Academic literature on the topic 'Bandit learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bandit learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bandit learning"
Ciucanu, Radu, Pascal Lafourcade, Gael Marcadet, and Marta Soare. "SAMBA: A Generic Framework for Secure Federated Multi-Armed Bandits." Journal of Artificial Intelligence Research 73 (February 23, 2022): 737–65. http://dx.doi.org/10.1613/jair.1.13163.
Full textAzizi, Javad, Branislav Kveton, Mohammad Ghavamzadeh, and Sumeet Katariya. "Meta-Learning for Simple Regret Minimization." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 6709–17. http://dx.doi.org/10.1609/aaai.v37i6.25823.
Full textSharaf, Amr, and Hal Daumé III. "Meta-Learning Effective Exploration Strategies for Contextual Bandits." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (2021): 9541–48. http://dx.doi.org/10.1609/aaai.v35i11.17149.
Full textCharniauski, Uladzimir, and Yao Zheng. "Autoregressive Bandits in Near-Unstable or Unstable Environment." American Journal of Undergraduate Research 21, no. 2 (2024): 15–25. http://dx.doi.org/10.33697/ajur.2024.116.
Full textZhao, Yunfan, Tonghan Wang, Dheeraj Mysore Nagaraj, Aparna Taneja, and Milind Tambe. "The Bandit Whisperer: Communication Learning for Restless Bandits." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 22 (2025): 23404–13. https://doi.org/10.1609/aaai.v39i22.34508.
Full textWan, Zongqi, Zhijie Zhang, Tongyang Li, Jialin Zhang, and Xiaoming Sun. "Quantum Multi-Armed Bandits and Stochastic Linear Bandits Enjoy Logarithmic Regrets." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 10087–94. http://dx.doi.org/10.1609/aaai.v37i8.26202.
Full textYang, Luting, Jianyi Yang, and Shaolei Ren. "Contextual Bandits with Delayed Feedback and Semi-supervised Learning (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 18 (2021): 15943–44. http://dx.doi.org/10.1609/aaai.v35i18.17968.
Full textZhou, Pengjie, Haoyu Wei, and Huiming Zhang. "Selective Reviews of Bandit Problems in AI via a Statistical View." Mathematics 13, no. 4 (2025): 665. https://doi.org/10.3390/math13040665.
Full textKapoor, Sayash, Kumar Kshitij Patel, and Purushottam Kar. "Corruption-tolerant bandit learning." Machine Learning 108, no. 4 (2018): 687–715. http://dx.doi.org/10.1007/s10994-018-5758-5.
Full textQu, Jiaming. "Survey of dynamic pricing based on Multi-Armed Bandit algorithms." Applied and Computational Engineering 37, no. 1 (2024): 160–65. http://dx.doi.org/10.54254/2755-2721/37/20230497.
Full textDissertations / Theses on the topic "Bandit learning"
Liu, Fang. "Efficient Online Learning with Bandit Feedback." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587680990430268.
Full textKlein, Nicolas. "Learning and Experimentation in Strategic Bandit Problems." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-122728.
Full textTalebi, Mazraeh Shahi Mohammad Sadegh. "Online Combinatorial Optimization under Bandit Feedback." Licentiate thesis, KTH, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181321.
Full textLomax, S. E. "Cost-sensitive decision tree learning using a multi-armed bandit framework." Thesis, University of Salford, 2013. http://usir.salford.ac.uk/29308/.
Full textSakhi, Otmane. "Offline Contextual Bandit : Theory and Large Scale Applications." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAG011.
Full textCELLA, LEONARDO. "EFFICIENCY AND REALISM IN STOCHASTIC BANDITS." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/807862.
Full textLiu, Sige. "Bandit Learning Enabled Task Offloading and Resource Allocation in Mobile Edge Computing." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29719.
Full textJedor, Matthieu. "Bandit algorithms for recommender system optimization." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM027.
Full textLouëdec, Jonathan. "Stratégies de bandit pour les systèmes de recommandation." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30257/document.
Full textNakhe, Paresh [Verfasser], Martin [Gutachter] Hoefer, and Georg [Gutachter] Schnitger. "On bandit learning and pricing in markets / Paresh Nakhe ; Gutachter: Martin Hoefer, Georg Schnitger." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2018. http://d-nb.info/1167856740/34.
Full textBooks on the topic "Bandit learning"
Garofalo, Robert Joseph. Chorale and Shaker dance by John P. Zdechlik: A teaching-learning unit. Meredith Music Publications, 1999.
Find full textGarofalo, Robert Joseph. Suite française by Darius Milhaud: A teaching-learning unit. Meredith Music Publications, 1998.
Find full textGarofalo, Robert Joseph. On a hymnsong of Philip Bliss by David R. Holsinger: A teaching/learning unit. Meredith Music Publications, 2000.
Find full textJames, Patterson. Retour au collège: Le pire endroit du monde! Hachette romans, 2016.
Find full textChristopher, Tebbetts, and Park Laura 1980 ill, eds. Just my rotten luck. Little Brown & Company, 2015.
Find full textBubeck, Sébastian, and Cesa-Bianchi Nicolò. Regret Analysis of Stochastic and Nonstochastic Multi-Armed Bandit Problems. Now Publishers, 2012.
Find full textZhao, Qing, and R. Srikant. Multi-Armed Bandits: Theory and Applications to Online Learning in Networks. Morgan & Claypool Publishers, 2019.
Find full textZhao, Qing, and R. Srikant. Multi-Armed Bandits: Theory and Applications to Online Learning in Networks. Morgan & Claypool Publishers, 2019.
Find full textZhao, Qing. Multi-Armed Bandits: Theory and Applications to Online Learning in Networks. Springer International Publishing AG, 2019.
Find full textZhao, Qing, and R. Srikant. Multi-Armed Bandits: Theory and Applications to Online Learning in Networks. Morgan & Claypool Publishers, 2019.
Find full textBook chapters on the topic "Bandit learning"
Kakas, Antonis C., David Cohn, Sanjoy Dasgupta, et al. "Associative Bandit Problem." In Encyclopedia of Machine Learning. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_39.
Full textMannor, Shie, Xin Jin, Jiawei Han, et al. "k-Armed Bandit." In Encyclopedia of Machine Learning. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_424.
Full textFürnkranz, Johannes, Philip K. Chan, Susan Craw, et al. "Multi-Armed Bandit." In Encyclopedia of Machine Learning. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_565.
Full textFürnkranz, Johannes, Philip K. Chan, Susan Craw, et al. "Multi-Armed Bandit Problem." In Encyclopedia of Machine Learning. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_566.
Full textMannor, Shie. "k-Armed Bandit." In Encyclopedia of Machine Learning and Data Mining. Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_424.
Full textMadani, Omid, Daniel J. Lizotte, and Russell Greiner. "The Budgeted Multi-armed Bandit Problem." In Learning Theory. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27819-1_46.
Full textMunro, Paul, Hannu Toivonen, Geoffrey I. Webb, et al. "Bandit Problem with Side Information." In Encyclopedia of Machine Learning. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_54.
Full textMunro, Paul, Hannu Toivonen, Geoffrey I. Webb, et al. "Bandit Problem with Side Observations." In Encyclopedia of Machine Learning. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_55.
Full textAgarwal, Mudit, and Naresh Manwani. "ALBIF: Active Learning with BandIt Feedbacks." In Advances in Knowledge Discovery and Data Mining. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05981-0_28.
Full textVermorel, Joannès, and Mehryar Mohri. "Multi-armed Bandit Algorithms and Empirical Evaluation." In Machine Learning: ECML 2005. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11564096_42.
Full textConference papers on the topic "Bandit learning"
Agarwal, Arpit, Rohan Ghuge, and Viswanath Nagarajan. "Semi-Bandit Learning for Monotone Stochastic Optimization*." In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2024. http://dx.doi.org/10.1109/focs61266.2024.00083.
Full textXu, Zhuofan, Benedikt Bollig, Matthias Függer, and Thomas Nowak. "Permutation Equivariant Deep Reinforcement Learning for Multi-Armed Bandit." In 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2024. https://doi.org/10.1109/ictai62512.2024.00140.
Full textLi, Miao, Siyi Qiu, Jiong Liu, and Wenping Song. "Content Caching Optimization Based on Improved Bandit Learning Algorithm." In 2024 33rd International Conference on Computer Communications and Networks (ICCCN). IEEE, 2024. http://dx.doi.org/10.1109/icccn61486.2024.10637635.
Full textWu, Xiaoyi, and Bin Li. "Achieving Regular and Fair Learning in Combinatorial Multi-Armed Bandit." In IEEE INFOCOM 2024 - IEEE Conference on Computer Communications. IEEE, 2024. http://dx.doi.org/10.1109/infocom52122.2024.10621191.
Full textHuang, Duo. "The Development and Future Challenges of the Multi-armed Bandit Algorithm." In 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML). IEEE, 2024. https://doi.org/10.1109/icicml63543.2024.10957859.
Full textSushma, M., and K. P. Naveen. "Multi-Armed Bandit Based Learning Algorithms for Offloading in Queueing Systems." In 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring). IEEE, 2024. http://dx.doi.org/10.1109/vtc2024-spring62846.2024.10683365.
Full textHossain, Abrar, Abdel-Hameed A. Badawy, Mohammad A. Islam, Tapasya Patki, and Kishwar Ahmed. "HPC Application Parameter Autotuning on Edge Devices: A Bandit Learning Approach." In 2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE, 2024. https://doi.org/10.1109/hipc62374.2024.00011.
Full textdas Dores, Silvia Cristina Nunes, Carlos Soares, and Duncan Ruiz. "Bandit-Based Automated Machine Learning." In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2018. http://dx.doi.org/10.1109/bracis.2018.00029.
Full textDeng, Kun, Chris Bourke, Stephen Scott, Julie Sunderman, and Yaling Zheng. "Bandit-Based Algorithms for Budgeted Learning." In 2007 7th IEEE International Conference on Data Mining (ICDM '07). IEEE, 2007. http://dx.doi.org/10.1109/icdm.2007.91.
Full textZong, Jun, Ting Liu, Zhaowei Zhu, Xiliang Luo, and Hua Qian. "Social Bandit Learning: Strangers Can Help." In 2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020. http://dx.doi.org/10.1109/wcsp49889.2020.9299725.
Full textReports on the topic "Bandit learning"
Shum, Matthew, Yingyao Hu, and Yutaka Kayaba. Nonparametric learning rules from bandit experiments: the eyes have it! Institute for Fiscal Studies, 2010. http://dx.doi.org/10.1920/wp.cem.2010.1510.
Full textLiu, Haoyang, Keqin Liu, and Qing Zhao. Learning in A Changing World: Non-Bayesian Restless Multi-Armed Bandit. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada554798.
Full textBerlin, Noémie, Jan Dul, Marco Gazel, Louis Lévy-Garboua, and Todd Lubart. Creative Cognition as a Bandit Problem. CIRANO, 2023. http://dx.doi.org/10.54932/anre7929.
Full textGarcía Marrugo, Alexandra I., Katherine Olston, Josh Aarts, Dashiell Moore, and Syed Kaliyadan. SCANA: Supporting students’ academic language development at The University of Sydney. Journal of the Australian and New Zealand Student Services Association, 2023. http://dx.doi.org/10.30688/janzssa.2023-2-01.
Full textAlwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Full textMaloney, Megan, Sarah Becker, Andrew Griffin, Susan Lyon, and Kristofer Lasko. Automated built-up infrastructure land cover extraction using index ensembles with machine learning, automated training data, and red band texture layers. Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/49370.
Full textKonsam, Manis Kumar, Amanda Thounajam, Prasad Vaidya, Gopikrishna A, Uthej Dalavai, and Yashima Jain. Machine Learning-Enhanced Control System for Optimized Ceiling Fan and Air Conditioner Operation for Thermal Comfort. Indian Institute for Human Settlements, 2024. http://dx.doi.org/10.24943/mlcsocfacotc6.2023.
Full textMcElhaney, Kevin W., Kelly Mills, Danae Kamdar, Anthony Baker, and Jeremy Roschelle. A Summary and Synthesis of Initial OpenSciEd Research. Digital Promise, 2023. http://dx.doi.org/10.51388/20.500.12265/171.
Full textOlivier, Jason, and Sally Shoop. Imagery classification for autonomous ground vehicle mobility in cold weather environments. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/42425.
Full textBecker, Sarah, Megan Maloney, and Andrew Griffin. A multi-biome study of tree cover detection using the Forest Cover Index. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/42003.
Full text