Academic literature on the topic 'Bandgap references'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bandgap references.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bandgap references"

1

Inyeol Lee, Gyudong Kim, and Wonchan Kim. "Exponential curvature-compensated BiCMOS bandgap references." IEEE Journal of Solid-State Circuits 29, no. 11 (1994): 1396–403. http://dx.doi.org/10.1109/4.328634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Annema, A. J. "Low-power bandgap references featuring DTMOSTs." IEEE Journal of Solid-State Circuits 34, no. 7 (July 1999): 949–55. http://dx.doi.org/10.1109/4.772409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

van Staveren, A., C. J. M. Verhoeven, and A. H. M. van Roermund. "The design of low-noise bandgap references." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 43, no. 4 (April 1996): 290–300. http://dx.doi.org/10.1109/81.488808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abesingha, B., G. A. Rincon-Mora, and D. Briggs. "Voltage shift in plastic-packaged bandgap references." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 49, no. 10 (October 2002): 681–85. http://dx.doi.org/10.1109/tcsii.2002.806734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Doudou, Changlong Mu, Baihong Li, and Jing Yang. "Electrically Tunable Propagation Properties of the Liquid Crystal-Filled Terahertz Fiber." Applied Sciences 8, no. 12 (December 4, 2018): 2487. http://dx.doi.org/10.3390/app8122487.

Full text
Abstract:
A bandgap-guiding microstructured fiber for terahertz (THz) radiation was designed by infiltrating the cladding air holes with nematic liquid crystal. Structural parameter dependence of the photonic bandgaps, polarization-dependent bandgap splitting, and electrically tunable propagation properties of the designed fiber were investigated theoretically by using the finite-element method. An external electric field applied across the designed fiber can broaden the effective transmission bandwidth and achieve single-mode single-polarization guidance. Flattened near-zero group-velocity dispersion of 0 ± 1 ps/THz/cm was obtained for the y-polarized fundamental mode within a broad frequency range. Our results provide theoretical references for applications of liquid crystal-filled microstructured fiber for dynamic polarization control and tunable fiber devices in THz frequency.
APA, Harvard, Vancouver, ISO, and other styles
6

Fiori, F., and P. S. Crovetti. "Investigation on RFI effects in bandgap voltage references." Microelectronics Journal 35, no. 6 (June 2004): 557–61. http://dx.doi.org/10.1016/j.mejo.2003.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tuominen, J., T. Ritari, H. Ludvigsen, and J. C. Petersen. "Gas filled photonic bandgap fibers as wavelength references." Optics Communications 255, no. 4-6 (November 2005): 272–77. http://dx.doi.org/10.1016/j.optcom.2005.06.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banu, Viorel, Phillippe Godignon, Xavier Jordá, Mihaela Alexandru, and José Millan. "Study on the Feasibility of SiC Bandgap Voltage Reference for High Temperature Applications." Materials Science Forum 679-680 (March 2011): 754–57. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.754.

Full text
Abstract:
This work demonstrates that a stable voltage reference with temperature, in the 25°C-300°C range is possible using SiC bipolar diodes. In a previous work, we have been demonstrated both theoretical and experimentally, the feasibility of SiC bandgap voltage reference using SiC Schottky diodes [1]. The present work completes the investigation on SiC bandgap reference by the using of SiC bipolar diodes. Simulated and experimental results for two different SiC devices: Schottky and bipolar diodes showed that the principles that govern the bandgap voltage references for Si are also valid for the SiC. A comparison between the output voltage levels of the two types of bandgap reference is also presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Min Chin, and Chi Jing Hu. "A CMOS Bandgap References Voltage Circuit Using Current Conveyor for Power Management Applications." Applied Mechanics and Materials 385-386 (August 2013): 1335–39. http://dx.doi.org/10.4028/www.scientific.net/amm.385-386.1335.

Full text
Abstract:
This paper proposes a low power bandgap reference voltage circuit that provides an output reference voltage close to the bandgap voltage having a low output resistance and allows resistive loading. This proposed circuit is design and implemented using the TSMC 0.18μm 1P6M CMOS process. Simulation and measured results verify that the chip size is with power dissipation about 0.1mW, and the operation temperature range formwith temperature coefficient about . The chip supply voltage can from 1.3 to 1.8V with PSRR about 70 dB, and its output reference voltage can stable on .
APA, Harvard, Vancouver, ISO, and other styles
10

Falconi, Christian, Arnaldo D’Amico, Corrado Di Natale, and Marco Faccio. "Low cost curvature correction of bandgap references for integrated sensors." Sensors and Actuators A: Physical 117, no. 1 (January 2005): 127–36. http://dx.doi.org/10.1016/j.sna.2004.05.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bandgap references"

