Academic literature on the topic 'Baouendi-Grushin operator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Baouendi-Grushin operator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Baouendi-Grushin operator"

1

Zhangirbayev, A. "HARDY INEQUALITIES AND IDENTITIES RELATED TO THE BAOUENDI-GRUSHIN VECTOR FIELDS AND LANDAU-HAMILTONIAN." Herald of the Kazakh-British technical university 21, no. 4 (2024): 153–67. https://doi.org/10.55452/1998-6688-2024-21-4-153-167.

Full text
Abstract:
In this paper, we present a weighted Hardy identity related to the Baouendi-Grushin vector fields and its applications in the context of differential inequalities. By selecting appropriate parameters, the Hardy identity related to the Baouendi-Grushin operator implies numerous sharp remainder formulae for Hardy type inequalities. In the commutative case, we obtain improved weighted Hardy inequalities in the setting of the Euclidean space. For example, in a special case, by dropping non-negative remainder terms, related to the Baouendi-Grushin operator, and choosing suitable parameters our iden
APA, Harvard, Vancouver, ISO, and other styles
2

Laptev, Ari, Michael Ruzhansky, and Nurgissa Yessirkegenov. "Hardy inequalities for Landau Hamiltonian and for Baouendi-Grushin operator with Aharonov-Bohm type magnetic field. Part I." MATHEMATICA SCANDINAVICA 125, no. 2 (2019): 239–69. http://dx.doi.org/10.7146/math.scand.a-114892.

Full text
Abstract:
In this paper we prove the Hardy inequalities for the quadratic form of the Laplacian with the Landau Hamiltonian type magnetic field. Moreover, we obtain a Poincaré type inequality and inequalities with more general families of weights. Furthermore, we establish weighted Hardy inequalities for the quadratic form of the magnetic Baouendi-Grushin operator for the magnetic field of Aharonov-Bohm type. For these, we show refinements of the known Hardy inequalities for the Baouendi-Grushin operator involving radial derivatives in some of the variables. The corresponding uncertainty type principles
APA, Harvard, Vancouver, ISO, and other styles
3

Banerjee, Agnid, and Ramesh Manna. "Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation." Discrete & Continuous Dynamical Systems 41, no. 11 (2021): 5105. http://dx.doi.org/10.3934/dcds.2021070.

Full text
Abstract:
<p style='text-indent:20px;'>In this paper, we obtain new Carleman estimates for a class of variable coefficient degenerate elliptic operators whose constant coefficient model at one point is the so called Baouendi-Grushin operator. This generalizes the results obtained by the two of us with Garofalo in [<xref ref-type="bibr" rid="b10">10</xref>] where similar estimates were established for the "constant coefficient" Baouendi-Grushin operator. Consequently, we obtain: (ⅰ) a Bourgain-Kenig type quantitative uniqueness result in the variable coefficient setting; (ⅱ) and a stron
APA, Harvard, Vancouver, ISO, and other styles
4

Bahrouni, Anouar, Vicenţiu D. Rădulescu, and Dušan D. Repovš. "Nonvariational and singular double phase problems for the Baouendi-Grushin operator." Journal of Differential Equations 303 (December 2021): 645–66. http://dx.doi.org/10.1016/j.jde.2021.09.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bahrouni, Anouar, and Vicenţiu D. Rădulescu. "Singular double-phase systems with variable growth for the Baouendi-Grushin operator." Discrete & Continuous Dynamical Systems 41, no. 9 (2021): 4283. http://dx.doi.org/10.3934/dcds.2021036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mihăilescu, Mihai, Denisa Stancu-Dumitru, and Csaba Varga. "On the spectrum of a Baouendi–Grushin type operator: an Orlicz–Sobolev space setting approach." Nonlinear Differential Equations and Applications NoDEA 22, no. 5 (2015): 1067–87. http://dx.doi.org/10.1007/s00030-015-0314-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Markasheva, V. A., and A. F. Tedeev. "Local and global estimates of the solutions of the Cauchy problem for quasilinear parabolic equations with a nonlinear operator of Baouendi-Grushin type." Mathematical Notes 85, no. 3-4 (2009): 385–96. http://dx.doi.org/10.1134/s0001434609030092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Metafune, Giorgio, Luigi Negro, and Chiara Spina. "Lp estimates for Baouendi–Grushin operators." Pure and Applied Analysis 2, no. 3 (2020): 603–25. http://dx.doi.org/10.2140/paa.2020.2.603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jia, Xiaobiao, and Shanshan Ma. "Holder estimates and asymptotic behavior for degenerate elliptic equations in the half space." Electronic Journal of Differential Equations 2023, no. 01-37 (2023): 33. http://dx.doi.org/10.58997/ejde.2023.33.

Full text
Abstract:
In this article we investigate the asymptotic behavior at infinity of viscosity solutions to degenerate elliptic equations. We obtain Holder estimates, up to the flat boundary, by using the rescaling method. Also as a byproduct we obtain a Liouville type result on Baouendi-Grushin type operators.
APA, Harvard, Vancouver, ISO, and other styles
10

Kombe, Ismail. "Nonlinear degenerate parabolic equations for Baouendi–Grushin operators." Mathematische Nachrichten 279, no. 7 (2006): 756–73. http://dx.doi.org/10.1002/mana.200310391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Baouendi-Grushin operator"

1

Tamekue, Cyprien. "Controllability, Visual Illusions and Perception." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST105.

Full text
Abstract:
Cette thèse explore deux applications distinctes de la théorie du contrôle dans différents domaines scientifiques : la physique et les neurosciences. La première application se concentre sur la contrôlabilité nulle de l'équation parabolique associée à l'opérateur de Baouendi-Grushin sur la sphère de dimension 2. En revanche, la deuxième application concerne la description mathématique des illusions visuelles du type MacKay, et se focalise sur l'effet MacKay et les expériences psychophysiques de Billock et Tsou, via le contrôle de l'équation des champs neuronaux à une seule couche du type Amari
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Baouendi-Grushin operator"

1

Garofalo, Nicola, and Dimiter Vassilev. "Strong Unique Continuation for Generalized Baouendi-Grushin Operators." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!