To see the other types of publications on this topic, follow the link: Barium Calcium Titanate.

Journal articles on the topic 'Barium Calcium Titanate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Barium Calcium Titanate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Praveen, Paul J., Kranti Kumar, and Dibakar Das. "Structure Property Correlation in Barium Zirconate Titanate–Barium Calcium Titanate Piezoelectric Ceramics." Transactions of the Indian Institute of Metals 66, no. 4 (May 22, 2013): 329–32. http://dx.doi.org/10.1007/s12666-013-0263-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Xiaoyan, Yanxue Tang, Xiyun He, Xia Zeng, Qizhuang He, Zifei Peng, and DAZHI SUN. "Luminescence of Pr-Doped Barium Titanate-Calcium Titanate Material." Ferroelectrics 411, no. 1 (November 2, 2010): 52–57. http://dx.doi.org/10.1080/00150193.2010.493079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Малышкина, Ольга Витальевна, Александра Ивановна Иванова, Кристина Сергеевна Карелина, and Роман Андреевич Петров. "STRUCTURE FEATURES OF BARIUM AND CALCIUM TITANATE CERAMICS." Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, no. 12() (December 15, 2020): 652–61. http://dx.doi.org/10.26456/pcascnn/2020.12.652.

Full text
Abstract:
В работе получены и исследованы образцы керамики на основе титаната бария и титаната кальция. Проведен анализ элементного состава полученной керамики. Показано, что в твердый раствор титанат кальция-бария BaCaTiO кальций входит с x<0,3 . В образцах керамики с x≥0,3 избыток CaTiO рекристаллизуется отдельными зернами. Увеличение концентрации кальция приводит как к уменьшению размера образцов, так и к уменьшению его плотности. Значительное увеличение размера зерен (в несколько раз) керамики BaTiO по сравнению с керамикой CaTiO приводит к соответствующему увеличению микротвердости образцов. Samples of ceramics based on barium titanate and calcium titanate were obtained and studied. We have analyzed the elemental composition of the obtained composite. It is shown that calcium-barium titanate BaCaTiO solid solution contains calcium with х<0,3. In ceramic samples with х≥0,3, an excess of CaTiO was recrystallized in individual grains. An increase in the concentration of calcium leads to both a decrease in the size of the samples and a decrease in its density. An increase in the grain size (by several times) of the BaTiO ceramics in comparison with the CaTiO ceramics leads to a corresponding increase in the microhardness of the samples.
APA, Harvard, Vancouver, ISO, and other styles
4

Čeh, M., and D. Kolar. "Solubility of calcium oxide in barium titanate." Materials Research Bulletin 29, no. 3 (March 1994): 269–75. http://dx.doi.org/10.1016/0025-5408(94)90023-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moquim, Abdul, and Manas Panigrahi. "Dielectric behaviour of (Ba0.77Ca0.23)(Ti0.98Dy0.02)O3 ceramics." Processing and Application of Ceramics 9, no. 2 (2015): 91–98. http://dx.doi.org/10.2298/pac1502091m.