1

Dai, Xin. "Explicit characterization of bandgap references." [Ames, Iowa : Iowa State University], 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Palakodety, Ravi (Ravi Kiran). "Investigating packaging effects on bandgap references." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41665.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
Includes bibliographical references (p. 95-96).
This thesis investigates packaging effects on precision bandgap voltage references used in LTC switching regulators. Packaging stress causes a mean offset and room temperature distribution widening of the bandgap reference output voltage, as well as inconsistent temperature characteristics. Bandgap references with and without a proprietary stress-relief mechanism were compared to determine the impact of packaging stress on reference performance. References without stress-relief showed a mean offset of -2.3mV and spread of 10mV, while references with stress-relief showed a mean offset of -2.0mV and spread of 3.6mV. References with stress relief exhibited more consistent temperature coefficients than references without stress relief. A test chip was fabricated to allow measurement of VBE and AVBE within the bandgap reference. Parts with stress-relief showed tighter VBE and AVBE distributions, as well as more favorable temperature characteristics. The experiments in this thesis show that stress-relief is effective at improving bandgap reference performance.
by Ravi Palakodety.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
3

Colombo, Dalton Martini. "Bandgap voltage references in submicrometer CMOS technology." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/16136.

Full text
Abstract:
Referências de tensão são blocos fundamentais em uma série de aplicações de sinais mistos e de rádio frequência, como por exemplo, conversores de dados, PLL's e conversores de potência. A implementação CMOS mais usada para referências de tensão é o circuito Bandgap devido sua alta previbilidade, e baixa dependência em relação à temperatura e tensão de alimentação. Este trabalho estuda aplicação de Referência de Tensão Bandgap. O princípio, as topologias tradicionalmente usadas para implementar este método e as limitações que essas arquiteturas sofrem são investigadas. Será também apresentada uma pesquisa das questões recentes envolvendo alta precisão, operação com baixa tensão de alimentação e baixa potência, e ruído de saída para as referências Bandgap fabricadas em tecnologias submicrométricas. Além disso, uma investigação abrangente do impacto causado pelo o processo da fabricação e do ruído no desempenho da referência é apresentada. Será mostrado que o ruído de saída pode limitar a precisão dos circuitos Bandgap e seus circuitos de ajuste. Para desenvolver nosso trabalho, três Referências Bandgap foram projetadas utilizando o processo IBM 7RF 0.18 micra com uma tensão de alimentação de 1.8V. Também foram projetados os leiautes desses circuitos para prover informações pósleiaute extraídos e resultados de simulação elétrica. Este trabalho provê uma discussão de algumas topologias e das práticas de projeto para referências Bandgap.
A Voltage Reference is a pivotal block in several mixed-signal and radio-frequency applications, for instance, data converters, PLL's and power converters. The most used CMOS implementation for voltage references is the Bandgap circuit due to its highpredictability, and low dependence of the supply voltage and temperature of operation. This work studies the Bandgap Voltage References (BGR). The most relevant and the traditional topologies usually employed to implement Bandgap Voltage References are investigated, and the limitations of these architectures are discussed. A survey is also presented, discussing the most relevant issues and performance metrics for BGR, including, high-accuracy, low-voltage and low-power operation, as well as the output noise of Bandgap References fabricated in submicrometer technologies. Moreover, a comprehensive investigation on the impact of fabrication process effects and noise on the reference voltage is presented. It is shown that output noise can limit the accuracy of the BGR and trim circuits. To support and develop our work, three BGR´s were designed using the IBM 0.18 Micron 7RF process with a supply voltage of 1.8 V. The layouts of these circuits were also designed to provide post-extracted layout information and electrical simulation results. This work provides a comprehensive discussion on the structure and design practices for Bandgap References.
APA, Harvard, Vancouver, ISO, and other styles
4

Bowers, Derek Frederick. "The Design of Bandgap Voltage References for Applications Requiring Minimal Output Noise." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gupta, Vishal. "An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC." Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07052007-073154/.

Full text
Abstract:
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008.
Ayazi, Farrokh, Committee Member ; Rincon-Mora, Gabriel, Committee Chair ; Bhatti, Pamela, Committee Member ; Leach, W. Marshall, Committee Member ; Morley, Thomas, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
6

Mattia, Neto Oscar Elisio. "NanoWatt resistorless CMOS voltage references for Sub-1 V applications." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/107131.

Full text
Abstract:
Referências de tensão integradas sempre foram um bloco fundamental de qualquer sistema eletrônico e um importante tópico de pesquisa que tem sido estudado extensivamente nos últimos 50 anos. Uma tensão de referência é um circuito que provê uma tensão estável com baixa sensibilidade a variações em temperatura, alimentação, carga, características do processo de fabricação e tensões mecânicas de encapsulamento. Elas são normalmente implementadas através da soma ponderada de dois fenômenos físicos diferentes, com comportamentos em temperatura opostos. Normalmente, a tensão térmica, relacionada à constante de Boltzmann e à carga do elétron, fornece uma dependência positiva com temperatura, enquanto que a tensão base-emissor VBE de um transistor bipolar ou a tensão de limiar de um MOSFET fornece o termo complementar. Um bloco auxiliar é às vezes utilizado para fornecer as correntes de polarização do circuito, e outros blocos adicionais implementam a soma ponderada. A evolução da tecnologia de processos é o principal fator para aplicações em baixa tensão, enquanto que a emergência de dispositivos portáteis operados a bateria, circuitos biomédicos implantáveis e dispostivos de captura de energia do ambiente restringem cada circuito a consumir o mínimo possivel. Portanto, alimentações abaixo de 1 V e consumos na ordem de nanoWatts se tornaram características fundamentais de tais circuitos. Contudo, existem diversos desafios ao projetar referências de tensão de alta exatidão em processos CMOS modernos sob essas condições. As topologias tradicionais não são adequadas pois elas provêm uma referência de tensão acima de 1 V, e requerem resistências da ordem de G para atingir tão baixo consumo de potência, ocupando assim uma grande área de silício. Avanços recentes atingiram tais níveis de consumo de potência, porém com limitada exatidão, custosos procedimentos de calibração e grande área ocupada em silício. Nesta dissertação apresentam-se duas novas topologias de circuitos: uma tensão de junção bipolar com compensação de curvatura que não utiliza resistores e é auto-polarizada; e um circuito de referência bandgap sem resistores que opera abaixo de 1 V (também chamado de sub-bandgap). Ambos circuitos operam com consumo na ordem de nanoWatts e ocupam pequenas áreas de silício. Resultados de simulação para dois processos diferentes, 180 nm e 130 nm, e resultados experimentais de uma rodada de fabricação em 130 nm apresentam melhorias sobre tais limitações, mantendo as características desejadas de não conter resistores, ultra baixo consumo, baixa tensão de alimentação e áreas muito pequenas.
Integrated voltage references have always been a fundamental block of any electronic system, and an important research topic that has been extensively studied in the past 50 years. A voltage reference is a circuit that provides a stable voltage with low sensitivity to variations in temperature, supply, load, process characteristics and packaging stresses. They are usually implemented through the weighted sum of two independent physical phenomena with opposite temperature dependencies. Usually the thermal voltage, related to the Boltzmann’s constant and the electron charge, provides a positive temperature dependence, while the silicon bandgap voltage or a MOSFET’s threshold voltage provide the complementary term. An auxiliary biasing block is sometimes necessary to provide the necessary currents for the circuit to work, and additional blocks implement the weighted sum. The scaling of process technologies is the main driving factor for low voltage operation, while the emergence of portable battery-operated, implantable biomedical and energy harvesting devices mandate that every circuit consume as little power as possible. Therefore, sub-1 V supplies and nanoWatt power have become key characteristics for these kind of circuits, but there are several challenges when designing high accuracy voltage references in modern CMOS technologies under these conditions. The traditional topologies are not suitable because they provide a reference voltage above 1 V, and to achieve such power consumption levels would require G resistances, that occupy a huge silicon area. Recent advances have achieved these levels of power consumption but with limited accuracy, expensive calibration procedures and large silicon area.
APA, Harvard, Vancouver, ISO, and other styles
7

Lobner, Matthew K. (Matthew Kneeland). "Enhancing SPICE model parameters to accurately design and simulate circuits with temperature dependence, with a special emphasis on bandgap references." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kevin, Tom. "Sub-1V Curvature Compensated Bandgap Reference." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2585.

Full text
Abstract:

This thesis investigates the possibility of realizing bandgap reference crcuits for processes having sub-1V supply voltage. With the scaling of gate oxide thickness supply voltage is getting reduced. But the threshold voltage of transistors is not getting scaled at the same rate as that of the supply voltage. This makes it difficult to incorporate conventional designs of bandgap reference circuits to processeshaving near to 1V supply voltage. In the first part of the thesis a comprehensive study on existing low voltage bandgap reference circuits is done. Using these ideas a low-power, low-voltage bandgap reference circuit is designed in the second part of the thesis work.

The proposed bandgap reference circuit is capable of generating a reference voltage of 0.730V. The circuit is implemented in 0.18µm standard CMOS technology and operates with 0.9V supply voltage, consuming 5µA current. The circuit achieves 7 ppm/K of temperature coefficient with supply voltage range from 0.9 to 1.5V and temperature range from 0 to 60C.

APA, Harvard, Vancouver, ISO, and other styles
9

Knop, Jaroslav. "Nízkošumový referenční zdroj typu bandgap." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217239.

Full text
Abstract:
This work deals with principles of design low noise bandgap reference using multiple in the process EPI92. The voltage reference is described and theoretic analysis noise performances is made. Results are compared with measured data realized breadboard BG reference and fabricated low drop-out regulators, which using different accurate bandgap references cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Pereira, João Adalberto. "Uma fonte de referencia Bandgap." [s.n.], 1995. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260022.

Full text
Abstract:
Orientador: Wilmar Bueno de Moraes
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica
Made available in DSpace on 2018-07-20T02:01:15Z (GMT). No. of bitstreams: 1 Pereira_JoaoAdalberto_M.pdf: 7330718 bytes, checksum: 7b631c3c434e2be48b35244c25ec0c06 (MD5) Previous issue date: 1995
Resumo: Neste trabalho, proponho um estudo crítico/analítico de uma configuração de Fonte de Tensão de Referência Bandgap muito comum em chips comerciais, concluindo importantes itens quanto às técnicas de projeto e layout, o que nos permitirá julgar a eficiência de tal circuito quanto à compensação em temperatura.o circuito da fonte de referência escolhido para esse estudo foi extraído de um chip comercial por meio de metodologia e técnicas apropriadas de Engenharia Reversa, o que é plenamente legalizado [1, 2, 6, 8]. Tal trabalho é apresentado no Capítulo 1, onde se inclui análise dos componentes que integram o circuito e suas disposições físicas no layout. Em complementação à avaliação da fonte de referência extraída, proponho um reprojeto, onde se implementam algumas técnicas de compensação dos principais fatores que prejudicam a estabilidade em temperatura do sinal de saída, não consideradas no circuito original. Além de que, pelo fato da nova tecnologia de projeto disponível ser diferente daquela utilizada na confecção do circuito original, a qual desconhecida em grande parte, houve a necessidade de introduzir alterações no circuito, em vista da adaptação para a nova tecnologia. Como resultado final, apresento uma fonte de tensão de referência teoricamente semelhante à original, com o mesmo valor de tensão de saída, porém disponível em tecnologia ES2 poço-n 1,2 'mu¿
Mestrado
Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bandgap references"

1

Rincón-Mora, Gabriel A. Voltage references: From diodes to precision high-order bandgap circuits. Piscataway, NJ: IEEE Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Staveren, Arie van. Structured electronic design: High-performance harmonic oscillators and bandgap references. Boston: Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aldo, Rodríguez, and Motta Carlos, eds. Pueblo charrúa: Orígenes de nuestra cultura : el aporte de la etnia charrúa : referencias socio-históricas de la posesión de la tierra en el norte de la banda Oriental. Montevideo, Uruguay: Fundación de Cultura Universitaria, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lingen, Koert Van Der, and Koert Van Lingen. Bipolar Transistors for Use in Monolithic Bandgap References & Temperature Transducers. Coronet Books, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rincon-Mora, Gabriel Alfonso. Voltage References: From Diodes to Precision High-Order Bandgap Circuits. Wiley-IEEE Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Staveren, Arie Van. Structured Electronic Design: High-Performance Harmonic Oscillators And Bandgap References. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roermund, Arthur H. M. van, Chris J. M. Verhoeven, and Arie van Staveren. Structured Electronic Design - High-Performance Harmonic Oscillators and Bandgap References (The Kluwer International Series in Engineering and Computer ... Series in Engineering and Computer Science). Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nelson, Jeff B. Bandage: The medical reference guide for care and prevention of sports injuries. ProCare Sportsmedicine, Inc, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

H, Carter Calvin, and Materials Research Society. Meeting Symposium D., eds. Diamond, SiC and nitride wide bandgap semiconductors: Symposium held April 4-8, 1994, San Francisco, California, U.S. Pittsburgh, PA: Materials Research Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gazeley, William G. A study of the temperature dependence of the DC current-voltage characteristics of AlGaAs/GaAs heterojunction bipolar transistors with application to bandgap voltage reference sources. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bandgap references"

1

Bakker, Anton, and Johan Huijsing. "CMOS bandgap references." In High-Accuracy CMOS Smart Temperature Sensors, 37–61. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3190-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cao, Ying, Paul Leroux, and Michiel Steyaert. "Radiation Hardened Bandgap References." In Analog Circuits and Signal Processing, 69–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11842-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tewari, Shikhar, and Aatmesh Shrivastava. "Ultra-low Power Charge-Pump-Based Bandgap References." In Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design, 219–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61285-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meijer, Gerard C. M. "Concepts for bandgap References and voltage measurement systems." In Analog Circuit Design, 243–68. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2462-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Redouté, Jean-Michel, and Michiel Steyaert. "EMI Resisting Bandgap References and Low Dropout Voltage Regulators." In EMC of Analog Integrated Circuits, 197–226. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3230-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

van Staveren, Arie, Michiel H. L. Kouwenhoven, Wouter A. Serdijn, and Chris J. M. Verhoeven. "Bandgap Reference Design." In Trade-Offs in Analog Circuit Design, 139–67. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47673-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akshaya, R., and Siva Yellampalli. "Analysis and Design of Bandgap Reference (BGR)." In Lecture Notes in Electrical Engineering, 413–50. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8234-4_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liping, Chang, An Kang, Liu Yao, Liang Bin, and Li Jinwen. "A High-PSRR CMOS Bandgap Reference Circuit." In Communications in Computer and Information Science, 94–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49283-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saidulu, Bellamkonda, Arun Manoharan, Bellamkonda Bhavani, and Jameer Basha Sk. "An Improved CMOS Voltage Bandgap Reference Circuit." In Advances in Intelligent Systems and Computing, 621–29. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7868-2_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kotabagi, Sujata S., Chetan Hanakanahalli, and Abirmoya Santra. "Low Power Bandgap Reference Using Chopper Amplifier." In Lecture Notes in Electrical Engineering, 103–15. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0275-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bandgap references"

1

Ivanov, Vadim V., Keith E. Sanborn, and Igor M. Filanovsky. "Bandgap voltage references with 1V supply." In ESSCIRC 2006. Proceedings of the 32nd European Solid-State Circuits Conference. IEEE, 2006. http://dx.doi.org/10.1109/esscir.2006.307593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Edward K. F. "Low voltage CMOS bandgap references with temperature compensated reference current output." In 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. IEEE, 2010. http://dx.doi.org/10.1109/iscas.2010.5537472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vasilica, Anca-Gabriela, Gheorghe Pristavu, Constatin Pasoi, and Gheorghe Brezeanu. "Offset cancellation in bandgap references with CMOS operational amplifiers." In 2011 International Semiconductor Conference (CAS 2011). IEEE, 2011. http://dx.doi.org/10.1109/smicnd.2011.6095835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boncu, Madalina, Catalin Botezatu, and Florin Draghici. "A precise method for compensating bandgap references over temperature." In 2020 International Semiconductor Conference (CAS). IEEE, 2020. http://dx.doi.org/10.1109/cas50358.2020.9268045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Colombo, Dalton, Gilson Wirth, and Sérgio Bampi. "Trim range limited by noise in bandgap voltage references." In the 20th annual conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1284480.1284499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brito, Juan Pablo Martinez, Hamilton Klimach, and Sergio Bampi. "A Design Methodology for Matching Improvement in Bandgap References." In 8th International Symposium on Quality Electronic Design (ISQED'07). IEEE, 2007. http://dx.doi.org/10.1109/isqed.2007.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eberlein, Matthias, and Harald Pretl. "Recent Developments in Bandgap References for Nanometer CMOS Technologies." In 2020 Austrochip Workshop on Microelectronics (Austrochip). IEEE, 2020. http://dx.doi.org/10.1109/austrochip51129.2020.9232986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Colombo, Dalton, Gilson Wirth, Sergio Bampi, and Christian Fayomi. "Impact of Noise on Trim Circuits for Bandgap Voltage References." In 2007 14th IEEE International Conference on Electronics, Circuits and Systems (ICECS '07). IEEE, 2007. http://dx.doi.org/10.1109/icecs.2007.4511106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Radoias, Liviu, Cristi Zegheru, and Gheorghe Brezeanu. "Substrate leakage current influence on bandgap voltage references in automotive applications." In 2012 International Semiconductor Conference (CAS 2012). IEEE, 2012. http://dx.doi.org/10.1109/smicnd.2012.6400752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Murata, Akitaka, Shuji Agatsuma, Daisaku Ikoma, Kouji Ichikawa, Takahiro Tsuda, Makoto Nagata, Kumpei Yoshikawa, Yuuki Araga, and Yuji Harada. "Noise analysis using on-chip waveform monitor in bandgap voltage references." In 2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo). IEEE, 2013. http://dx.doi.org/10.1109/emccompo.2013.6735205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography