Journal articles on the topic 'Banach spaces Linear operators Spectral theory (Mathematics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Banach spaces Linear operators Spectral theory (Mathematics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
ZENG, QINGPING. "Five short lemmas in Banach spaces." Carpathian Journal of Mathematics 32, no. 1 (2016): 131–40. http://dx.doi.org/10.37193/cjm.2016.01.14.
Full textRicker, W. "Spectral operators and weakly compact homomorphisms in a class of Banach Spaces." Glasgow Mathematical Journal 28, no. 2 (July 1986): 215–22. http://dx.doi.org/10.1017/s0017089500006534.
Full textLaursen, Kjeld B., and Michael M. Neumann. "Local spectral theory and spectral inclusions." Glasgow Mathematical Journal 36, no. 3 (September 1994): 331–43. http://dx.doi.org/10.1017/s0017089500030937.
Full textLaursen, Kjeld B., Vivien G. Miller, and Michael M. Neumann. "Local spectral properties of commutators." Proceedings of the Edinburgh Mathematical Society 38, no. 2 (June 1995): 313–29. http://dx.doi.org/10.1017/s0013091500019106.
Full textTahir, Jawad Kadhim. "Numerical Computations for One Class of Dynamical Mathematical Models in Quasi-Sobolev Space." Mathematical Modelling of Engineering Problems 8, no. 2 (April 28, 2021): 267–72. http://dx.doi.org/10.18280/mmep.080214.
Full textLudkovsky, S., and B. Diarra. "Spectral integration and spectral theory for non-Archimedean Banach spaces." International Journal of Mathematics and Mathematical Sciences 31, no. 7 (2002): 421–42. http://dx.doi.org/10.1155/s016117120201150x.
Full textEdmunds, D. E., W. D. Evans, and D. J. Harris. "A spectral analysis of compact linear operators in Banach spaces." Bulletin of the London Mathematical Society 42, no. 4 (May 17, 2010): 726–34. http://dx.doi.org/10.1112/blms/bdq030.
Full textBaskakov, A. G., and A. S. Zagorskii. "Spectral theory of linear relations on real Banach spaces." Mathematical Notes 81, no. 1-2 (February 2007): 15–27. http://dx.doi.org/10.1134/s0001434607010026.
Full textZguitti, Hassane. "A note on the common spectral properties for bounded linear operators." Filomat 33, no. 14 (2019): 4575–84. http://dx.doi.org/10.2298/fil1914575z.
Full textRoman, Marcel, and Adrian Sandovici. "$B$-spectral theory of linear relations in complex Banach spaces." Publicationes Mathematicae Debrecen 91, no. 3-4 (October 1, 2017): 455–66. http://dx.doi.org/10.5486/pmd.2017.7781.
Full textSchechter, Martin. "Book Review: Spectral theory of linear operators---and spectral systems in Banach algebras." Bulletin of the American Mathematical Society 41, no. 04 (June 17, 2004): 541–44. http://dx.doi.org/10.1090/s0273-0979-04-01020-1.
Full textManhas, J. S. "Composition Operators and Multiplication Operators on Weighted Spaces of Analytic Functions." International Journal of Mathematics and Mathematical Sciences 2007 (2007): 1–21. http://dx.doi.org/10.1155/2007/92070.
Full textAshurov, R. R., and W. N. Everitt. "Linear quasi-differential operators in locally integrable spaces on the real line." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 130, no. 4 (August 2000): 671–98. http://dx.doi.org/10.1017/s0308210500000366.
Full textTERAUDS, VENTA. "FUNCTIONAL CALCULUS EXTENSIONS ON DUAL SPACES." Bulletin of the Australian Mathematical Society 79, no. 1 (February 2009): 71–77. http://dx.doi.org/10.1017/s0004972708001032.
Full textNavascués, M. A., and P. Viswanathan. "Bases of Banach and Hilbert Spaces Transformed by Linear Operators." Complex Analysis and Operator Theory 13, no. 5 (September 1, 2018): 2277–301. http://dx.doi.org/10.1007/s11785-018-0844-z.
Full textTylli, Hans-Olav. "A spectral radius problem connected with weak compactness." Glasgow Mathematical Journal 35, no. 1 (January 1993): 85–94. http://dx.doi.org/10.1017/s0017089500009599.
Full textOmladič, Matjaž. "Spectral subspaces of operator-valued functions." Bulletin of the Australian Mathematical Society 31, no. 1 (February 1985): 61–73. http://dx.doi.org/10.1017/s0004972700002276.
Full textSain, Debmalya. "On best approximations to compact operators." Proceedings of the American Mathematical Society 149, no. 10 (July 21, 2021): 4273–86. http://dx.doi.org/10.1090/proc/15494.
