Desideraggio, Alyx Belisle, Clarke Cooper, and James Duncan. Threats to the Urban Forest: The potential economic impacts of invasive forest pests and diseases in the Northeast. Forest Ecosystem Monitoring Cooperative, 2020. http://dx.doi.org/10.18125/8w9j42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

A 40-Year Retrospective of APHIS, 1972–2012. United States Department of Agriculture, Animal and Plant Health Inspection Service, 2012. http://dx.doi.org/10.32747/2012.7204068.aphis.

Full text
Abstract:
Since APHIS was formed in 1972, it has evolved into a multi-faceted Agency with responsibilities that include protecting and promoting U.S. agricultural health from foreign pests and diseases, regulating genetically engineered organisms, administering the Animal Welfare Act, and carrying out wildlife damage management activities. It has been 15 years since APHIS compiled a history of its mission and activities. This year, 2012, marks both the 40th anniversary of the Agency and the 150th anniversary of USDA, providing a unique opportunity to put that history in context. This retrospective briefly examines the history of animal and plant health regulation within USDA, assesses APHIS' development over four decades, includes biographies of the Agency’s Administrators, and provides snapshots of some of the milestone issues and events that define the Agency’s history and its accomplishments.
APA, Harvard, Vancouver, ISO, and other styles
5

Plant Protection and Quarantine: Helping U.S. Agriculture Thrive--Across the Country and Around the World, 2016 Annual Report. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 2017. http://dx.doi.org/10.32747/2017.7207241.aphis.

Full text
Abstract:
For Plant Protection and Quarantine (PPQ) and our partners, 2016 was a year of remarkable successes. Not only did we eradicate 10 fruit fly outbreaks, but we also achieved 4 years with zero detections of pink bollworm, moving us one step closer to eradicating this pest from all commercial cotton-growing areas of the continental United States. And when the U.S. corn industry faced the first-ever detection of bacterial leaf streak (Xanthomonas vasicular pv vasculorum), we devised a practical and scientific approach to manage the disease and protect valuable export markets. Our most significant domestic accomplishment this year, however, was achieving one of our agency’s top 10 goals: eliminating the European grapevine moth (EGVM) from the United States. On the world stage, PPQ helped U.S. agriculture thrive in the global market-place. We worked closely with our international trading partners to develop and promote science-based standards, helping to create a safe, fair, and predictable agricultural trade system that minimizes the spread of invasive plant pests and diseases. We reached critical plant health agreements and resolved plant health barriers to trade, which sustained and expanded U.S. export markets valued at more than $4 billion. And, we helped U.S. producers meet foreign market access requirements and certified the health of more than 650,000 exports, securing economic opportunities for U.S. products abroad. These successes underscore how PPQ is working every day to keep U.S. agriculture healthy and profitable.
APA, Harvard, Vancouver, ISO, and other styles
6

Safeguarding through science: Center for Plant Health Science and Technology 2008 Accomplishments. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 2009. http://dx.doi.org/10.32747/2009.7296842.aphis.

Full text
Abstract:
The Center for Plant Health Science and Technology (CPHST) was designed and developed to support the regulatory decisions and operations of the Animal and Plant Health Inspection Service’s (APHIS) Plant Protection and Quarantine (PPQ) program through methods development work, scientific investigation, analyses, and technology—all in an effort to safeguard U.S. agriculture and natural resources. This 2008 CPHST Annual Report is intended to offer an in-depth look at the status of its programs and the progress it has made toward the Center’s long-term strategic goals. One of CPHST’s most significant efforts in 2008 was to initiate efforts to improve the Center’s organizational transparency and overall responsiveness to the needs of its stakeholders. As a result of its focus in this area, CPHST is now developing a new workflow process that allows the customers to easily request and monitor projects and ensures that the highest priority projects are funded for successful delivery. This new system will allow CPHST to more dynamically identify the needs of the agency, more effectively allocate and utilize resources, and provide its customers timely information regarding a project’s status. Thus far, while still very much a work in progress, this new process is proving to be successful, and will continue to advance and expand the service to its customers and staff. The considerable and growing concern of homeland security and the management of critical issues drives CPHST to lead the methods development of science-based systems for prevention, preparedness, response, and recovery. CPHST is recognized nationally and internationally for its leadership in scientific developments to battle plant pests and diseases.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography