Academic literature on the topic 'Bande WiFi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bande WiFi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bande WiFi"
Picheta, L., and V. Hoël. "Conception, réalisation et caractérisation d’un transposeur abaisseur de fréquence en bande X." J3eA 23 (2024): 1015. http://dx.doi.org/10.1051/j3ea/20241015.
Full textCho, In-Kyoung, Tae-Youn Kim, Jae-Woong Jang, Kyung-Duk Jang, and Guee-Won Moon. "Analysis on Compatibility between wireless headset and WiFi in ISM bands." Journal of the Korea Institute of Information and Communication Engineering 19, no. 2 (February 28, 2015): 272–78. http://dx.doi.org/10.6109/jkiice.2015.19.2.272.
Full textPaul, Liton Chandra, Sarker Saleh Ahmed Ankan, Tithi Rani, Md Tanvir Rahman Jim, Muharrem Karaaslan, Sk A. Shezan, and Lulu Wang. "Design and Characterization of a Compact Four-Element Microstrip Array Antenna for WiFi-5/6 Routers." International Journal of RF and Microwave Computer-Aided Engineering 2023 (August 17, 2023): 1–13. http://dx.doi.org/10.1155/2023/6640730.
Full textTang, Chunju, and Yanping Liu. "Machine Learning Approaches for Sharing Unlicensed Millimeter-Wave Bands in Heterogeneously Integrated Sensing and Communication Networks." Electronics 12, no. 20 (October 10, 2023): 4193. http://dx.doi.org/10.3390/electronics12204193.
Full textMilosevic, Nenad, Bojan Dimitrijevic, Dejan Drajic, Zorica Nikolic, and Milorad Tosic. "LTE and WiFi co-existence in 5 GHz unlicensed band." Facta universitatis - series: Electronics and Energetics 30, no. 3 (2017): 363–73. http://dx.doi.org/10.2298/fuee1703363m.
Full textHemsy, Axel, Juan Eduardo Ise, Fernando Alberto Miranda Bonomi, Miguel Ángel Cabrera, and Mariano Fagre. "Miniaturización con metamaterial de una antena PIFA de triple banda para comunicación Wi-Fi." Elektron 8, no. 2 (December 15, 2024): 77–81. https://doi.org/10.37537/rev.elektron.8.2.192.2024.
Full textAdame, Toni, Marc Carrascosa-Zamacois, and Boris Bellalta. "Time-Sensitive Networking in IEEE 802.11be: On the Way to Low-Latency WiFi 7." Sensors 21, no. 15 (July 21, 2021): 4954. http://dx.doi.org/10.3390/s21154954.
Full textChang, Ray-I., Ying-Chen Chen, Chi-Cheng Chuang, and Chia-Hui Wang. "Design and Implementation of an IoT Gateway for Zigbee and WiFi." WSEAS TRANSACTIONS ON COMMUNICATIONS 21 (July 2, 2022): 225–29. http://dx.doi.org/10.37394/23204.2022.21.27.
Full textPusuluri, Vinod Babu, A. M. Prasad, and Naresh K. Darimireddy. "Optimization of 5G Sub Band Antenna Design Using Machine Learning Techniques for WiFi & WiMAX Application." Indian Journal Of Science And Technology 18, no. 2 (January 15, 2025): 160–67. https://doi.org/10.17485/ijst/v18i2.3681.
Full textMushunuri, Visali, Bighnaraj Panigrahi, Hemant Kumar Rath, and Anantha Simha. "Efficient listen before technique for LTE-WiFi co-existence in unlicensed bands." International Journal of Space-Based and Situated Computing 7, no. 2 (2017): 108. http://dx.doi.org/10.1504/ijssc.2017.086825.
Full textDissertations / Theses on the topic "Bande WiFi"
Zaraket, Elie. "Réalisation d’une 'méta-peau' récupératrice d’énergie électromagnétique pour des applications WBAN." Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0035.
Full textRecent advancements in remote healthcare and biomedical technologies are rapidly accelerating the development of flexible, wearable devices for continuous health monitoring. The Internet of Medical Things (IoMT) market is projected to grow at a Compound Annual Growth Rate (CAGR) of 38.5% between 2024 and 2032, with Wireless Body Area Networks (WBAN) serving as a critical driver of this growth. Thus far, the expansion of IoT devices has faced challenges in designing wearable, miniaturized, and biocompatible prototypes with power-autonomous operation for physiological sensors. Therefore, this thesis aims to develop a wearable Energy-Harvesting (EH) system, in the form of a skin-applied device, designed for monitoring physiological conditions. The primary challenge of this research is the impact of the human body on the antenna system's performance when positioned directly on the skin. The body absorbs part of the radiation, which significantly reduces the efficiency of the EH system. In this context, Artificial Magnetic Conductors (AMC)s present a promising solution as reflectors for low-profile antennas, in the GSM and WiFi bands. By leveraging their inherent zero-phase reflection properties, AMCs improve antenna performance while eliminating the need for a bulky quarter-wave backplane. The real-world tests of the dual-band AMC-backed antenna showed minimal performance distortion for WBAN applications. Finally, the integration of a designed RF-to-DC converter enables the rectenna to function as an autonomous wearable energy harvester, providing a rectified voltage of 1V at approximately -17.5 dBm, suitable for powering certain physiological sensors
Šrajbr, Michal. "Šroubovicová dvoupásmová anténa pro WiFi pásmo." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219857.
Full textHamouda, Hafedh. "Conception d'antennes miniatures intégrées à leur support pour applications en télémédecine mobile." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4062.
Full textThis thesis presents the design and the optimization of miniature antennas integrated in specific devices dedicated to ensure communications between medical implants and a mobile phone in the context of telemedicine applications. However, the miniaturization of antennas necessarily implies a degradation of efficiency and bandwidth, which makes it difficult for implementation. Then, the design of electrically small antennas requires a very good understanding of the physical phenomena such as the theoretical limits of performance in terms of bandwidth and efficiency that can be expected for a radiating element with given dimensions. Furthermore, the performance of an electrically small antenna is also highly dependent on the environment in which it is mounted. Therefore, its interaction with each part of its close environment was highlighted and analyzed
Vallet, Mathieu. "Synthèse de fréquence multi-bandes couvrant les ondes millimétriques pour les applications WiFi-WiGig." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0407/document.
Full textThe works presented in this manuscript focus on the realization of a millimeter frequency synthesizer meeting the needs of the WiGig-Fi convergence. A first study was conducted to define a suitable low-power frequency synthesizer archi-tecture for WiFi and WiGig standards. All of the PLL components are subsequently detailed, highlighting the 28nm CMOS FDSOI technology benefits. Then, a study of low power millimeter broadband VCO is presented, highlighting a design methodology related to the 28nm CMOS FDSOI technology. Finally, various solutions are proposed in order to improve the PLL performances, with the incorporation of slow wave VCO, or injection locked ring oscillators
Malvaceda, Rojas Daysy. "Diseño de una red inalámbrica de banda ancha para el mejoramiento de la red wifi del Napo." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2014. http://tesis.pucp.edu.pe/repositorio/handle/123456789/5374.
Full textTesis
Žiška, Jiří. "Srovnání použití bezdrátových sítí 802.11 a/b/g/n a E-band v praxi." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237198.
Full textSaldanha, Carlos Alberto. "Analisando a viabilidade da aplica??o triple play para a inclus?o digital, utilizando a tecnologia Wimax." Pontif?cia Universidade Cat?lica de Campinas, 2007. http://tede.bibliotecadigital.puc-campinas.edu.br:8080/jspui/handle/tede/486.
Full textDigital Inclusion is currently a concerning subject especially in those urgent countries. In Brazil there have been various initiatives and experiences regarding this subject, both from government parts (Federal, State and Urban) and through Non-Profitable Organizations and private companies. The approach to low-cost Broadband Internet has been one of the main barriers to the effectiveness on these initiatives. The goal of this current work is to find new concepts and connection management and voice services, data and video (triple play) in a unique wireless connection focusing on digital inclusion. The used wireless technology is the World Interoperability for Microwave Access (WiMAX), whose frequency is of 5,8 GHZ, which permission is not required for its usage along with National Telecommunication Agency (ANATEL) and to the access point, the wireless fidelity technology (Wifi). Some main convergent WiMAX technology characteristics are described in this work with new Triple Play services to hold a multipoint-point enlacement, causing an establishment to link a case study between the School and PUC-Campinas in order to investigate the performance and application factors. The results on the efficiency of metropolitan wireless network (WMAN) as well as the Triple Play services were profitable, defining a new method on prediction of coverage area and user s quantity.
Inclus?o Digital ? hoje um tema de muita preocupa??o, principalmente nos pa?ses denominados emergentes. No Brasil existem diversas iniciativas e experi?ncias relativas a esse assunto, tanto por parte dos governos (Federal, Estadual e Municipal), como tamb?m por parte de ONG s e empresas privadas. O acesso ? Internet Banda Larga a baixo custo tem sido uma das principais barreiras para a efetiva??o dessas iniciativas. O prop?sito do presente trabalho ? definir novos conceitos e par?metros de conex?o e servi?os de voz, dados e v?deo (triple play) em uma ?nica conex?o sem fio com foco na inclus?o digital. A tecnologia de conex?o sem fio (wireless) utilizada ? o World Interoperability for Microwave Acess (WiMAX), de freq??ncia 5.8 GHz, que n?o requer licenciamento para a sua utiliza??o junto a Ag?ncia Nacional de Telecomunica??es (ANATEL) e para o ponto de acesso, a tecnologia wireless fidelity (WiFi). Neste trabalho est?o descritas as principais caracter?sticas da tecnologia WiMAX convergentes, com os novos servi?os Triple Play para a realiza??o de um enlace ponto-multiponto, estabelecendo-se um link para estudo de caso entre a Escola e a PUC-Campinas, para a investiga??o dos fatores de desempenho e aplica??es. Os resultados de efici?ncia da rede sem fio metropolitana (WMAN) com os servi?os Triple Play foram satisfat?rios, definindo-se um novo m?todo de predi??o da ?rea de cobertura e do n?mero de usu?rios.
Junior, Dagoberto Carvalio. "Uma plataforma para avaliar a degradação da vazão causada por interferência espectral em redes sem fio padrão IEEE 802.11." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30032011-091330/.
Full textThe spectral interference generates pathologies in wireless communication systems (wireless), such as declines in communication and degradation in flow. The spectrum of RF (radio frequency) is supervised and controlled by government agencies, however the wireless standard IEEE 802.11, known as WLANs (Wireless Local Area Networks), work in unlicensed spectrum bands, known as ISM. These networks are increasingly involved in commercial and residential environments, contributing to issues and ubiquity of Internet access. With the significant increase in these networks, the spectral coverage is increasingly dense. The high density of signals pointing to the saturation of the ISM spectrum, causing mutual interference of IEEE 802.11 networks. The aim of this study is to analyze the coverage of the spectrum, for WLANs, and evaluate the flow falls caused by spectral interferences, varying in space and time. Two scenarios were mapped to examine the degradations, with a low to medium and one with high density and complexity. The purpose of creating these scenarios was to compare the degradation caused by interference in different environments, occupation, use and spread of signals WLANs. Through the results, a life cycle management of the spectrum of standard 802.11 networks was proposed. This cycle helps to evaluate and classify the state of a dense network, not dense, complex and not complex, since changes in occupation of the spectrum - in space and time - are plausible to occur. It is concluded that the impacts of the complete overlap of the channel, sources 802.11, are not sufficient to the substantial degradation of the flow in low to medium complexity. In environments with high density and complexity of the degradation is more evident, especially when there are disturbances coming from two adjacent sources
Choi, Junsung. "Feasibility Study and Performance Evaluation of Vehicle-to-Everything (V2X) Communications Applications." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/97248.
Full textPHD
Zhao, Jincheng. "Novel Reconfigurable Folded-Slot Antenna Application." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1589197436703822.
Full textBooks on the topic "Bande WiFi"
Warfield, Patrick. A Presidential Musician. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037795.003.0005.
Full textRiccardi, Ricky. Stomp Off, Let's Go. Oxford University PressNew York, 2025. https://doi.org/10.1093/oso/9780197614488.001.0001.
Full textPenfold, Rosalind B. Dragonslippers: This Is What an Abusive Relationship Looks Like. Grove/Atlantic, Incorporated, 2007.
Find full textPenfold, Rosalind B. Dragonslippers: This Is What an Abusive Relationship Looks Like. Penguin Books Canada, 2005.
Find full textDragonslippers: This Is What an Abusive Relationship Looks Like. HarperCollins Publishers Limited, 2006.
Find full textDragonslippers: This is what an abusive relationship looks like. New York: Black Cat/Grove Press, 2006.
Find full textBook chapters on the topic "Bande WiFi"
Rojas, Javier, Nataly Valencia Pavón, David Atupaña, and José Campos. "Greinacher Rectifier Evaluation for WiFi Band Energy Harvesting." In Emerging Research in Intelligent Systems, 135–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52255-0_10.
Full textCzerwinski, Dariusz, Jaroslaw Nowak, and Slawomir Przylucki. "Evaluation of the Jammers Performance in the WiFi Band." In Computer Networks, 171–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92459-5_14.
Full textKim, Jongwoo, Suwon Park, Seung Hyong Rhee, Yong-Hoon Choi, and HoYoung Hwang. "Energy Efficient Coexistence of WiFi and WiMAX Systems Sharing Frequency Band." In Future Generation Information Technology, 164–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17569-5_18.
Full textZhu, Lei, Haijun Zhang, and Xuebin Li. "Energy Efficient Resource Allocation in Small Cells with WiFi Unlicensed Bands Sharing." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 141–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17513-9_10.
Full textMathivannan, S., S. Srinath, R. Shashank, R. Aravindh, and Vidhya Balasubramanian. "A Dynamic Weighted Trilateration Algorithm for Indoor Localization Using Dual-Band WiFi." In Web and Wireless Geographical Information Systems, 174–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17246-6_14.
Full textVarshney, Atul, Vipul Sharma, T. Mary Neebha, and N. Prasanthi Kumari. "A Tri-band Meander Line Fed Alpha-Numeric Antenna for Military Band, WiFi, and 5G Wireless Green Communications." In 5G Green Communication Networks for Smart Cities, 167–86. New York: Apple Academic Press, 2024. https://doi.org/10.1201/9781003560357-9.
Full textAlcalá Garrido, Hassel Aurora, Víctor Barrera Figueroa, and Mario Eduardo Rivero-Ángeles. "Design and Simulation of Antennas for Energy Harvesting Systems in the WiFi Band." In Communications in Computer and Information Science, 45–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03763-5_5.
Full textDuong, Thi Thanh Tu, Minh Duc Hoang, and Thi Thu Nga Nguyen. "Optimizing Penta-Band Vivaldi Antenna for 5G, WiFi 6, Radar and Satellite Applications." In Intelligent Systems and Networks, 309–19. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3394-3_36.
Full textKhabba, Asma, Layla Wakrim, Saida Ibnyaich, and Moha M’Rabet Hassani. "Multi-band Planar-Inverted-F-Antenna Design for WIFI WIMAX and WLAN Applications." In Digital Technologies and Applications, 1013–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73882-2_92.
Full textZhang, Quanqi, Shuhui Yan, and Hongzhou Tan. "A Dual-Band Cross-Coupled Bandpass Filter with CPW Trapezoid Resonator for WIFI Frequencies." In Wireless Communications, Networking and Applications, 439–47. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2580-5_40.
Full textConference papers on the topic "Bande WiFi"
Singh, Sweta, Arun Prakash, Rudra Caculo, and Rajeev Tripathi. "Design of Dual Band WiFi PCB Antenna." In 2024 Second International Conference on Microwave, Antenna and Communication (MAC), 1–6. IEEE, 2024. https://doi.org/10.1109/mac61551.2024.10837122.
Full textIqbal, Sohail, Syed Tamoor Shah, Mazhair Hussain, Arooba Barakat, Inam Ullah, Ahsan Javed, and Adnan Nadeem. "Compact Dual-Band Antenna for WiFi/WiMAX Applications." In 2023 20th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 404–6. IEEE, 2023. http://dx.doi.org/10.1109/ibcast59916.2023.10712824.
Full textChung, Ming-An, Min-Yu Chen, Chia-Chun Hsu, Chih-Wei Yang, Chia-Wei Lin, and Zhi-Xuan Zhang. "A 2 × 2 MIMO Antenna System for Wireless Handheld Devices Applicable to WiFi 2.4 GHz, WiFi 6E and Sub-6G Frequency Bands." In 2024 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/iwem59914.2024.10649047.
Full textAli, Ayyaz, Maryam Rasool, Falak Naz, Saleem Shahid, and Syed Muzahir Abbas. "A Dual Band Pole Shaped Planar Antenna for WLAN and WiFi 5G Applications." In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 2521–22. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686474.
Full textSong, Jae-Hyeok, Jeong-Taek Lim, Jae-Eun Lee, Jeong-Taek Son, Joon-Hyung Kim, Min-Seok Baek, Byeong Chan Lee, et al. "CMOS Power Amplifiers with Symmetrical IMD3 Performance for 802.11ac 5G-band WiFi Applications." In 2024 Asia-Pacific Microwave Conference (APMC), 955–57. IEEE, 2024. https://doi.org/10.1109/apmc60911.2024.10867450.
Full textNoghanian, Sima. "Effects of Dust, Sweat, and Moisture on a Dual-Band Wearable WiFi Antenna." In 2025 IEEE International Workshop on Antenna Technology (iWAT), 1–3. IEEE, 2025. https://doi.org/10.1109/iwat64079.2025.10931168.
Full textLi, Lei, Ruifeng Xu, Jingxu Cao, and Xue Li. "A compact dual-band rectenna for WIFI bands." In 2023 3rd International Conference on Intelligent Power and Systems (ICIPS). IEEE, 2023. http://dx.doi.org/10.1109/icips59254.2023.10405288.
Full textSong, Hyok J., James H. Schaffner, Timothy Talty, Duane Carper, and Eray Yasan. "Dual-Band WiFi Applique Antenna." In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019. http://dx.doi.org/10.1109/apusncursinrsm.2019.8888306.
Full textRida, Amin, George Shaker, Farzad Nasri, Trevale Reynolds, Symeon Nikolaou, and Manos Tenzeris. "Inkjet printing of dual band conformal antenna for use in wifi frequency bands." In 2010 IEEE Radio and Wireless Symposium (RWS). IEEE, 2010. http://dx.doi.org/10.1109/rws.2010.5434212.
Full textChae, Yoon, and Song Min Kim. "Safeguarded ZigBee via WiFi Guard Band." In SenSys '18: The 16th ACM Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3274783.3275180.
Full text