Full textWrobel, Volker. "Multi-Dimensional spectral theory of bounded linear operators in locally convex spaces." Mathematische Annalen 275, no. 3 (September 1986): 409–23. http://dx.doi.org/10.1007/bf01458614.
Full textEl Kettani, Mustapha Ech-Chérif, and Aziz Lahssaini. "On the pseudospectrum preservers." Proyecciones (Antofagasta) 39, no. 6 (December 1, 2020): 1457–69. http://dx.doi.org/10.22199/issn.0717-6279-2020-06-0089.
Full textSahin, M., and M. B. Ragimov. "Spectral theory of ordered pairs of the linear operators - acting in different Banach spaces and applications." International Mathematical Forum 2 (2007): 223–36. http://dx.doi.org/10.12988/imf.2007.07021.
Full textDrnovšek, Roman, and Aljoša Peperko. "On the spectral radius of positive operators on Banach sequence spaces." Linear Algebra and its Applications 433, no. 1 (July 2010): 241–47. http://dx.doi.org/10.1016/j.laa.2010.02.020.
Full textYe, Feng. "Toward a constructive theory of unbounded linear operators." Journal of Symbolic Logic 65, no. 1 (March 2000): 357–70. http://dx.doi.org/10.2307/2586543.
Full textObukhovskii, Valeri, and Pietro Zecca. "On boundary value problems for degenerate differential inclusions in Banach spaces." Abstract and Applied Analysis 2003, no. 13 (2003): 769–84. http://dx.doi.org/10.1155/s108533750330301x.
Full textBenevieri, Pierluigi, and Antonio Iannizzotto. "Eigenvalue Problems for Fredholm Operators with Set-Valued Perturbations." Advanced Nonlinear Studies 20, no. 3 (August 1, 2020): 701–23. http://dx.doi.org/10.1515/ans-2020-2090.
Full textAponte, Elvis, Jhixon Macías, José Sanabria, and José Soto. "Further characterizations of property (VΠ) and some applications." Proyecciones (Antofagasta) 39, no. 6 (December 1, 2020): 1435–56. http://dx.doi.org/10.22199/issn.0717-6279-2020-06-0088.
Full textHuang, Qianglian, and Jipu Ma. "Perturbation analysis of generalized inverses of linear operators in Banach spaces." Linear Algebra and its Applications 389 (September 2004): 355–64. http://dx.doi.org/10.1016/j.laa.2004.04.011.
Full textBeanland, Kevin, and Ryan M. Causey. "Genericity and Universality for Operator Ideals." Quarterly Journal of Mathematics 71, no. 3 (June 17, 2020): 1081–129. http://dx.doi.org/10.1093/qmathj/haaa018.
Full textHuang, Qianglian, Lanping Zhu, and Yueyu Jiang. "On stable perturbations for outer inverses of linear operators in Banach spaces." Linear Algebra and its Applications 437, no. 7 (October 2012): 1942–54. http://dx.doi.org/10.1016/j.laa.2012.05.004.
Full textDing, Jiu. "New perturbation results on pseudo-inverses of linear operators in Banach spaces." Linear Algebra and its Applications 362 (March 2003): 229–35. http://dx.doi.org/10.1016/s0024-3795(02)00493-7.
Full textUngureanu, Viorica Mariela. "Stabilizing Solution for a Discrete-Time Modified Algebraic Riccati Equation in Infinite Dimensions." Discrete Dynamics in Nature and Society 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/293930.
Full textAnthoni, S. Marshal, J. H. Kim, and J. P. Dauer. "Existence of mild solutions of second-order neutral functional differential inclusions with nonlocal conditions in Banach spaces." International Journal of Mathematics and Mathematical Sciences 2004, no. 22 (2004): 1133–49. http://dx.doi.org/10.1155/s0161171204310410.
Full textBaskakov, A. G. "Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators." Journal of Mathematical Sciences 137, no. 4 (September 2006): 4885–5036. http://dx.doi.org/10.1007/s10958-006-0286-4.
Full textGantner, Jonathan. "Operator Theory on One-Sided Quaternionic Linear Spaces: Intrinsic S-Functional Calculus and Spectral Operators." Memoirs of the American Mathematical Society 267, no. 1297 (September 2020): 0. http://dx.doi.org/10.1090/memo/1297.
Full textCHIBA, Hayato. "A SPECTRAL THEORY OF LINEAR OPERATORS ON RIGGED HILBERT SPACES UNDER ANALYTICITY CONDITIONS II: APPLICATIONS TO SCHRÖDINGER OPERATORS." Kyushu Journal of Mathematics 72, no. 2 (2018): 375–405. http://dx.doi.org/10.2206/kyushujm.72.375.
Full textFlemming, Jens. "A converse result for Banach space convergence rates in Tikhonov-type convex regularization of ill-posed linear equations." Journal of Inverse and Ill-posed Problems 26, no. 5 (October 1, 2018): 639–46. http://dx.doi.org/10.1515/jiip-2017-0116.
Full textBARBU, VIOREL. "Variational approach to nonlinear stochastic differential equations in Hilbert spaces." Carpathian Journal of Mathematics 37, no. 2 (June 9, 2021): 295–309. http://dx.doi.org/10.37193/cjm.2021.02.15.
Full textYang, Xiaodan, and Yuwen Wang. "Some new perturbation theorems for generalized inverses of linear operators in Banach spaces." Linear Algebra and its Applications 433, no. 11-12 (December 2010): 1939–49. http://dx.doi.org/10.1016/j.laa.2010.07.008.
Full textEveson, Simon P., and Roger D. Nussbaum. "Applications of the Birkhoff–Hopf theorem to the spectral theory of positive linear operators." Mathematical Proceedings of the Cambridge Philosophical Society 117, no. 3 (May 1995): 491–512. http://dx.doi.org/10.1017/s0305004100073321.
Full textYu, Wenhuan. "Well-posedness of determining the source term of an elliptic equation." Bulletin of the Australian Mathematical Society 50, no. 3 (December 1994): 383–98. http://dx.doi.org/10.1017/s0004972700013502.
Full textHuang, Qianglian. "On perturbations for oblique projection generalized inverses of closed linear operators in Banach spaces." Linear Algebra and its Applications 434, no. 12 (June 2011): 2468–74. http://dx.doi.org/10.1016/j.laa.2010.12.033.
Full textWang, Yuwen, and Hao Zhang. "Perturbation analysis for oblique projection generalized inverses of closed linear operators in Banach spaces." Linear Algebra and its Applications 426, no. 1 (October 2007): 1–11. http://dx.doi.org/10.1016/j.laa.2007.02.025.
Full textLahrech, S. "Banach-Steinhaus type theorem in locally convex spaces for linear $\Sigma$-locally Lipschitzian operators." Miskolc Mathematical Notes 6, no. 1 (2005): 43. http://dx.doi.org/10.18514/mmn.2005.95.
Full textFaried, Nashat, Mohamed S. S. Ali, and Hanan H. Sakr. "On Fuzzy Soft Linear Operators in Fuzzy Soft Hilbert Spaces." Abstract and Applied Analysis 2020 (July 31, 2020): 1–13. http://dx.doi.org/10.1155/2020/5804957.
Full textPROTASOV, VLADIMIR. "REFINEMENT EQUATIONS AND CORRESPONDING LINEAR OPERATORS." International Journal of Wavelets, Multiresolution and Information Processing 04, no. 03 (September 2006): 461–74. http://dx.doi.org/10.1142/s0219691306001385.
Full textCichoń, Mieczyław. "Differential inclusions and abstract control problems." Bulletin of the Australian Mathematical Society 53, no. 1 (February 1996): 109–22. http://dx.doi.org/10.1017/s0004972700016774.
Full textGabeleh, Moosa, Deepesh Kumar Patel, Pradip Ramesh Patle, and Manuel De La Sen. "Existence of a solution of Hilfer fractional hybrid problems via new Krasnoselskii-type fixed point theorems." Open Mathematics 19, no. 1 (January 1, 2021): 450–69. http://dx.doi.org/10.1515/math-2021-0033.
Full textDANERS, DANIEL, and JOCHEN GLÜCK. "THE ROLE OF DOMINATION AND SMOOTHING CONDITIONS IN THE THEORY OF EVENTUALLY POSITIVE SEMIGROUPS." Bulletin of the Australian Mathematical Society 96, no. 2 (March 29, 2017): 286–98. http://dx.doi.org/10.1017/s0004972717000260.
Full textHuang, Qianglian, and Wenxiao Zhai. "Perturbations and expressions for generalized inverses in Banach spaces and Moore–Penrose inverses in Hilbert spaces of closed linear operators." Linear Algebra and its Applications 435, no. 1 (July 2011): 117–27. http://dx.doi.org/10.1016/j.laa.2011.01.008.
Full textMATUCCI, S. "EXISTENCE, UNIQUENESS AND ASYMPTOTIC BEHAVIOUR FOR A MULTI-STAGE EVOLUTION PROBLEM OF AN AGE-STRUCTURED POPULATION." Mathematical Models and Methods in Applied Sciences 05, no. 08 (December 1995): 1013–41. http://dx.doi.org/10.1142/s021820259500053x.
Full text