Journal articles on the topic 'Basic catalysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Basic catalysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Xiaodan, and Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges." Synlett 32, no. 13 (May 11, 2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Full textЖуравлева, М. В., and Г. Ю. Климентова. "CATALYTIC SYSTEMS OF BASIC PETROCHEMICAL PROCESSES." Южно-Сибирский научный вестник, no. 3(37) (June 30, 2021): 3–13. http://dx.doi.org/10.25699/sssb.2021.37.3.006.
Full textHattori, Hideshi. "Heterogeneous Basic Catalysis." Chemical Reviews 95, no. 3 (May 1995): 537–58. http://dx.doi.org/10.1021/cr00035a005.
Full textTrunschke, Annette, Giulia Bellini, Maxime Boniface, Spencer J. Carey, Jinhu Dong, Ezgi Erdem, Lucas Foppa, et al. "Towards Experimental Handbooks in Catalysis." Topics in Catalysis 63, no. 19-20 (October 6, 2020): 1683–99. http://dx.doi.org/10.1007/s11244-020-01380-2.
Full textCortés-Ortiz, William G., and Carlos A. Guerrero-Fajardo. "Guiding questions for the synthesis of catalyst and its application in selective catalytic oxidation reactions." Applied Chemical Engineering 5, no. 1 (April 19, 2022): 32. http://dx.doi.org/10.24294/ace.v5i1.1451.
Full textCortés-Ortiz, William Giovann, and Carlos A. Guerrero-Fajardo. "Guiding questions for catalyst synthesis and use in selective catalytic oxidation reactions." Applied Chemical Engineering 5, no. 2 (June 2, 2022): 1. http://dx.doi.org/10.24294/ace.v5i2.1636.
Full textCarlucci, Claudia, Michael Andresini, Leonardo Degennaro, and Renzo Luisi. "Benchmarking Acidic and Basic Catalysis for a Robust Production of Biofuel from Waste Cooking Oil." Catalysts 9, no. 12 (December 10, 2019): 1050. http://dx.doi.org/10.3390/catal9121050.
Full textZhou, Zheng-Wei, and Guang-Can Guo. "Basic limitations for entanglement catalysis." Physics Letters A 277, no. 2 (November 2000): 70–74. http://dx.doi.org/10.1016/s0375-9601(00)00701-5.
Full textHattori, H. "Catalysis by basic metal oxides." Materials Chemistry and Physics 18, no. 5-6 (January 1988): 533–52. http://dx.doi.org/10.1016/0254-0584(88)90021-1.
Full textHATTORI, H. "ChemInform Abstract: Heterogeneous Basic Catalysis." ChemInform 26, no. 37 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199537304.
Full textTaran, O. P., V. V. Sychev, and B. N. Kuznetsov. "γ-Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass." Kataliz v promyshlennosti 1, no. 1-2 (March 18, 2021): 97–116. http://dx.doi.org/10.18412/1816-0387-2021-1-2-97-116.
Full textLari, G. M., K. Desai, C. Mondelli, and J. Pérez-Ramírez. "Selective dehydrogenation of bioethanol to acetaldehyde over basic USY zeolites." Catalysis Science & Technology 6, no. 8 (2016): 2706–14. http://dx.doi.org/10.1039/c5cy02020d.
Full textAlaba, Peter Adeniyi, Yahaya Muhammad Sani, and Wan Mohd Ashri Wan Daud. "Kaolinite properties and advances for solid acid and basic catalyst synthesis." RSC Advances 5, no. 122 (2015): 101127–47. http://dx.doi.org/10.1039/c5ra18884a.
Full textSial, Atif, Afzal Ahmed Dar, Yifan Li, and Chuanyi Wang. "Plasmon-Induced Semiconductor-Based Photo-Thermal Catalysis: Fundamentals, Critical Aspects, Design, and Applications." Photochem 2, no. 4 (October 2, 2022): 810–30. http://dx.doi.org/10.3390/photochem2040052.
Full textTopsoee, Henrik, Bjerne S. Clausen, Nan Yu Topsoee, and Erik Pedersen. "Recent basic research in hydrodesulfurization catalysis." Industrial & Engineering Chemistry Fundamentals 25, no. 1 (February 1986): 25–36. http://dx.doi.org/10.1021/i100021a004.
Full textZhou, Li, Datai Liu, Haiyi Lan, Xiujian Wang, Cunyuan Zhao, Zhuofeng Ke, and Cheng Hou. "The origin of different driving forces between O–H/N–H functional groups in metal ligand cooperation: mechanistic insight into Mn(i) catalysed transfer hydrogenation." Catalysis Science & Technology 10, no. 1 (2020): 169–79. http://dx.doi.org/10.1039/c9cy02112d.
Full textAceto, Domenico, Maria Carmen Bacariza, Arnaud Travert, Carlos Henriques, and Federico Azzolina-Jury. "Thermal and Plasma-Assisted CO2 Methanation over Ru/Zeolite: A Mechanistic Study Using In-Situ Operando FTIR." Catalysts 13, no. 3 (February 27, 2023): 481. http://dx.doi.org/10.3390/catal13030481.
Full textLiu, Xin, Changgong Meng, and Yu Han. "Understanding the Enhanced Catalytic Performance of Ultrafine Transition Metal Nanoparticles–Graphene Composites." Journal of Molecular and Engineering Materials 03, no. 01n02 (March 2015): 1540002. http://dx.doi.org/10.1142/s225123731540002x.
Full textCypryk, Marek, Bartłomiej Gostyński, and Mateusz Pokora. "Hydrolysis of trialkoxysilanes catalysed by the fluoride anion. Nucleophilic vs. basic catalysis." New Journal of Chemistry 43, no. 38 (2019): 15222–32. http://dx.doi.org/10.1039/c9nj03719e.
Full textBuluchevskiy, E. A., T. R. Karpova, L. F. Sayfulina, and A. V. Lavrenov. "Direct Synthesis of Propylene from Ethylene: catalysts and process es." Российский химический журнал 62, no. 1-2 (February 1, 2019): 110–16. http://dx.doi.org/10.6060/rcj.2018621-2.8.
Full textZhu, Li, Xiao-Qin Liu, Hai-Long Jiang, and Lin-Bing Sun. "Metal–Organic Frameworks for Heterogeneous Basic Catalysis." Chemical Reviews 117, no. 12 (May 25, 2017): 8129–76. http://dx.doi.org/10.1021/acs.chemrev.7b00091.
Full textAdriana, Maldonado, Essayem Nadine, Christ Lorraine, and Figueras François. "Transesterification of acrylates by heterogeneous basic catalysis." Applied Catalysis A: General 468 (November 2013): 1–8. http://dx.doi.org/10.1016/j.apcata.2013.08.001.
Full textGómez, José María, María Dolores Romero, and Victoria Callejo. "Heterogeneous basic catalysis for upgrading of biofuels." Catalysis Today 218-219 (December 2013): 143–47. http://dx.doi.org/10.1016/j.cattod.2013.04.027.
Full textWang, Dong, and Didier Astruc. "Dendritic catalysis—Basic concepts and recent trends." Coordination Chemistry Reviews 257, no. 15-16 (August 2013): 2317–34. http://dx.doi.org/10.1016/j.ccr.2013.03.032.
Full textBehr, Arno, and Peter Neubert. "Piperylene-A Versatile Basic Chemical in Catalysis." ChemCatChem 6, no. 2 (October 24, 2013): 412–28. http://dx.doi.org/10.1002/cctc.201300523.
Full textPerozo-Rondón, E., V. Calvino-Casilda, R. M. Martín-Aranda, B. Casal, C. J. Durán-Valle, and M. L. Rojas-Cervantes. "Catalysis by basic carbons: Preparation of dihydropyridines." Applied Surface Science 252, no. 17 (June 2006): 6080–83. http://dx.doi.org/10.1016/j.apsusc.2005.11.017.
Full textZhang, Lian Zi, and Hao Yuan Sun. "Development of Catalysts for Synthesizing Methanol from Syngas." Materials Science Forum 1053 (February 17, 2022): 165–69. http://dx.doi.org/10.4028/p-0eor9r.
Full textMarinkovic, Milos, Nikola Stojkovic, Marija Vasic, Radomir Ljupkovic, Sofija Rancic, Boban Spalovic, and Aleksandra Zarubica. "Synthesis of biodiesel from sunflower oil over potassium loaded alumina as heterogeneous catalyst: The effect of process parameters." Chemical Industry 70, no. 6 (2016): 639–48. http://dx.doi.org/10.2298/hemind150807001m.
Full textCirujano, Francisco G., Rafael Luque, and Amarajothi Dhakshinamoorthy. "Metal-Organic Frameworks as Versatile Heterogeneous Solid Catalysts for Henry Reactions." Molecules 26, no. 5 (March 7, 2021): 1445. http://dx.doi.org/10.3390/molecules26051445.
Full textVerdoliva, Valentina, Michele Saviano, and Stefania De Luca. "Zeolites as Acid/Basic Solid Catalysts: Recent Synthetic Developments." Catalysts 9, no. 3 (March 8, 2019): 248. http://dx.doi.org/10.3390/catal9030248.
Full textNisar, Shafaq, Muhammad Asif Hanif, Umer Rashid, Asma Hanif, Muhammad Nadeem Akhtar, and Chawalit Ngamcharussrivichai. "Trends in Widely Used Catalysts for Fatty Acid Methyl Esters (FAME) Production: A Review." Catalysts 11, no. 9 (September 9, 2021): 1085. http://dx.doi.org/10.3390/catal11091085.
Full textVanni, Matteo, Maria Caporali, Manuel Serrano-Ruiz, and Maurizio Peruzzini. "Catalysis Mediated by 2D Black Phosphorus Either Pristine or Decorated with Transition Metals Species." Surfaces 3, no. 2 (April 1, 2020): 132–67. http://dx.doi.org/10.3390/surfaces3020012.
Full textKidwai, Mazaahir, Priya, Shweta Rastogi, and Kavita Singhal. "A new microwave-assisted synthetic approach to novel pyrimido[4,5-d]pyrimidines." Canadian Journal of Chemistry 85, no. 7-8 (July 1, 2007): 491–95. http://dx.doi.org/10.1139/v07-065.
Full textWallau, Martin, and Ulf Schuchardt. "Catalysis by Metal Containing Zeolites. I: Basic Sites." Journal Of The Brazilian Chemical Society 6, no. 4 (1995): 393–403. http://dx.doi.org/10.5935/0103-5053.19950068.
Full textBeller, M. "Doing Homogeneous Catalysis between Basic Research and Application." Chemie Ingenieur Technik 78, no. 8 (August 2006): 1061–67. http://dx.doi.org/10.1002/cite.200600043.
Full textHäussermann, Dorothea, Richard Schömig, Barbara Gehring, and Yvonne Traa. "Influence of the Synthesis Protocol on the Catalytic Performance of PHI-Type Zeolites for the Dehydration of Lactic Acid." Catalysts 13, no. 2 (January 24, 2023): 261. http://dx.doi.org/10.3390/catal13020261.
Full textKaminski, Piotr. "The Application of Copper-Gold Catalysts in the Selective Oxidation of Glycerol at Acid and Basic Conditions." Catalysts 11, no. 1 (January 12, 2021): 94. http://dx.doi.org/10.3390/catal11010094.
Full textZhang, Yunlei, Pei Jin, Minjia Meng, Lin Gao, Meng Liu, and Yongsheng Yan. "Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion." Nano 13, no. 11 (November 2018): 1850132. http://dx.doi.org/10.1142/s1793292018501321.
Full textMartínez-Edo, Gabriel, Alba Balmori, Iris Pontón, Andrea Martí del Rio, and David Sánchez-García. "Functionalized Ordered Mesoporous Silicas (MCM-41): Synthesis and Applications in Catalysis." Catalysts 8, no. 12 (December 4, 2018): 617. http://dx.doi.org/10.3390/catal8120617.
Full textÁlvarez, Mayra, Dana Crivoi, Francesc Medina, and Didier Tichit. "Synthesis of Chalcone Using LDH/Graphene Nanocatalysts of Different Compositions." ChemEngineering 3, no. 1 (March 9, 2019): 29. http://dx.doi.org/10.3390/chemengineering3010029.
Full textSolinas, Vincenzo, and Italo Ferino. "Microcalorimetric characterisation of acid–basic catalysts." Catalysis Today 41, no. 1-3 (May 1998): 179–89. http://dx.doi.org/10.1016/s0920-5861(98)00048-0.
Full textLi, Nancy, Thomas P. Keane, Samuel S. Veroneau, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, and Daniel G. Nocera. "Template-stabilized oxidic nickel oxygen evolution catalysts." Proceedings of the National Academy of Sciences 117, no. 28 (July 7, 2020): 16187–92. http://dx.doi.org/10.1073/pnas.2001529117.
Full textde Lima, Lilian C. M., Daniela M. A. F. Navarro, and Lília P. Souza-Santos. "Methyl esters from the copepod Tisbe biminiensis assayed by two transesterification methods." Crustaceana 86, no. 11 (2013): 1343–53. http://dx.doi.org/10.1163/15685403-00003242.
Full textXu, Feng, Chuang Li, and Shao Yang Jia. "The Basic Investigation on Catalytic Oxidation of Mine Gas to Methanol in Liquid Phase." Advanced Materials Research 997 (August 2014): 51–56. http://dx.doi.org/10.4028/www.scientific.net/amr.997.51.
Full textDwulet, Gregory E., Benjamin J. Coscia, Michael R. Shirts, and Douglas L. Gin. "A nanostructured bifunctional acid–base catalyst resin formed by lyotropic liquid crystal monomers." Canadian Journal of Chemistry 98, no. 7 (July 2020): 332–36. http://dx.doi.org/10.1139/cjc-2019-0408.
Full textMakosza, Mieczyslaw, and Michal Fedorynski. "Phase Transfer Catalysis – Basic Principles, Mechanism and Specific Features." Current Catalysise 1, no. 2 (July 1, 2012): 79–87. http://dx.doi.org/10.2174/2211544711201020079.
Full textBARTHOMEUF∗, DENISE. "Basic Zeolites: Characterization and Uses in Adsorption and Catalysis." Catalysis Reviews 38, no. 4 (November 1996): 521–612. http://dx.doi.org/10.1080/01614949608006465.
Full textIglesias, Emilia, and Aurora Fernández. "Cyclodextrin catalysis in the basic hydrolysis of alkyl nitrites." Journal of the Chemical Society, Perkin Transactions 2, no. 7 (1998): 1691–700. http://dx.doi.org/10.1039/a707647i.
Full textNijhuis, Xander, and Bert Weckhuysen. "Basic Principles in Applied Catalysis. Edited by Manfred Baerns." Angewandte Chemie International Edition 43, no. 38 (September 27, 2004): 4979. http://dx.doi.org/10.1002/anie.200485195.
Full textNijhuis, Xander, and Bert Weckhuysen. "Basic Principles in Applied Catalysis. Herausgegeben von Manfred Baerns." Angewandte Chemie 116, no. 38 (September 27, 2004): 5087. http://dx.doi.org/10.1002/ange.200485195.
Full text