Full text
Abstract:
In this study, BaTiO3 is modified with Ca2+ and in addition doped with Dy3+ at the B site lattice. The main idea is to search for new lead-free ferroelectric material and improve their properties. For this purpose, the barium calcium titanate (BCT) as a host and the rare earth element Dy3+ as an activator were used to fabricate a multifunctional material. The obtained ceramics was found to be homogeneous, dense and a single phase material with no evidence of secondary phases. The dielectric study showed that TC increases with the addition of dopants and the obtained ceramics behaves like a relaxor ferroelectric. Some important structural parameters and dielectric properties of dysprosium modified barium (calcium) titanate ceramics are presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Puli, Venkata Sreenivas, Ashok Kumar, Douglas B. Chrisey, M. Tomozawa, J. F. Scott, and Ram S. Katiyar. "Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors." Journal of Physics D: Applied Physics 44, no. 39 (September 9, 2011): 395403. http://dx.doi.org/10.1088/0022-3727/44/39/395403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jin, Xueqin, Dazhi Sun, Mingjun Zhang, Yudan Zhu, and Juanjuan Qian. "Investigation on FTIR spectra of barium calcium titanate ceramics." Journal of Electroceramics 22, no. 1-3 (January 3, 2008): 285–90. http://dx.doi.org/10.1007/s10832-007-9402-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Korneev, N., D. Mayorga, H. Veenhuis, K. Buse, and E. Krätzig. "Dynamic bulk photovoltaic effect in photorefractive barium calcium titanate." Journal of the Optical Society of America B 16, no. 10 (October 1, 1999): 1725. http://dx.doi.org/10.1364/josab.16.001725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barbosa, L. B., D. Reyes Ardila, and J. P. Andreeta. "Crystal growth of congruent barium calcium titanate by LHPG." Journal of Crystal Growth 231, no. 4 (October 2001): 488–92. http://dx.doi.org/10.1016/s0022-0248(01)01455-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Varatharajan, R., S. B. Samanta, R. Jayavel, C. Subramanian, A. V. Narlikar, and P. Ramasamy. "Ferroelectric characterization studies on barium calcium titanate single crystals." Materials Characterization 45, no. 2 (August 2000): 89–93. http://dx.doi.org/10.1016/s1044-5803(00)00053-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Askar, Anwar, Doreya Ibrahim, Doaa Abdel Aziz, Mubarak Ali, and Ezzat El-Fadaly. "Preparaion Of Lead Free Nanosized Barium Titanate And Barium Calcium Titanate-Zirconate Powders By Using Urea Formaldehyde Resin." Journal of Environmental Studies and Researches 10, no. 2 (June 1, 2020): 237–50. http://dx.doi.org/10.21608/jesr.2020.136577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rai, Alok Kumar, K. N. Rao, L. Vinoth Kumar, and K. D. Mandal. "Synthesis and characterization of ultra fine barium calcium titanate, barium strontium titanate and Ba1−2xCaxSrxTiO3 (x=0.05, 0.10)." Journal of Alloys and Compounds 475, no. 1-2 (May 2009): 316–20. http://dx.doi.org/10.1016/j.jallcom.2008.07.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jongprateep, Oratai, Nicha Sato, Sansanee Boonsalee, and Jae Hwan Pee. "Microstructures and Dielectric Constants of Ba0.05SrxCa0.95-xTiO3 (x=0, 0.225, 0.475, 0.725 and 0.95) Synthesized by the Solution Combustion Technique." Key Engineering Materials 766 (April 2018): 197–204. http://dx.doi.org/10.4028/www.scientific.net/kem.766.197.

Full text
Abstract:
Barium strontium calcium titanate is a dielectric material exploited in fabrication of electronic devices such as capacitors, signal filters and satellite components. Dielectric properties can be enhanced through compositional and microstructural control. This study, therefore, aimed at synthesizing barium strontium calcium titanate (Ba0.05SrxCa0.95-xTiO3, where x = 0, 0.225, 0.475, 0.725 and 0.95) powders by a solution combustion technique. The powders were pressed, sintered at 1450°C and tested for their properties. Experimental results revealed that strontium content did not significantly influence chemical composition, particle sizes and density. All powders exhibited a single phase corresponding to Ba0.05SrxCa0.95-xTiO3with fine particles with the average size smaller than 0.4 micrometer. All sintered samples had density higher than 95% of theoretical density. On the contrary, the results indicated that strontium content affected grain size, grain morphology and dielectric constant of the sintered samples. The highest dielectric constant of 531 (at 1 MHz) was achieved in the Ba0.05Sr0.225Ca0.725TiO3. Dielectric constant was discussed with respect to microstructure.
APA, Harvard, Vancouver, ISO, and other styles
14

Puli, Venkata Sreenivas, Muhammad Ejaz, Ravinder Elupula, Manish Kothakonda, Shiva Adireddy, Ram S. Katiyar, Scott M. Grayson, and Douglas B. Chrisey. "Core-shell like structured barium zirconium titanate-barium calcium titanate–poly(methyl methacrylate) nanocomposites for dielectric energy storage capacitors." Polymer 105 (November 2016): 35–42. http://dx.doi.org/10.1016/j.polymer.2016.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lhoussain, Kadira, Elmesbahi Abdelilah, and Sayouri Salaheddine. "Dielectric study of calcium doped barium titanate Ba1-xCaxTiO3 ceramics." International Journal of Physical Sciences 11, no. 6 (March 30, 2016): 71–79. http://dx.doi.org/10.5897/ijps2015.4415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Malovichko, G., V. Grachev, R. Pankrath, and O. Schirmer. "Photosensitive centers and charge transfer processes in barium calcium titanate." Ferroelectrics 258, no. 1 (January 2001): 169–76. http://dx.doi.org/10.1080/00150190108008669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xu, Tianxiang, Krzysztof Switkowski, Xin Chen, Shan Liu, Kaloian Koynov, Haohai Yu, Huaijin Zhang, Jiyang Wang, Yan Sheng, and Wieslaw Krolikowski. "Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate." Nature Photonics 12, no. 10 (August 6, 2018): 591–95. http://dx.doi.org/10.1038/s41566-018-0225-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kang, Dae-Seok, Myung-Soo Han, Sung-Gap Lee, and Seong-Hae Song. "Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics." Journal of the European Ceramic Society 23, no. 3 (March 2003): 515–18. http://dx.doi.org/10.1016/s0955-2219(02)00085-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kuper, Ch, K. Buse, U. Van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig. "Electrooptic and photorefractive properties of ferroelectric barium-calcium titanate crystals." Ferroelectrics 208-209, no. 1 (April 1998): 213–23. http://dx.doi.org/10.1080/00150199808014876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schwalenberg, S., and E. Krätzig. "Parametric holographic scattering processes in photorefractive barium–calcium titanate crystals." Journal of Optics A: Pure and Applied Optics 6, no. 4 (February 13, 2004): 349–56. http://dx.doi.org/10.1088/1464-4258/6/4/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, T., N. V. Gaponenko, E. A. Stepanova, G. K. Maliarevich, and A. V. Mudryi. "Photoluminescence of Tb3+ ions in barium–strontium–calcium titanate xerogels." Journal of Applied Spectroscopy 76, no. 4 (July 2009): 514–17. http://dx.doi.org/10.1007/s10812-009-9230-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Busuioc, Cristina, Elena Olaret, Izabela-Cristina Stancu, Adrian-Ionut Nicoara, and Sorin-Ion Jinga. "Electrospun Fibre Webs Templated Synthesis of Mineral Scaffolds Based on Calcium Phosphates and Barium Titanate." Nanomaterials 10, no. 4 (April 16, 2020): 772. http://dx.doi.org/10.3390/nano10040772.

Full text
Abstract:
The current work focuses on the development of mineral scaffolds with complex composition and controlled morphology by using a polymeric template in the form of nonwoven fibre webs fabricated through electrospinning. By a cross-linking process, gelatine fibres stable in aqueous solutions were achieved, these being further subjected to a loading step with two types of mineral phases: calcium phosphates deposited by chemical reaction and barium titanate nanoparticles as decoration on the previously achieved structures. Thus, hybrid materials were obtained and subsequently processed in terms of freeze-drying and heat treating with the purpose of burning the template and consolidating the mineral part as potential bone implants with improved biological response by external stimulation. The results confirmed the tunable morphology, as well as the considerable applicability of both as-prepared and final samples for the development of medical devices, which encourages the continuation of research in the direction of assessing the synergistic contribution of barium titanate domains polarisation/magnetisation by external applied fields.
APA, Harvard, Vancouver, ISO, and other styles
23

Rianyoi, Rattiyakorn, R. Potong, Nittaya Jaitanong, and Arnon Chaipanich. "Influence of Curing Age on Microstructure in Barium Titanate – Portland Cement Composites." Key Engineering Materials 484 (July 2011): 222–25. http://dx.doi.org/10.4028/www.scientific.net/kem.484.222.

Full text
Abstract:
The objective of this study was to find out the influence of curing age on microstructure in barium titanate – Portland cement composites. Barium titanate, BaTiO3 (BT) particles was mixed with Portland Cement (PC) and BT content of 50% by volume to produce the composites. All composites were cured in chamber of 60oC and 98% relative humidity for 1, 2, 3, and 7 days. Thereafter, scanning electron microscope (SEM) was used to examine the interfacial zone between cement and BT ceramics. SEM observation indicated that the BT-PC composite cured for 7 days clearly showed calcium silicate hydrate gel (an essential hydration product of Portland cement) surrounding the BT particles and has lower porosity. In BT-PC composite cured for 1 day, the gel can be seen but of less quantity and has higher porosity which clearly affected the interfacial zone.
APA, Harvard, Vancouver, ISO, and other styles
24

Dixit, A., Deepam Maurya, Devendra P. Singh, D. C. Agrawal, and Y. N. Mohapatra. "Dielectric Properties of Sol-gel-derived Calcium Copper Titanate andCalcium Barium Copper Titanate Thin Films." Defence Science Journal 57, no. 1 (January 19, 2007): 55–60. http://dx.doi.org/10.14429/dsj.57.1730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Simon, M., F. Mersch, C. Kuper, S. Mendricks, S. Wevering, J. Imbrock, and E. Krätzig. "Refractive Indices of Photorefractive Bismuth Titanate, Barium-Calcium Titanate, Bismuth Germanium Oxide, and Lead Germanate." physica status solidi (a) 159, no. 2 (February 1997): 559–62. http://dx.doi.org/10.1002/1521-396x(199702)159:2<559::aid-pssa559>3.0.co;2-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zheng, Tianyi, Han Zhao, Yiqian Huang, Chenyuan Gao, Xuehui Zhang, Qing Cai, and Xiaoping Yang. "Piezoelectric calcium/manganese-doped barium titanate nanofibers with improved osteogenic activity." Ceramics International 47, no. 20 (October 2021): 28778–89. http://dx.doi.org/10.1016/j.ceramint.2021.07.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yun, Sining, Xiaoli Wang, Jing Shi, Jianhui Zhu, and Delong Xu. "Ferroelectric properties of barium calcium titanate ceramics doped with bismuth oxide." Materials Letters 63, no. 21 (August 2009): 1883–85. http://dx.doi.org/10.1016/j.matlet.2009.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ortega, John, Toivo T. Kodas, Saket Chadda, Douglas M. Smith, Muhsin Ciftcioglu, and John E. Brennan. "Formation of dense barium calcium titanate (Ba0.86Ca0.14TiO3) particles by aerosol decomposition." Chemistry of Materials 3, no. 4 (July 1991): 746–51. http://dx.doi.org/10.1021/cm00016a033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bernhardt, S., Ph Delaye, H. Veenhuis, D. Rytz, and G. Roosen. "Photorefractive two-beam coupling characterization of a barium-calcium titanate crystal." Applied Physics B 70, no. 6 (June 2000): 789–95. http://dx.doi.org/10.1007/pl00021136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Butnoi, Pichitchai, Pratthana Intawin, Ploypailin Yongsiri, Nuttapon Pisitpipathsin, Puttapon Pengpad, Patamas Bintachitt, and Kamonpan Pengpat. "Effect of BCZT Dopant on Ferroelectric Properties of PZT Ceramics." Key Engineering Materials 675-676 (January 2016): 509–12. http://dx.doi.org/10.4028/www.scientific.net/kem.675-676.509.

Full text
Abstract:
The ferroelectric ceramics with composition of (1-x)Pb(Zr0.52Ti0.48O3 [PZT] – x(Ba0.9Ca0.1)(Ti0.85Zr0.15)O3 [BCZT] (x = 0, 0.04, 0.08 and 0.10 ) have been successfully prepared via two-step mixed oxide method. The material systems of lead zirconate titanate (PZT) and barium calcium zirconate titanate (BCZT) have been intensive studied due to their remarkable properties of high ferroelectric and piezoelectric values. In this work, we are interesting to combine PZT with BCZT system in order to improve the electrical property of the ceramic samples. From the obtained results, it can be confirmed that ferroelectric values are significant increased with the optimum amount of the BCZT.
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, JinYan, XiaoYue Hu, HuMin Dai, Zhi San, FuKe Wang, Li Ren, and GuoYuan Li. "Polycaprolactone/calcium sulfate whisker/barium titanate piezoelectric ternary composites for tissue reconstruction." Advanced Composites Letters 29 (January 1, 2020): 2633366X1989792. http://dx.doi.org/10.1177/2633366x19897923.

Full text
Abstract:
The piezoelectric materials with excellent bioactivity have attracted more attentions recently and have broad potential applications in tissue engineering. In this article, the barium titanate (BT) particles were filled into the polycaprolactone (PCL)/calcium sulfate whisker (CSW) (15 wt%) composites to prepare the PCL/CSW/BT ternary composites. Due to the reinforcement synergy between the CSWs and the BT particles, the mechanical properties of the ternary composites were increased by 50% compared with the PCL/BT binary composites. The piezoelectric coefficient of the ternary composites is still in the range of natural bone. The ternary composite can promote the adhesion and proliferation of cells. The composites in this study have potential applications in tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Huiying, Yanmin Jia, Taosheng Xu, Xiaoxin Shu, Yiming He, Shihua Huang, Guoliang Yuan, Xiangzhi Cui, Guorong Li, and Zheng Wu. "Barium calcium titanate @carbon hybrid materials for high-efficiency room-temperature pyrocatalysis." Ceramics International 48, no. 8 (April 2022): 10498–505. http://dx.doi.org/10.1016/j.ceramint.2021.12.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fisher, John G., Dae-Gi Lee, Jeong-Hyeon Oh, Ha-Nul Kim, Dieu Nguyen, Jee-Hoon Kim, Jong-Sook Lee, and Ho-Yong Lee. "Low-Temperature Sintering of Barium Calcium Zirconium Titanate Lead-Free Piezoelectric Ceramics." Journal of the Korean Ceramic Society 50, no. 2 (March 31, 2013): 157–62. http://dx.doi.org/10.4191/kcers.2013.50.2.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Victor, P., R. Ranjith, A. K. Tyagi, S. Rajagopalan, and S. B. Krupanidhi. "Growth and Studies of Calcium Doped Laser Ablated Barium Titanate Thin Films." Integrated Ferroelectrics 54, no. 1 (April 2003): 747–54. http://dx.doi.org/10.1080/10584580390259209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Korneev, N., D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig. "Holographic and non-steady-state photocurrent characterization of photorefractive barium–calcium titanate." Optics Communications 160, no. 1-3 (February 1999): 98–102. http://dx.doi.org/10.1016/s0030-4018(98)00648-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lin, Tsai Fa, Jien Lun Lin, Chen Ti Hu, and I. Nan Lin. "The microstructure developments and electrical properties of calcium-modified barium titanate ceramics." Journal of Materials Science 26, no. 2 (1991): 491–96. http://dx.doi.org/10.1007/bf00576548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Neumann, J., M. R�we, H. Veenhuis, R. Pankrath, and E. Kr�tzig. "Linear Electrooptic Coefficientr42 of Tetragonal Potassium-Tantalate-Niobate and Barium-Calcium-Titanate." physica status solidi (b) 215, no. 2 (October 1999): R9—R10. http://dx.doi.org/10.1002/(sici)1521-3951(199910)215:23.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lisnevskaya, Inna V., Inga A. Aleksandrova, and Artem N. Savinov. "Lead-Free Multiferroic Barium-Calcium Zirconate-Titanate & Doped Nickel Ferrite Composites." Journal of Composites Science 7, no. 1 (December 20, 2022): 2. http://dx.doi.org/10.3390/jcs7010002.

Full text
Abstract:
Magnetoelectric lead-free composite ceramic based on the piezoelecrtic Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) and magnetic NiCo0.02Cu0.02Mn0.1Fe1.8O4‑d (NCCMF) has been obtained by the solid state method using preliminarily synthesized by the solid-state method precursors. X-ray diffraction measurements, microstructural, magnetic, dielectric, piezoelectric and magnetoelectric studies have been carried out. Impurity phases were not contained in the composites, and there were no signs of interfacial interaction even at the doping level. Ceramics has a high electrical resistivity at direct current (~109 Ω·cm) and, over the entire range of x studied, exhibits a combination of magnetic and piezoelectric parameters, which vary over a wide range and clearly depend on the composites composition. The maximum magnetoelectric coupling coefficient ΔE/ΔH ≈ 90 mV/(cm·Oe) at a frequency of 1 kHz has been observed for specimens with x = 60–70%.
APA, Harvard, Vancouver, ISO, and other styles
39

Butnoi, P., S. Manotham, P. Jaita, D. Sweatman, N. Pisitpipathsin, and T. Tunkasiri. "Electric field–induced strain behavior and ferroelectric properties of lead zirconate titanate-barium calcium zirconate titanate ceramics." Integrated Ferroelectrics 187, no. 1 (February 12, 2018): 156–64. http://dx.doi.org/10.1080/10584587.2018.1444894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Krishna, P. S. R., Dhananjai Pandey, V. S. Tiwari, R. Chakravarthy, and B. A. Dasannacharya. "Effect of powder synthesis procedure on calcium site occupancies in barium calcium titanate: A Rietveld analysis." Applied Physics Letters 62, no. 3 (January 18, 1993): 231–33. http://dx.doi.org/10.1063/1.108974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Noh, Hyun-Ji, Sung-Gap Lee, Byeong-Lib Ahn, and Ju Lee. "Influence of Yb2O3Doping Amount on Screen-printed Barium Strontium Calcium Titanate Thick Films." Transactions on Electrical and Electronic Materials 8, no. 6 (December 31, 2007): 241–45. http://dx.doi.org/10.4313/teem.2007.8.6.241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhao, Changhao, Mao-Hua Zhang, Jürgen Rödel, and Jurij Koruza. "Extrinsic and intrinsic contributions to the electrostrain in precipitation-hardened barium calcium titanate." Applied Physics Letters 121, no. 16 (October 17, 2022): 162904. http://dx.doi.org/10.1063/5.0115726.

Full text
Abstract:
Deconvoluting the extrinsic and intrinsic contributions to electrostrain is of great importance to understand the hardening mechanism of piezoceramics. Here, in situ electric-field high-energy x-ray diffraction measurements are performed to investigate the polycrystalline barium calcium titanate hardened by precipitation, a recently developed hardening technique that pins domain walls with fine intragranular precipitates. The effect of precipitates on extrinsic and intrinsic mechanisms is examined. Under a low-frequency and large-signal field, the precipitates suppress non-180° wall motion, which is the major source of loss, by 40%. Anisotropy is observed in the field-induced lattice strain, which is dominantly contributed by an intergranular effect instead of pure piezoelectricity. At small fields, the lattice strain is barely affected by precipitates, while both lattice strain and strain from non-180° domain wall motion are suppressed and are coupled with each other at large fields, leading to an unchanged relative percentage of the extrinsic contribution.
APA, Harvard, Vancouver, ISO, and other styles
43

Sampaio, D. V., J. C. A. Santos, M. V. dos S. Rezende, M. E. G. Valerio, and R. S. Silva. "Influence of calcium substitution on defect disorder in barium titanate by atomistic simulation." Modelling and Simulation in Materials Science and Engineering 24, no. 1 (November 16, 2015): 015001. http://dx.doi.org/10.1088/0965-0393/24/1/015001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

DIXIT, ANJU, RAM S. KATIYAR, and D. C. AGRAWAL. "ENHANCED TUNABILITY AND RELAXOR CHARACTERISTICS IN CALCIUM SUBSTITUTED BARIUM ZIRCONIUM TITANATE THIN FILMS." Integrated Ferroelectrics 91, no. 1 (May 14, 2007): 48–61. http://dx.doi.org/10.1080/10584580701315156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Park, J. G., T. S. Oh, and Y. H. Kim. "Dielectric properties and microstructural behaviour of B-site calcium-doped barium titanate ceramics." Journal of Materials Science 27, no. 21 (1992): 5713–19. http://dx.doi.org/10.1007/bf01119727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jaimeewong, Piyaporn, Zenghui Liu, Xiaotong Wang, Sukanda Jiansirisomboon, Zuo-Guang Ye, and Anucha Watcharapasorn. "Microstructural design and properties of PMNT crystal-embedded barium calcium zirconate titanate ceramics." Ceramics International 43 (August 2017): S193—S197. http://dx.doi.org/10.1016/j.ceramint.2017.05.294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xu, J., V. Shandarov, M. Wesner, and D. Kip. "Observation of Two-Dimensional Spatial Solitons in Iron-Doped Barium-Calcium Titanate Crystals." physica status solidi (a) 189, no. 1 (January 2002): r4—r5. http://dx.doi.org/10.1002/1521-396x(200201)189:13.0.co;2-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kumar, Parveen, Sangeeta Singh, J. K. Juneja, Chandra Prakash, and K. K. Raina. "Influence of calcium substitution on structural and electrical properties of substituted barium titanate." Ceramics International 37, no. 5 (July 2011): 1697–700. http://dx.doi.org/10.1016/j.ceramint.2011.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Biswas, Don, Prolay Sharma, and N. S. Panwar. "Effect of sintering on the piezoelectric properties and microstructure of lead free (Ba1-xCaxZr0.1Ti0.9O3) (x=0.065) ceramics." Science of Sintering 54, no. 2 (2022): 201–9. http://dx.doi.org/10.2298/sos2202201b.

Full text
Abstract:
In this work, pellet samples of barium calcium zirconate titanate (Ba1-xCaxZr0.1Ti0.9O3, x=0.065) were prepared using solid state reaction route with double sintering. The structural and piezoelectric properties were measured. Further, SEM and EDAX analysis were observed. With different sintering temperature, the density and grain size of the prepared pellet samples were changed and further, their effect in piezoelectric properties has been observed. For the prepared samples, the converse piezoelectric constant (d33*) has been decreased with the increase in sintering temperature. The piezoelectric constant (d33*) was measured highest (153 pm/V) at 1300?C.
APA, Harvard, Vancouver, ISO, and other styles
50

Taïbi-Benziada, Laldja, and Youcef Sedkaoui. "Dielectric Properties of Calcium, Strontium, or Barium Titanate Sintered with 5 mol.% of Lithium and Calcium Fluorides." Spectroscopy Letters 46, no. 1 (January 2013): 67–72. http://dx.doi.org/10.1080/00387010.2012.667034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography