Journal articles on the topic 'Barabási-Albert Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Barabási-Albert Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
BONNEKOH, JOHANNES. "MONTE CARLO SIMULATIONS OF THE ISING AND THE SZNAJD MODEL ON GROWING BARABÁSI–ALBERT NETWORKS." International Journal of Modern Physics C 14, no. 09 (2003): 1231–35. http://dx.doi.org/10.1142/s0129183103005364.
Full textHeld, Pascal, Alexander Dockhorn, and Rudolf Kruse. "On Merging and Dividing Social Graphs." Journal of Artificial Intelligence and Soft Computing Research 5, no. 1 (2015): 23–49. http://dx.doi.org/10.1515/jaiscr-2015-0017.
Full textLIMA, F. W. S. "SIMULATION OF MAJORITY RULE DISTURBED BY POWER-LAW NOISE ON DIRECTED AND UNDIRECTED BARABÁSI–ALBERT NETWORKS." International Journal of Modern Physics C 19, no. 07 (2008): 1063–67. http://dx.doi.org/10.1142/s0129183108012686.
Full textLIMA, F. W. S. "ISING MODEL SPIN S = 1 ON DIRECTED BARABÁSI–ALBERT NETWORKS." International Journal of Modern Physics C 17, no. 09 (2006): 1267–72. http://dx.doi.org/10.1142/s0129183106009679.
Full textLima, F. Welington S., and J. A. Plascak. "Kinetic Models of Discrete Opinion Dynamics on Directed Barabási–Albert Networks." Entropy 21, no. 10 (2019): 942. http://dx.doi.org/10.3390/e21100942.
Full textZhu, Lei, Lei Wang, Xiang Zheng, and Yuzhang Xu. "The Barabási and Albert scale-free network model." Journal of Intelligent & Fuzzy Systems 35, no. 1 (2018): 123–32. http://dx.doi.org/10.3233/jifs-169573.
Full textJACOBMEIER, DIRK. "MULTIDIMENSIONAL CONSENSUS MODEL ON A BARABÁSI–ALBERT NETWORK." International Journal of Modern Physics C 16, no. 04 (2005): 633–46. http://dx.doi.org/10.1142/s0129183105007388.
Full textLIMA, F. W. S. "MAJORITY-VOTE ON DIRECTED BARABÁSI–ALBERT NETWORKS." International Journal of Modern Physics C 17, no. 09 (2006): 1257–65. http://dx.doi.org/10.1142/s0129183106008972.
Full textSCHNEGG, MICHAEL, and DIETRICH STAUFFER. "DYNAMICS OF NETWORKS AND OPINIONS." International Journal of Bifurcation and Chaos 17, no. 07 (2007): 2399–409. http://dx.doi.org/10.1142/s0218127407018476.
Full textJordan, Jonathan, and Andrew R. Wade. "Phase Transitions for Random Geometric Preferential Attachment Graphs." Advances in Applied Probability 47, no. 2 (2015): 565–88. http://dx.doi.org/10.1239/aap/1435236988.
Full textJordan, Jonathan, and Andrew R. Wade. "Phase Transitions for Random Geometric Preferential Attachment Graphs." Advances in Applied Probability 47, no. 02 (2015): 565–88. http://dx.doi.org/10.1017/s0001867800007989.
Full textAbramov, Aleksandr, Uliana Gorik, Andrei Velichko, et al. "Barabási–Albert-Based Network Growth Model to Sustainable Urban Planning." Sustainability 17, no. 3 (2025): 1095. https://doi.org/10.3390/su17031095.
Full textAlencar, David S. M., Tayroni F. A. Alves, Gladstone A. Alves, et al. "Opinion Dynamics Systems on Barabási–Albert Networks: Biswas–Chatterjee–Sen Model." Entropy 25, no. 2 (2023): 183. http://dx.doi.org/10.3390/e25020183.
Full textRuiz, Diego, and Jorge Finke. "Lyapunov–based Anomaly Detection in Preferential Attachment Networks." International Journal of Applied Mathematics and Computer Science 29, no. 2 (2019): 363–73. http://dx.doi.org/10.2478/amcs-2019-0027.
Full textTúri, József. "Some remarks of random graphs." Multidiszciplináris tudományok 11, no. 5 (2021): 251–55. http://dx.doi.org/10.35925/j.multi.2021.5.26.
Full textZsuppán, Sándor. "Examples for an extended Barabási-Albert model with random initial degrees." Dimenziók: matematikai közlemények 8 (2020): 3–13. http://dx.doi.org/10.20312/dim.2020.01.
Full textLIMA, F. W. S. "MIXED ALGORITHMS IN THE ISING MODEL ON DIRECTED BARABÁSI–ALBERT NETWORKS." International Journal of Modern Physics C 17, no. 06 (2006): 785–93. http://dx.doi.org/10.1142/s0129183106008753.
Full textKRAWIECKI, A. "STOCHASTIC RESONANCE IN THE ISING MODEL ON A BARABÁSI–ALBERT NETWORK." International Journal of Modern Physics B 18, no. 12 (2004): 1759–70. http://dx.doi.org/10.1142/s0217979204025026.
Full textALEKSIEJUK, AGATA. "MICROSCOPIC MODEL FOR THE LOGARITHMIC SIZE EFFECT ON THE CURIE POINT IN BARABÁSI–ALBERT NETWORKS." International Journal of Modern Physics C 13, no. 10 (2002): 1415–18. http://dx.doi.org/10.1142/s012918310200398x.
Full textQIN, QIONG, ZHIPING WANG, FANG ZHANG, and PENGYUAN XU. "EVOLVING SCALE-FREE NETWORK MODEL." International Journal of Modern Physics B 22, no. 13 (2008): 2139–49. http://dx.doi.org/10.1142/s0217979208039307.
Full textLima, F. W. S. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks." International Journal of Modern Physics C 26, no. 12 (2015): 1550135. http://dx.doi.org/10.1142/s0129183115501351.
Full textBianconi, Ginestra. "Mean field solution of the Ising model on a Barabási–Albert network." Physics Letters A 303, no. 2-3 (2002): 166–68. http://dx.doi.org/10.1016/s0375-9601(02)01232-x.
Full textChassin, David P., and Christian Posse. "Evaluating North American electric grid reliability using the Barabási–Albert network model." Physica A: Statistical Mechanics and its Applications 355, no. 2-4 (2005): 667–77. http://dx.doi.org/10.1016/j.physa.2005.02.051.
Full textKrishnan, Jeyashree, Reza Torabi, Andreas Schuppert, and Edoardo Di Napoli. "A modified Ising model of Barabási–Albert network with gene-type spins." Journal of Mathematical Biology 81, no. 3 (2020): 769–98. http://dx.doi.org/10.1007/s00285-020-01518-6.
Full textMin, Lin, Wang Gang, and Chen Tian-Lun. "A Modified Earthquake Model Based on Generalized Barabási–Albert Scale-Free Networks." Communications in Theoretical Physics 46, no. 6 (2006): 1011–16. http://dx.doi.org/10.1088/0253-6102/46/6/011.
Full textMoisset de Espanés, Pablo, Ivan Rapaport, Daniel Remenik, Ivan Rapaport, Daniel Remenik, and Javiera Urrutia. "Robust reconstruction of Barabási-Albert networks in the broadcast congested clique model." Networks 67, no. 1 (2015): 82–91. http://dx.doi.org/10.1002/net.21662.
Full textGONZÁLEZ, M. C., A. O. SOUSA, and H. J. HERRMANN. "OPINION FORMATION ON A DETERMINISTIC PSEUDO-FRACTAL NETWORK." International Journal of Modern Physics C 15, no. 01 (2004): 45–57. http://dx.doi.org/10.1142/s0129183104005577.
Full textJACOBMEIER, DIRK. "FOCUSING OF OPINIONS IN THE DEFFUANT MODEL: FIRST IMPRESSION COUNTS." International Journal of Modern Physics C 17, no. 12 (2006): 1801–8. http://dx.doi.org/10.1142/s0129183106010108.
Full textWICHMANN, SØREN, DIETRICH STAUFFER, CHRISTIAN SCHULZE, and ERIC W. HOLMAN. "DO LANGUAGE CHANGE RATES DEPEND ON POPULATION SIZE?" Advances in Complex Systems 11, no. 03 (2008): 357–69. http://dx.doi.org/10.1142/s0219525908001684.
Full textKuryliak, Yulian, Michael Emmerich, and Dmytro Dosyn. "Study on the Influence of Direct Contact Network Topology on the Speed of Spread of Infectious Diseases in the Covid-19 Case." Vìsnik Nacìonalʹnogo unìversitetu "Lʹvìvsʹka polìtehnìka". Serìâ Ìnformacìjnì sistemi ta merežì 9 (June 10, 2021): 151–66. http://dx.doi.org/10.23939/sisn2021.09.151.
Full textSTAUFFER, D., and H. MEYER-ORTMANNS. "SIMULATION OF CONSENSUS MODEL OF DEFFUANT et al. ON A BARABÁSI–ALBERT NETWORK." International Journal of Modern Physics C 15, no. 02 (2004): 241–46. http://dx.doi.org/10.1142/s0129183104005644.
Full textLIMA, F. W. S., and GEORG ZAKLAN. "A MULTI-AGENT-BASED APPROACH TO TAX MORALE." International Journal of Modern Physics C 19, no. 12 (2008): 1797–808. http://dx.doi.org/10.1142/s0129183108013357.
Full textWANG, BING, HUANWEN TANG, ZHONGZHI ZHANG, and ZHILONG XIU. "EVOLVING SCALE-FREE NETWORK MODEL WITH TUNABLE CLUSTERING." International Journal of Modern Physics B 19, no. 26 (2005): 3951–59. http://dx.doi.org/10.1142/s0217979205032437.
Full textDos Santos, A. M., M. L. De Almeida, G. A. Mendes, and L. R. Da Silva. "Generalized scale-free homophilic network." International Journal of Modern Physics C 26, no. 09 (2015): 1550097. http://dx.doi.org/10.1142/s0129183115500977.
Full textFELIJAKOWSKI, K., and R. KOSINSKI. "BOUNDED CONFIDENCE MODEL IN COMPLEX NETWORKS." International Journal of Modern Physics C 24, no. 08 (2013): 1350049. http://dx.doi.org/10.1142/s0129183113500496.
Full textSANTIAGO, ANTONIO, and ROSA M. BENITO. "EVOLUTION OF HETEROGENEOUS NETWORKS UNDER PREFERENTIAL ATTACHMENT." International Journal of Bifurcation and Chaos 20, no. 03 (2010): 923–27. http://dx.doi.org/10.1142/s0218127410026216.
Full textWANG, JIAN-WEI, and LI-LI RONG. "CASCADING FAILURES IN BARABÁSI–ALBERT SCALE-FREE NETWORKS WITH A BREAKDOWN PROBABILITY." International Journal of Modern Physics C 20, no. 04 (2009): 585–95. http://dx.doi.org/10.1142/s0129183109013819.
Full textLachgar, A., and A. Achahbar. "Network growth with preferential attachment and without “rich get richer” mechanism." International Journal of Modern Physics C 27, no. 02 (2015): 1650020. http://dx.doi.org/10.1142/s0129183116500200.
Full textKRAWIECKI, A. "DYNAMICAL PHASE TRANSITION IN THE ISING MODEL ON A SCALE-FREE NETWORK." International Journal of Modern Physics B 19, no. 32 (2005): 4769–76. http://dx.doi.org/10.1142/s0217979205033017.
Full textKatona, Zsolt. "Width of a scale-free tree." Journal of Applied Probability 42, no. 3 (2005): 839–50. http://dx.doi.org/10.1239/jap/1127322031.
Full textKatona, Zsolt. "Width of a scale-free tree." Journal of Applied Probability 42, no. 03 (2005): 839–50. http://dx.doi.org/10.1017/s0021900200000814.
Full textMin, Lin, Wang Gang, and Chen Tian-Lun. "Self-organized Criticality in a Modified Evolution Model on Generalized Barabási–Albert Scale-Free Networks." Communications in Theoretical Physics 47, no. 3 (2007): 512–16. http://dx.doi.org/10.1088/0253-6102/47/3/027.
Full textLima, F. W. S. "Tax Evasion and Multi-Agent-Based Model on Various Topologies." Reports in Advances of Physical Sciences 01, no. 02 (2017): 1730001. http://dx.doi.org/10.1142/s242494241730001x.
Full textde ANGELIS, ANDRÉ FRANCESCHI, GONZALO TRAVIESO, CARLOS ANTÔNIO RUGGIERO, and LUCIANO da FONTOURA COSTA. "ON THE EFFECTS OF GEOGRAPHICAL CONSTRAINTS ON TASK EXECUTION IN COMPLEX NETWORKS." International Journal of Modern Physics C 19, no. 06 (2008): 847–53. http://dx.doi.org/10.1142/s0129183108012546.
Full textQIANG, WEI, GUANGDAO HU, and PENGDA ZHAO. "PHASE TRANSITION IN THE ISING MODEL ON LOCAL-WORLD EVOLVING NETWORKS." International Journal of Modern Physics C 19, no. 11 (2008): 1717–26. http://dx.doi.org/10.1142/s0129183108013242.
Full textGao, Hui, and Zhixian Yang. "A Novel Wireless Sensor Network Evolution Model Based on Energy-Efficiency." International Journal of Online Engineering (iJOE) 13, no. 03 (2017): 4. http://dx.doi.org/10.3991/ijoe.v13i03.6855.
Full textKallakunta, Suneela, and Alluri Sreenivas. "Optimizing Wireless Sensor Networks by Identifying Key Nodes Using Centrality Measures." Momona Ethiopian Journal of Science 16, no. 2 (2024): 289–95. http://dx.doi.org/10.4314/mejs.v16i2.7.
Full textXiao, Zhongdong, Guanghui Zhou, and Ben Wang. "Using modified Barabási and Albert model to study the complex logistic network in eco-industrial systems." International Journal of Production Economics 140, no. 1 (2012): 295–304. http://dx.doi.org/10.1016/j.ijpe.2012.01.033.
Full textSANTIAGO, ANTONIO, and ROSA M. BENITO. "IMPROVED CLUSTERING THROUGH HETEROGENEITY IN PREFERENTIAL ATTACHMENT NETWORKS." International Journal of Bifurcation and Chaos 19, no. 03 (2009): 1029–36. http://dx.doi.org/10.1142/s0218127409023445.
Full textFORTUNATO, SANTO. "THE KRAUSE–HEGSELMANN CONSENSUS MODEL WITH DISCRETE OPINIONS." International Journal of Modern Physics C 15, no. 07 (2004): 1021–29. http://dx.doi.org/10.1142/s0129183104006479.
Full text