Journal articles on the topic 'Basal plane pyrolytic graphite electrodes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Basal plane pyrolytic graphite electrodes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Milikic, Jadranka, Nevena Markicevic, Aleksandar Jovic, Radmila Hercigonja, and Biljana Sljukic. "Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion?" Processing and Application of Ceramics 10, no. 2 (2016): 87–95. http://dx.doi.org/10.2298/pac1602087m.
Full textDomi, Yasuhiro, Takayuki Doi, Shigetaka Tsubouchi, Toshiro Yamanaka, Takeshi Abe, and Zempachi Ogumi. "Irreversible morphological changes of a graphite negative-electrode at high potentials in LiPF6-based electrolyte solution." Physical Chemistry Chemical Physics 18, no. 32 (2016): 22426–33. http://dx.doi.org/10.1039/c6cp03560d.
Full textMoore, Ryan R., Craig E. Banks, and Richard G. Compton. "Basal Plane Pyrolytic Graphite Modified Electrodes: Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts." Analytical Chemistry 76, no. 10 (2004): 2677–82. http://dx.doi.org/10.1021/ac040017q.
Full textKano, Kenji, and Bunji Uno. "Surface-redox reaction mechanism of quinones adsorbed on basal-plane pyrolytic graphite electrodes." Analytical Chemistry 65, no. 8 (1993): 1088–93. http://dx.doi.org/10.1021/ac00056a024.
Full textLai, Stanley C. S., Robert A. Lazenby, Paul M. Kirkman, and Patrick R. Unwin. "Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces." Chemical Science 6, no. 2 (2015): 1126–38. http://dx.doi.org/10.1039/c4sc02792b.
Full textWong, Colin Hong An, and Martin Pumera. "On reproducibility of preparation of basal plane pyrolytic graphite electrode surface." Electrochemistry Communications 13, no. 10 (2011): 1054–59. http://dx.doi.org/10.1016/j.elecom.2011.06.033.
Full textModestov, Alexander D., Jenny Gun, and Ovadia Lev. "Graphite Photoelectrochemistry: 3. Photoelectrochemical Oxidation of Surface-Confined Hydroquinones at Highly Oriented Pyrolytic Graphite Basal Plane Electrodes." Langmuir 16, no. 10 (2000): 4678–87. http://dx.doi.org/10.1021/la991219y.
Full textEdwards, Martin A., Paolo Bertoncello, and Patrick R. Unwin. "Slow Diffusion Reveals the Intrinsic Electrochemical Activity of Basal Plane Highly Oriented Pyrolytic Graphite Electrodes." Journal of Physical Chemistry C 113, no. 21 (2009): 9218–23. http://dx.doi.org/10.1021/jp8092918.
Full textOkumura, Leonardo Luiz, Adelir Aparecida Saczk, Marcelo Firmino de Oliveira, et al. "Electrochemical feasibility study of methyl parathion determination on graphite-modified basal plane pyrolytic graphite electrode." Journal of the Brazilian Chemical Society 22, no. 4 (2011): 652–59. http://dx.doi.org/10.1590/s0103-50532011000400007.
Full textGoyal, Rajendra N., Sanghamitra Chatterjee, and Anoop Raj Singh Rana. "A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone." Talanta 83, no. 1 (2010): 149–55. http://dx.doi.org/10.1016/j.talanta.2010.08.054.
Full textBrownson, Dale A. C., Graham C. Smith, and Craig E. Banks. "Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis." Royal Society Open Science 4, no. 11 (2017): 171128. http://dx.doi.org/10.1098/rsos.171128.
Full textLin, Wei-Jhih, Chien-Shiun Liao, Jia-Hao Jhang та Yu-Chen Tsai. "Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide". Electrochemistry Communications 11, № 11 (2009): 2153–56. http://dx.doi.org/10.1016/j.elecom.2009.09.018.
Full textZhang, Guohui, Sze-yin Tan, Anisha N. Patel, and Patrick R. Unwin. "Electrochemistry of Fe3+/2+ at highly oriented pyrolytic graphite (HOPG) electrodes: kinetics, identification of major electroactive sites and time effects on the response." Physical Chemistry Chemical Physics 18, no. 47 (2016): 32387–95. http://dx.doi.org/10.1039/c6cp06472h.
Full textJones, C. P., K. Jurkschat, A. Crossley, and C. E. Banks. "Multi-walled carbon nanotube modified basal plane pyrolytic graphite electrodes: Exploring heterogeneity, electro-catalysis and highlighting batch to batch variation." Journal of the Iranian Chemical Society 5, no. 2 (2008): 279–85. http://dx.doi.org/10.1007/bf03246119.
Full textKachoosangi, Roohollah Torabi, Gregory G. Wildgoose, and Richard G. Compton. "Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode." Analytica Chimica Acta 618, no. 1 (2008): 54–60. http://dx.doi.org/10.1016/j.aca.2008.04.053.
Full textSalimi, Abdollah, Craig E. Banks, and Richard G. Compton. "Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine." Analyst 129, no. 3 (2004): 225. http://dx.doi.org/10.1039/b315877b.
Full textSalimi, Abdollah, Richard G. Compton, and Rahman Hallaj. "Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode." Analytical Biochemistry 333, no. 1 (2004): 49–56. http://dx.doi.org/10.1016/j.ab.2004.06.039.
Full textGleria, Kati di, and H. Allen O. Hill. "Covalent linkage of glucose oxidase to modified basal plane pyrolytic graphite electrodes and the use in the ferrocene-mediated amperometric measurement of glucose." Inorganica Chimica Acta 198-200 (August 1992): 863–66. http://dx.doi.org/10.1016/s0020-1693(00)92431-9.
Full textWu, Junxiao, Peijie Wang, Fuhe Wang, and Yan Fang. "Investigation of the Microstructures of Graphene Quantum Dots (GQDs) by Surface-Enhanced Raman Spectroscopy." Nanomaterials 8, no. 10 (2018): 864. http://dx.doi.org/10.3390/nano8100864.
Full textSiswana, Msimelelo P., Kenneth I. Ozoemena, and Tebello Nyokong. "Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode." Electrochimica Acta 52, no. 1 (2006): 114–22. http://dx.doi.org/10.1016/j.electacta.2006.03.090.
Full textTominaga, Masato, Motofumi Tsutsui, and Takuya Takatori. "Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase Direct Bioelectrocatalysis." Colloids and Interfaces 2, no. 3 (2018): 33. http://dx.doi.org/10.3390/colloids2030033.
Full textGoodwin, Alexander, Craig E Banks та Richard G Compton. "Graphite Micropowder Modified with 4-Amino-2,6-diphenylphenol Supported on Basal Plane Pyrolytic Graphite Electrodes: Micro Sensing Platforms for the Indirect Electrochemical Detection of Δ9-Tetrahydrocannabinol in Saliva". Electroanalysis 18, № 11 (2006): 1063–67. http://dx.doi.org/10.1002/elan.200603518.
Full textBanks, Craig E., Ryan R. Moore, Trevor J. Davies, and Richard G. Compton. "Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubesElectronic supplementary information (ESI) available: the use of CNT-modified electrodes in electrochemistry, and SEM images of MWNTs before immobilisation and after modification of a basal plane pyrolytic graphite electrode. See http://www.rsc.org/suppdata/cc/b4/b406174h/." Chemical Communications, no. 16 (2004): 1804. http://dx.doi.org/10.1039/b406174h.
Full textOzoemena, Kenneth I., Jeseelan Pillay, and Tebello Nyokong. "Preferential electrosorption of cobalt (II) tetra-aminophthalocyanine at single-wall carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode." Electrochemistry Communications 8, no. 8 (2006): 1391–96. http://dx.doi.org/10.1016/j.elecom.2006.05.031.
Full textFestinger, Natalia, Sylwia Smarzewska, and Witold Ciesielski. "Comparative study of boron-doped diamond, basal-plane pyrolytic graphite, and graphite flake paste electrodes for the voltammetric determination of rivaroxaban and dabigatran etexilate in pharmaceuticals and urine samples." Diamond and Related Materials 118 (October 2021): 108539. http://dx.doi.org/10.1016/j.diamond.2021.108539.
Full textSagara, Takamasa, Hidekazu Murase, Masaharu Komatsu, and Naotoshi Nakashima. "Toward the Interpretation of Electroreflectance Spectral Profiles: Hemin Adsorbed on an HOPG Electrode Revisited." Applied Spectroscopy 54, no. 2 (2000): 316–23. http://dx.doi.org/10.1366/0003702001949285.
Full textMedeiros, Roberta A., Marina Baccarin, Orlando Fatibello-Filho, Romeu C. Rocha-Filho, Claude Deslouis, and Catherine Debiemme-Chouvy. "Comparative Study of Basal-Plane Pyrolytic Graphite, Boron-Doped Diamond, and Amorphous Carbon Nitride Electrodes for the Voltammetric Determination of Furosemide in Pharmaceutical and Urine Samples." Electrochimica Acta 197 (April 2016): 179–85. http://dx.doi.org/10.1016/j.electacta.2015.10.065.
Full textOliveira, Ananda Xavier, Saimon Moraes Silva, Fernando Roberto Figueiredo Leite, Lauro Tatsuo Kubota, Flavio Santos Damos, and Rita de Cássia Silva Luz. "Highly Sensitive and Selective Basal Plane Pyrolytic Graphite Electrode Modified with 1,4-Naphthoquinone/MWCNT for Simultaneous Determination of Dopamine, Ascorbate and Urate." Electroanalysis 25, no. 3 (2013): 723–31. http://dx.doi.org/10.1002/elan.201200515.
Full textSims, Marcus J., Neil V. Rees, Edmund J. F. Dickinson, and Richard G. Compton. "Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG)." Sensors and Actuators B: Chemical 144, no. 1 (2010): 153–58. http://dx.doi.org/10.1016/j.snb.2009.10.055.
Full textLeite, Fernando Roberto Figueirêdo, Camila Marchetti Maroneze, Adriano Bof de Oliveira, Wallans Torres Pio dos Santos, Flavio Santos Damos, and Rita de Cássia Silva Luz. "Development of a sensor for L-Dopa based on Co(DMG)2ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode." Bioelectrochemistry 86 (August 2012): 22–29. http://dx.doi.org/10.1016/j.bioelechem.2012.01.001.
Full textPillay, Jeseelan, and Kenneth I. Ozoemena. "Efficient electron transport across nickel powder modified basal plane pyrolytic graphite electrode: Sensitive detection of sulfhydryl degradation products of the V-type nerve agents." Electrochemistry Communications 9, no. 7 (2007): 1816–23. http://dx.doi.org/10.1016/j.elecom.2007.04.004.
Full textAhn, Sunyhik, Thomas R. Forder, Matthew D. Jones, et al. "Voltammetric monitoring of a solid-liquid phase transition in N,N,N′,N′-tetraoctyl-2,6-diamino-9,10-anthraquinone (TODAQ)." Journal of Solid State Electrochemistry 24, no. 1 (2019): 11–16. http://dx.doi.org/10.1007/s10008-019-04447-7.
Full textBond, Alan M., Frank Marken, Emma Hill, Richard G. Compton, and Helmut Hügel. "The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution." Journal of the Chemical Society, Perkin Transactions 2, no. 9 (1997): 1735–42. http://dx.doi.org/10.1039/a701003f.
Full textKocak, Izzet, Mohamed A. Ghanem, Abdullah Al-Mayouf, Mansour Alhoshan, and Philip N. Bartlett. "A study of the modification of glassy carbon and edge and basal plane highly oriented pyrolytic graphite electrodes modified with anthraquinone using diazonium coupling and solid phase synthesis and their use for oxygen reduction." Journal of Electroanalytical Chemistry 706 (October 2013): 25–32. http://dx.doi.org/10.1016/j.jelechem.2013.07.035.
Full textYilmaz, Ismail, Takashi Nakanishi, Aysegül Gürek, and Karl M. Kadish. "Electrochemical and spectroscopic investigation of neutral, oxidized and reduced double-decker lutetium(III) phthalocyanines." Journal of Porphyrins and Phthalocyanines 07, no. 04 (2003): 227–38. http://dx.doi.org/10.1142/s1088424603000318.
Full textBANKS, Craig E., and Richard G. COMPTON. "Edge Plane Pyrolytic Graphite Electrodes in Electroanalysis: An Overview." Analytical Sciences 21, no. 11 (2005): 1263–68. http://dx.doi.org/10.2116/analsci.21.1263.
Full textLu, Min, and Richard G. Compton. "Voltammetric pH sensor based on an edge plane pyrolytic graphite electrode." Analyst 139, no. 10 (2014): 2397–403. http://dx.doi.org/10.1039/c4an00147h.
Full textLowe, Eleanor R, Craig E Banks, and Richard G Compton. "Edge Plane Pyrolytic Graphite Electrodes for Halide Detection in Aqueous Solutions." Electroanalysis 17, no. 18 (2005): 1627–34. http://dx.doi.org/10.1002/elan.200503267.
Full textLu, Min, and Richard G. Compton. "Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG." Analyst 139, no. 18 (2014): 4599–605. http://dx.doi.org/10.1039/c4an00866a.
Full textVandervoort, Kurt G., David J. Butcher, Chris T. Brittain, and Benji B. Lewis. "Scanning Tunneling Microscope Images of Graphite Substrates Used in Graphite Furnace Atomic Absorption Spectrometry." Applied Spectroscopy 50, no. 7 (1996): 928–38. http://dx.doi.org/10.1366/0003702963905493.
Full textBanks, Craig E., and Richard G. Compton. "New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite." Analyst 131, no. 1 (2006): 15–21. http://dx.doi.org/10.1039/b512688f.
Full textLowe, Eleanor R., Craig E. Banks, and Richard G. Compton. "Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine." Analytical and Bioanalytical Chemistry 382, no. 4 (2005): 1169–74. http://dx.doi.org/10.1007/s00216-005-3223-3.
Full textWantz, Fr�d�ric, Craig?E Banks, and Richard?G Compton. "Edge Plane Pyrolytic Graphite Electrodes for Stripping Voltammetry: a Comparison with Other Carbon Based Electrodes." Electroanalysis 17, no. 8 (2005): 655–61. http://dx.doi.org/10.1002/elan.200403148.
Full textSano, Tomokazu, Kengo Takahashi, Akio Hirose, et al. "Femtosecond Laser Synthesis of Polymorphic Diamond from Highly Oriented Pyrolytic Graphite." Materials Science Forum 561-565 (October 2007): 2349–52. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.2349.
Full textIamprasertkun, Pawin, Wisit Hirunpinyopas, Ashok Keerthi, et al. "Capacitance of Basal Plane and Edge-Oriented Highly Ordered Pyrolytic Graphite: Specific Ion Effects." Journal of Physical Chemistry Letters 10, no. 3 (2019): 617–23. http://dx.doi.org/10.1021/acs.jpclett.8b03523.
Full textMcIntyre, R., D. Scherson, W. Storck, and H. Gerischer. "Oxygen reduction at the basal plane of stress-annealed pyrolytic graphite in acetonitrile solutions." Electrochimica Acta 32, no. 1 (1987): 51–53. http://dx.doi.org/10.1016/0013-4686(87)87007-x.
Full textHoveland, M. M., J. B. Danner, J. M. Vohs, and D. A. Bonnell. "Initial stages of SiOx deposition on graphite." Journal of Materials Research 9, no. 4 (1994): 933–39. http://dx.doi.org/10.1557/jmr.1994.0933.
Full textAgboola, Bolade O., Alfred Mocheko, Jeseelan Pillay, and Kenneth I. Ozoemena. "Nanostructured cobalt phthalocyanine single-walled carbon nanotube platform: electron transport and electrocatalytic activity on epinephrine." Journal of Porphyrins and Phthalocyanines 12, no. 12 (2008): 1289–99. http://dx.doi.org/10.1142/s1088424608000674.
Full textBanks, Craig E., Alexander Goodwin, Charles G. R. Heald, and Richard G. Compton. "Exploration of gas sensing possibilities with edge plane pyrolytic graphite electrodes: nitrogen dioxide detection." Analyst 130, no. 3 (2005): 280. http://dx.doi.org/10.1039/b416715e.
Full textKachoosangi, Roohollah Torabi, Craig E Banks, and Richard G Compton. "Simultaneous Determination of Uric Acid and Ascorbic Acid Using Edge Plane Pyrolytic Graphite Electrodes." Electroanalysis 18, no. 8 (2006): 741–47. http://dx.doi.org/10.1002/elan.200603470.
Full text