Academic literature on the topic 'Batch adsorption experiment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Batch adsorption experiment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Batch adsorption experiment"

1

Bolan, NS, JK Syers, and RW Tillman. "Effect of pH on the adsorption of phosphate and potassium in batch and in column experiments." Soil Research 26, no. 1 (1988): 165. http://dx.doi.org/10.1071/sr9880165.

Full text
Abstract:
The effect of increasing pH, through incubation with Ca(OH)2 and NaOH, on the adsorption of phosphate (P) and potassium (K) was examined in batch and in column experiments. In column experiments, an increase in pH from 5.2 to 8.2 decreased the adsorption of P and increased that of K which resulted in an increased leaching of P and a decreased leaching of K. In a batch experiment, however, an increase in pH resulting from incubation with NaOH gave similar results to those of the column experiment, whereas an increase in pH due to Ca(OH)2 addition caused the opposite effect on the adsorption of both P and K. The difference between the batch and the column experiments in the effect of incubating soil with Ca(OH)2 on the adsorption of P and K is related to the concentration of Ca in the soil solution.
APA, Harvard, Vancouver, ISO, and other styles
2

Šváb, Marek, Kateřina Sukdolová, and Martina Švábová. "Competitive adsorption of toxic metals on activated carbon." Open Chemistry 9, no. 3 (June 1, 2011): 437–45. http://dx.doi.org/10.2478/s11532-011-0021-y.

Full text
Abstract:
AbstractCompetitive adsorption of zinc and copper on activated carbon is studied in this article. Main aim was to suggest an advanced model for competitive adsorption of both metals considering pH influence and precipitation. A surface-complexation approach was employed for the modeling. Two models were considered: simple adsorption and ion exchange. System “The Geochemists Workbench” was used for calculation of both static and dynamic adsorption tasks. From the batch experiments, concentration of four types of sorbing sites on the carbon surface and its protonation and sorption constants were deduced. Then, batch competitive adsorption experiments were compared with the models’ results. Finally, a column experiment (fixed bed adsorption) was carried out. It was observed that the model of ion exchange can satisfyingly predict both chromatographic effect and increase of zinc concentration in effluent over its initial value, although a quantitative agreement between the model and the experiment was not totally precise.
APA, Harvard, Vancouver, ISO, and other styles
3

Moh, H. T., Ivy A. W. Tan, and Leonard L. P. Lim. "Removal of Atrazine from Water Using Oil Palm Shell Based Adsorbents: Equilibrium and Kinetic Study." Journal of Civil Engineering, Science and Technology 4, no. 2 (October 1, 2013): 18–23. http://dx.doi.org/10.33736/jcest.114.2013.

Full text
Abstract:
Adsorption using granular activated carbon (GAC) in a permeable reactive barrier (PRB) has been proven in inhibiting the further spread of contaminant plumes in groundwater. GAC synthesized from oil palm shell was chosen for groundwater remediation in this study due to the low operation cost using the adsorption process. In this study, GAC synthesized from oil palm shells were used as adsorbent to adsorb atrazine from water. This study involved a series of batch experiment to determine the adsorption equilibrium and kinetics of adsorbent. The batch experiment was conducted by shaking conical flasks containing 0.6 g GAC in 300 mL solution with initial atrazine concentrations of 5, 10, 20 and 30 mg/L at 180 rpm at 30 ± 2 °C. The GAC showed more than 95 % of atrazine removal in all the batch experiments. The adsorption kinetic study showed that the adsorption of atrazine is of physisorption as the experimental data is fitted better to the pseudo-first-order model than the pseudo- second-ordermodel.Intheadsorptionisothermstudy,theadsorptionofatrazineontoGACwasbetterdescribedbytheFreundlich model which indicated multilayer adsorption on the heterogeneous surface of the adsorbent. The atrazine adsorption capacity of the GAC was 15.132 mg/g, which was higher than that using the activated carbon synthesized from waste charcoal (13.947 mg/g). ThisstudyshowsthatthereisapotentialforGACtobeusedforremediatinggroundwatercontaminatedbypesticides.
APA, Harvard, Vancouver, ISO, and other styles
4

Fox, P., and M. T. Suidan. "A Fed-Batch Technique to Evaluate Biodegradation Rates of Inhibitory Compounds with Anaerobic Biofilms Attached to Granular Activated Carbon." Water Science and Technology 23, no. 7-9 (April 1, 1991): 1337–46. http://dx.doi.org/10.2166/wst.1991.0586.

Full text
Abstract:
Adsorption kinetics render measurements of substrate utilization rates in biofilms attached to adsorbing materials difficult. A fed-batch technique which maintains a constant concentration of substrate in the presence of biomass attached to granular activated carbon (GAC) was developed to measure biological kinetics independent of adsorption kinetics. The fed-batch technique used pre-adsorbed substrate on GAC as a source of substrate. During the experiment, the mass of substrate that is biodegraded is negligible when compared to the large mass of adsorbed substrate. Near equilibrium adsorption phenomena maintains the concentration of substrate constant throughout the experiment and eliminates mass transport resistance within the biofilms. Substrate utilization rates were measured at a specific substrate concentration by monitoring methane gas production rates. Samples of GAC with attached biomass were removed from two expanded-bed anaerobic reactors. GAC samples from a 3-ethylphenol (3-ep) fed reactor were used in batch experiments with 3-ep as the substrate and GAC samples from an orthochlorophenol (OCP) fed reactor were used in batch experiments with OCP as the substrate. Data were observed to fit Haldane kinetics and predictions from the Haldane kinetic parameters were in agreement with transient behavior from the 3-ep fed reactor. This technique was useful in predicting threshold inhibitory levels for continuous treatment of inhibitory wastewaters in expanded-bed GAC reactors. The fed-batch technique light also be applied to measure substrate utilization rates of biomass attached to other adsorbable materials such as soils.
APA, Harvard, Vancouver, ISO, and other styles
5

Biswas, Swarup, and Umesh Mishra. "Effective Remediation of Lead Ions from Aqueous Solution by Chemically Carbonized Rubber Wood Sawdust: Equilibrium, Kinetics, and Thermodynamic Study." Journal of Chemistry 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/842707.

Full text
Abstract:
Rubber wood sawdust was carbonized into charcoal by chemical treatment which was used for removal of lead ion from aqueous solution. The work involves batch experiments to investigate the pH effect, initial concentration of adsorbate, contact time, and adsorbent dose. Experimental data confirmed that the adsorption capacities increased with increasing inlet concentration and bed height and decreased with increasing flow rate. Adsorption results showed a maximum adsorption capacity of 37 mg/g at 308 K. Langmuir, Freundlich, and Temkin model adsorption isotherm models were applied to analyze the process where Temkin was found as a best fitted model for present study. Simultaneously kinetics of adsorption like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were investigated. Thermodynamic parameters were used to analyze the adsorption experiment. Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy confirmed the batch adsorption of lead ion onto chemically carbonized rubber wood sawdust.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Jian Hua. "Preparation and Investigation on the Adsorption Behavior of Polyethylene Glycol Modified Sodium Alginate Porous Membrane Adsorbent for Cr(III) Ions." Advanced Materials Research 455-456 (January 2012): 786–95. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.786.

Full text
Abstract:
- In this study, sodium alginate based porous membrane adsorbents (GA/SA) were prepared by using polyethylene glycol (PEG) as porogen and glutaraldehyde (GA) as cross-linking agent. The prepared GA/SA were used to remove Cr (III) ions from wastewater to test its adsorption performance. The proposed technique is very convenient for operation. The batch experiments were performed to investigate the adsorption kinetics of Cr (III) ions from aqueous solution under different conditions, such as the amount of PEG in the GA/SA, pH of solution, initial Cr (III) ions concentration, adsorbent dose and contact time. The GA/SA exhibited the maximum uptake capacity of 57.4 mg/g under the optimal condition. The experiment results show that the adsorption is high pH-dependent. Various kinetic models were applied to examine the mechanism of adsorption processes. Pseudo-second-order kinetic model exhibits the best correlation with experimental data. The kinetic experiment results show that the adsorption of Cr (III) ions is a multistep limited adsorption process. Out of Langmuir and Freundlich isotherm equations, the batch equilibrium data are better described by the Freundlich isotherm equation. The prepared GA/SA could be considered as a potential low-cost and high-effective bio-sorbent for removing and recovering Cr (III) ions from the aqueous solutions.
APA, Harvard, Vancouver, ISO, and other styles
7

Du, Jifu, Zhen Dong, Zhiyuan Lin, Xin Yang, and Long Zhao. "Radiation Synthesis of Pentaethylene Hexamine Functionalized Cotton Linter for Effective Removal of Phosphate: Batch and Dynamic Flow Mode Studies." Materials 12, no. 20 (October 17, 2019): 3393. http://dx.doi.org/10.3390/ma12203393.

Full text
Abstract:
A quaternized cotton linter fiber (QCLF) based adsorbent for removal of phosphate was prepared by grafting glycidyl methacrylate onto cotton linter and subsequent ring-opening reaction of epoxy groups and further quaternization. The adsorption behavior of the QCLF for phosphate was evaluated in a batch and column experiment. The batch experiment demonstrated that the adsorption process followed pseudo-second-order kinetics with an R2 value of 0.9967, and the Langmuir model with R2 value of 0.9952. The theoretical maximum adsorption capacity reached 152.44 mg/g. The experimental data of the fixed-bed column were well fitted with the Thomas and Yoon–Nelson models, and the adsorption capacity of phosphate at 100 mg/L and flow rate 1 mL/min reached 141.58 mg/g. The saturated QCLF could be regenerated by eluting with 1 M HCl.
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Rufaie, M. M., Z. T. A. Alsultani, and A. S. Waheed. "Adsorption kinetics and thermodynamics of Azure C dye from aqueous solution onto activated charcoal." Koroze a ochrana materialu 60, no. 3 (September 1, 2016): 80–85. http://dx.doi.org/10.1515/kom-2016-0013.

Full text
Abstract:
Abstract Adsorption thermodynamics and kinetics of Azure C and from the aqueous solution on activated charcoal was examined. The charcoal was activated by concentrated sulphuric acid and the adsorption kinetic and thermodynamic was tested in batch experiment. An experiments used the adsorption batch method to observe the effect of the variable parameters, i.e. concentration of dye, time of contact, pH, temperature and adsorbent dose. The ideal dosage of adsorbent was 0.3 g for Azure C. The equilibrium state was reached within 60 min for dye Azure C at activated charcoal. The isotherms of equilibrium were investigated to characterize the adsorption operation. The data for the kinetics study were adjusted utilizing the equation of pseudo- second-order and the model of diffusion (intra-particle). All data were evaluated by means of equilibrium Freundlich, Langmuir and Temkin isotherm on activated charcoal surface. Based on the adsorption isotherm evaluation on activated charcoal the result was 4S by using Giles classification. The thermodynamic factors like ΔH, ΔG and ΔS were estimated.
APA, Harvard, Vancouver, ISO, and other styles
9

Rho, Hoon Suk, Alexander Thomas Hanke, Marcel Ottens, and Han Gardeniers. "A microfluidic device for the batch adsorption of a protein on adsorbent particles." Analyst 142, no. 19 (2017): 3656–65. http://dx.doi.org/10.1039/c7an00917h.

Full text
Abstract:
A microfluidic platform or “microfluidic batch adsorption device” is presented, which performs two sets of 9 parallel protein incubations with/without adsorbent particles to achieve an adsorption isotherm of a protein in a single experiment.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Jing Song, Si Guang Chen, Zhi Wu Zhou, and Rui Ting Peng. "Adsorption of Arsenic (III) onto Modified Magnetic Microspheres." Advanced Materials Research 156-157 (October 2010): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.156-157.42.

Full text
Abstract:
Modified magnetic microspheres were prepared and used to adsorb As ( ) from aqueous solution. The experiments were conducted in a batch system to study the adsorption behavior of As( ) onto these microspheres and the adsorption equilibrium, adsorption isotherm and kinetics were also studied. The experiment results showed that the modified magnetic microspheres are effective to remove As ( ) from aqueous solution, and the percentage removal of As ( ) could reach over 90% at pH 2.0 within 90 min. The pseudo second-order model was found to fit accurately with the experimental data. The adsorption isotherm can be described by Langmuir model.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Batch adsorption experiment"

1

Welagedara, Asanka. "Phosphorus Removal and Methylene Blue Adsorption by Porous Calcium Silicate Hydrate." Thesis, KTH, Mark- och vattenteknik (flyttat 20130630), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171836.

Full text
Abstract:
Nutrients (nitrogen and phosphorus) should be removed and recycled from wastewater in order to reduce the nutrient load to recipient waters, avoiding contamination of groundwater and conserve resources. There is a need to pay more attention to phosphorus (P) removal and recycling from wastewater due to limited availability of phosphorus recourses. For such purpose reactive filter media can be used to remove nutrient from wastewater as a sustainable technology. The present study was aimed to evaluate calcium silicate hydrate crystallization in Absol as a reactive filter media for removal and recycle of phosphorus from household wastewater and assess physical and chemical characteristics of Absol. A study of the color removing capacity of Absol was also performed. Several batch experiments were done for comparing absorption mechanism. Collected data were applied to Langmuir and Freundlich isotherm models to study type of adsorption isotherms and pseudofirst- order and second order models were run for study of adsorption kinetics. The experiment demonstrated a very high P and Methylene Blue (MB) sorption capacity. The amount of adsorbed P and MB vary with initial solution concentrations, contact time, and adsorbent dosage. Both equilibrium data (P, MB) were fitted very well in the Langmuir isotherm equation, confirming the monolayer physical sorption and adsorption kinetic followed by the pseudo-second order kinetic model. It is concluded that Absol can have potential to be use for the removal of P, textile dye contaminants and probably also pharmaceuticals present in wastewater.
APA, Harvard, Vancouver, ISO, and other styles
2

Carr, Stephen Thomas David. "Investigation into phosphorus removal by iron ochre for the potential treatment of aquatic phosphorus pollution." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7663.

Full text
Abstract:
Phosphorus (P) pollution of waterbodies is a global issue with detrimental environmental, social and economic impacts. Low-cost and sustainable P removal technologies are therefore required to tackle P pollution, whilst also offering a technique for reclaiming P. Ochre, a waste product from minewater treatment plants (MWTPs), has been proposed as a suitable material for the removal of P from enriched waters due to a high content of Fe, Al, Ca and Mg, which have high affinities for P removal. Whilst a range of studies have been conducted investigating ochre as a P adsorbent, most of these are large-scale field experiments and lack understanding of the underlying processes of P removal by ochre. There have also been very few detailed comparisons of different ochre types. The primary focus of this thesis is thus to provide a process-based understanding of P removal by various ochres, in order to investigate the optimal conditions for the use of ochres in the treatment of aquatic P pollution. Seven ochres from six MWTPs in the UK and Ireland were investigated, one of which was in a pelleted form. The ochres were largely comprised of Al, Ca, Fe and Mg (42-68 % by dry weight), had a high B.E.T. surface area, 56-243 m2 g-1, and contained mineral surfaces with a high affinity for P adsorption, such as goethite and calcite. A novel batch experiment methodology was utilised to calculate the adsorption characteristics of ochre at discrete pH conditions. The variation of these characteristics with pH indicates the importance and requirement for such a method to study adsorption by materials at the expected pH conditions of application. At the pH conditions of wastewater streams (~pH 7), the P adsorption capacities of the ochres, determined from fitting adsorption isotherms, was 11.8–43.1 mg P g-1. Results of P adsorption batch experiments were modelled in ORCHESTRA, wherein P removal by the ochres was described well by adsorption onto hydrous ferric oxides. Three of the ochres contain relatively high calcite contents and due to a poor fit of the model to the observed datasets at high pH conditions, with equilibrium P concentrations lower in the batch experiments than the modelled result, adsorption onto calcite is suggested as a P removal mechanism for these ochres at pH > 7. Environmental application of ochre filters will require P removal under flow-through transport conditions. Column experiments were therefore conducted using two ochres, coarse-grained Polkemmet ochre and Acomb pellets (column volume 1055 cm3, pore space 490-661 cm3, typical pore volumes of experiments: 220-400). P removal efficiency increased with contact time, and the presence of competing ions had only marginal effects on P removal. Resting the column substrate for 48 hours between P applications greatly increased the P removal efficiency of a packed column of Polkemmet ochre, resulting in 81 % of influent P removed over 1000 pore volumes of operation (7.68 mg P g-1). Acomb pellets had a lower P removal efficiency than Polkemmet ochre. It is suggested that the high calcium content of the pellets, as a result of the pelletisation process, has created a substrate where the dominant P removal mechanism at neutral pH conditions is adsorption to calcite, which has slower reaction kinetics than adsorption onto goethite. Therefore, this pelleted ochre requires a higher contact time for adsorption reactions to occur. It is suggested that ochre filters are most suitable for application in situations where flow rate is constant or can be controlled e.g. septic tank effluent. Ochres which dry to a coarse particle size are preferred for use as a substrate as pelletisation requires capital, expertise and can produce substrates with slower P sorption kinetics. Resting the filter substrate between P application regenerates surface sites for adsorption, and filters should be run in parallel to maximise P removal efficiency. Acomb pellets, which are a mix of iron hydroxides and alkaline materials, may have potential application as a permeable reactive barrier substrate to treat P enriched ground waters. Further research utilising fine-grained ochres as an additive to P rich fertilisers or for use in continuously stirred tank reactors is recommended.
APA, Harvard, Vancouver, ISO, and other styles
3

Curran, Daniel Thomas. "Phosphate Removal and Recovery from Wastewater by Natural Materials for Ecologically Engineered Wastewater Treatment Systems." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/455.

Full text
Abstract:
Eutrophication due to excess loading of phosphorus (P) is a leading cause of water quality degradation within the United States. The aim of this study was to investigate P removal and recovery with 12 materials (four calcite varieties, wollastonite, dolomite, hydroxylapatite, eggshells, coral sands, biochar, and activated carbon. This was accomplished through a series of batch experiments with synthetic wastewater solutions ranging from 10-100 mg PO₄-P/ L. The results of this study were used to establish large-scale, calcite-based column filter experiments located in the Rubenstein School of Environment and Natural Resources' Eco-Machine. Influent and effluent wastewater samples were routinely collected for 64 days. Measures of filter performance included changes in pH, percent reduction and mass adsorbed of P. After the columns reached saturation, filter media was analyzed for the mineralogical content by X-ray powder diffraction (XRD). In the batch experiments, P removal and recovery varied among the media and across treatments. The best performing minerals were calcite, wollastonite, and hydroxylapatite. Eggshells, activated carbon, and coral sands also reduced and adsorbed P. The remaining materials had the lowest reductions and adsorption of P. Results from batch experiments informed the design of large column filters within the Rubenstein School of the Environment and Natural Resources' Eco-Machine. Removal and adsorption rates of P by the three column filters were similar. The columns achieved an average P reduction of 12.53% (se = 0.98) and an average P adsorption of 0.649 mg PO₄-P/ kg media (se = 0.03) over a 4-h hydraulic retention time. Paired T-tests showed that P reductions were statistically significant (p-value < 0.05) on the majority of sampling dates until the columns reached saturation. Saturation was reached after 31 days for two of the columns and 36 days for the third column. The filter media consistently buffered the pH of the wastewater to approximately 6.0-7.0 with no indication of diminishing buffer capacity after saturation. XRD analysis was not able to detect any P species within the crystalline structure of the filter media. This research contributes to the understanding of how the selected media perform during P removal and recovery programs, while providing information on the performance of large column filters operating within advanced, ecologically engineered wastewater treatment systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Stenström, Ylva. "Phosphorus and Nitrogen Removalin Modified Biochar Filters." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-321915.

Full text
Abstract:
Onsite wastewater treatment systems in Sweden are getting old and many of them lack sufficient phosphorus, nitrogen and organic carbon reduction. Biochar is a material that has been suggested as an alternative to the common sand or soil used in onsite wastewater treatment systems. The objective of this study was to compare the phosphorus removal capacity between three different modified biochars and one untreated biochar in a batch adsorption and column filter experiment. The modifications included impregnation of ferric chloride (FeCl3), calcium oxide (CaO) and untreated biochar mixed with the commercial phosphorus removal product Polonite. To further study nitrogen removal a filter with one vertical unsaturated section followed by one saturated horizontal flow section was installed. The batch adsorption experiment showed that CaO impregnated biochar had the highest phosphorus adsorption, i.e. of 0.30 ± 0.03 mg/g in a 3.3 mg/L phosphorus solution. However, the maximum adsorption capacity was calculated to be higher for the FeCl3 impregnated biochar (3.21 ± 0.01 mg/g) than the other biochar types. The pseudo 2nd order kinetic model proved better fit than the pseudo 1st order model for all biochars which suggest that chemical adsorption was important. Phosphorus adsorption to the untreated and FeCl3 impregnated biochar fitted the Langmuir adsorption isotherm model best. This indicates that the adsorption can be modeled as a homogenous monolayer process. The CaO impregnated and Polonite mixed biochars fitted the Freundlich adsorption model best which is an indicative of heterogenic adsorption. CaO and FeCl3 impregnated biochars had the highest total phosphorus (Tot-P) reduction of 90 ± 8 % and 92 ± 4 % respectively. The Polonite mixed biochar had a Tot-P reduction of 65 ± 14 % and the untreated biochar had a reduction of 43 ± 24 %. However, the effluent of the CaO impregnated biochar filter acquired a red-brown tint and a precipitation that might be an indication of incomplete impregnation of the biochar. The FeCl3 effluent had a very low pH. This can be a problem if the material is to be used in full-scale treatment system together with biological treatment for nitrogen that require a higher pH. The nitrogen removal filter showed a total nitrogen removal of 62 ± 16 % which is high compared to conventional onsite wastewater treatment systems. Batch adsorption and filter experiment confirms impregnated biochar as a promising replacement or addition to onsite wastewater treatment systems for phosphorus removal. However the removal of organic carbon (as chemical oxygen demand COD) in the filters was lower than expected and further investigation of organic carbon removal needs to be studied to see if these four biochars are suitable in real onsite wastewater treatment systems.
Många av Sveriges små avloppssystem är gamla och saknar tillräcklig rening av fosfor, kväve och organiskt material. Följden är förorenat grundvatten samt övergödning i hav, sjöar och vattendrag. Lösningar för att förbättra fosfor- och kvävereningen finns på marknaden men många har visat brister i rening och robusthet. Biokol är ett material som har föreslagits som ersättare till jord eller sand i mark och infiltrationsbäddar. Denna studie syftade till att i skak- och kolonnfilterexperiment jämföra fosforreduktion mellan tre modifierade biokol och ett obehandlat biokol. Modifieringen av biokolet innebar impregnering med järnklorid (FeCl3), kalciumoxid (CaO) samt blandning med Polonite som är en kommersiell produkt för fosforrening. För att undersöka förbättring av kväverening installerades även ett filter med obehandlat biokol där en vertikal aerob modul kombinerades med en efterföljande horisontell anaerob modul. Skakstudien där biokolen skakades i 3.3 mg/L fosforlösning visade att adsorptionen var högst i det CaO-impregnerade biokolet, 0.3 ± 0.03 mg/g. Den maximala potentiella fosforadsorptionen beräknades dock vara högst för biokolet som impregnerats med FeCl3, 3.21 ± 0.01 mg/g. Skakförsöket visade också att fosforadsorptionen var främst kemisk då adsorptionen passade bättre med pseudo andra ordningens modell än pseudo första. Adsorption av fosfor på obehandlat biokol och FeCl3 impregnerat biokol modellerades bäst med Langmuir modellen, vilket tyder på en homogen adsorption. Det Polonite-blandade biokolet och CaO-impregnerade biokolet modellerades bäst med Freundlich modellen vilket är en indikation på en heterogen adsorptionsprocess. Biokol impregnerat med CaO och FeCl3 gav de högsta totalfosforreduktionerna på 90 ± 8 % respektive 92 ± 4 %. Biokolet som var blandat med Polonite hade en reduktion på 65 ± 14 % och det obehandlade biokolet 43 ± 24 %. Ett problem med filtratet från CaO-filtret var att det fick en rödbrun färg samt en fällning vilket kan ha berott på ofullständig pyrolysering och impregnering. Filtratet från det FeCl3 impregnerade biokolet hade mycket lågt pH vilket kan vara problematiskt om mikrobiologisk tillväxt i filtret för rening av kväve och organiskt material vill uppnås. Filtret för kväverening gav en total kvävereduktion på 62 ± 16 % vilket är högre än kommersiella system. Resultaten från skak och filterstudien visade på att impregnerade biokol kan ge en förbättrad fosforrening om de skulle användas i små avloppssystem. Rening av organiskt material, kemisk syreförbrukning (COD), var dock låg i alla filter och behöver studeras ytterligare för att avgöra om dessa biokol är lämpliga för småskalig avloppsvattenrening.
APA, Harvard, Vancouver, ISO, and other styles
5

Yao, Wenwen. "Removal of Sulfamethoxazole by Adsorption and Biodegradation in the Subsurface: Batch and Column Experiments with Soil and Biochar Amendments." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/43.

Full text
Abstract:
The wide use and the incomplete metabolism of antibiotics, along with the poor removal efficiency of current treatment systems, results in the introduction of large quantities of antibiotics to the environment through the discharge of treated and untreated wastewater. If not treated or attenuated near the source of discharge, the antibiotics can be distributed widely in the environment. In this research, sulfamethoxazole (SMX), a common sulfonamide antibiotic, was selected as a model compound due to its presence in the environment and its resistance to remediation and natural attenuation. Among the various entry routes, discharges from on-site disposal systems are of particular interest due to the wide use of these systems. The complex nature of subsurface transport downstream of these systems adds difficulties to the removal of SMX from subsurface discharges. For this research, two processes that impact SMX removal, biodegradation and sorption, were examined to determine the primary factors governing the elimination of SMX from septic effluent discharges in the subsurface. To characterize the biodegradation of SMX, batch experiments were conducted with SMX in the presence of septic effluent and soil for both aerobic and anoxic conditions. Results showed that SMX removal was limited in the septic effluent but increased in the presence of soil, demonstrating the important role of the soil in SMX removal in both aerobic and anoxic conditions. Addition of external nutrients (ammonium and sulfate) had small effects on SMX removal, although SMX removal was enhanced under aerobic condition with increased dissolved organic carbon. To overcome the limited sorption of SMX on soil, soil amendments were developed and evaluated using biochar, a green and cost-effective adsorbent. Biochars produced from different types of feedstock were characterized for different pyrolysis temperatures, and their adsorption behaviors were examined and compared with commercial biochar and activated carbon (AC). Adsorption isotherms were developed and adsorption kinetics of soil, biochar and AC were studied. Results showed that adsorption on soil, biochar and AC followed three different kinetics models and their equilibrium isotherms followed the Freunlich model. Higher adsorption rates were achieved with biochars prepared at the higher temperature. A lab-engineered biochar with pine sawdust at 500 °C achieved comparable sorption capacity to AC. SMX transport in subsurface was also explored with saturated soil columns filled with soil that was mixed with biochar at different percentages. Significant SMX removal (including complete elimination at a low flowrate and over 90 % elimination at a high flowrate) for all cases was primarily attributed to biodegradation. These results provide insight into the transport and transformations affecting SMX, and then provide a basis for developing low-cost approaches for the mitigation of SMX.
APA, Harvard, Vancouver, ISO, and other styles
6

Melo, Diego de Quadros. "LIGNOCELLULOSIC ACTIVATED WASTE USE ADSORBENTS IN TOXIC METALS IONS REMOVAL: BATCH AND COLUMN STUDIES USING DESING EXPERIMENTAL." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17236.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
The tururi and buriti fibers, and the castor bean stalks are extremely efficient to sorption of metal ions from aqueous solutions. In this study, the adsorbents were activated with different concentrations of alkali solutions (5, 7, 10 and 15% w/v). The materials were characterized by analytical techniques as infrared, X-ray Diffraction (XRD) and Thermogravimetry analysis. The infrared spectra revealed that associated groups to macromolecules of hemicellulose and lignin after alkaline activation have less intensity compared to the initial samples. The XRD revealed, that after castor bean stalks alkaline activation, the presence of the cellulose type II peaks, which did not occur with tururi and buriti fibers. The fluorescence X-ray data showed that the cations present in the initial adsorbents, K+ and Ca2 + are exchanged by Cu (II), Ni (II), Cd (II) and Pb (II) in the sorption process. Studies of the influences of variables: mass of adsorbent; agitation rate; the initial pH and concentration using a fractional factorial design 24-1 demonstrated that all variables affect the response (adsorption capacity mg g-1). As a result for a larger value of qtotal, conditions were observed while maintaining the pH at 5.5; mass of the adsorbent 50 mg; agitation at 200 rpm and the initial concentration: 500 mg L-1. The adsorption kinetics revealed fast adsorption process, about 30 minutes, and good fitting to pseudo-second-order theoretical model to all adsorption process studied. Intraparticle diffusion models as Weber-Morris and Boyd were testes in order to study the limiting steps of the process.The results showed that for tururi and buriti fibers (with the exception of nickel ions) the rate-limiting step is not the intraparticle diffusion, while for the castor bean stalks, it was found that the rate-limiting step of the process is the intraparticle diffusion. The study of monoelement and multielement systems were performed at pH 5.5, initial concentrations from 20-500 mg L-1, which the experimental data were fitted to the Langmuir, Freundlich and Sips theoretical models. The tururi fibers adsorption capacities (mg g-1) in monoelementar and multielement system follows the order Pb (188.79)> Cd (92.20)> Cu (32.82)> Ni (22.23) and Cd (77.53)> Pb (43.93)> Cu (24.99)> Ni (19.51), respectively. Buriti fibers adsorption capacities (g-1 mg) in monoelementar and multielement systems follows the order of Cu (143.1)> Pb (112.1)> Ni (103.7)> Cd (86.33) and Pb (69.12)> Cu (49.28)> Ni (45.10)> Cd (24.95), respectively. Castor bean stalks adsorption capacities (g-1 mg) in in monoelementar and multielement systems follows the order of Pb (175.1)> Cd (124.8)> Ni (111.1)> Cu (89.23) and Cu (56.78)> Pb (55.82)> Cd (44.72)> Ni (43.48), respectively. The results showed a better fit for the Sips model, relating to a heterogeneous adsorption. Fixed bed studies using castor bean stalks checking the influence of variables adsorbent flow (1, 2 and 3 mL min-1), the height of the column (5, 7 and 10 cm) and initial concentration (100 , 200, 300 mg L-1) by the Box-Behnken planning revealed that there were no influence between the variables in the studied. The breakthrough curves were well fitted to the Thomas model. The study in real effluent with Cu (II) (galvanoplastic sector) was carried out using the optimized condition: flow (1 ml min-1); bed height (10 cm) initial concentration: (245.5 mg L-1) and it was found adsorption capacity of 32.42 mg g-1. The mamoneira stalks adsorbent was used for five cycles to verify their potential reuse, and it was found no significant efficiency losses.
As fibras tururi, buriti e talos da mamoneira sÃo resÃduos lignocelulÃsicos extremamente eficientes na sorÃÃo de metais de soluÃÃes aquosas. Neste trabalho, eles foram ativados com diferentes concentraÃÃes de soluÃÃes alcalinas (5, 7, 10 e 15% m/v). Os materiais foram caracterizados pelas tÃcnicas analÃticas de Infravermelho, DifraÃÃo de Raios-X (DRX) e Termogravimetria. Os espectros de infravermelho revelaram que os grupos associados Ãs macromolÃculas de hemicelulose e lignina diminuem em intensidade ou desaparecem apÃs a ativaÃÃo alcalina. Os DRX revelaram que apÃs a ativaÃÃo alcalina, os talos da mamoneira apresentaram picos de celulose tipo II, o que nÃo ocorreu com as fibras de tururi e buriti. O dados de FluorescÃncia de Raios-X revelaram que os cÃtions presentes nos adsorventes como Na(I) e Ca(II) sÃo trocados pelos Ãons Cu(II), Ni(II), Cd(II) e Pb(II) no processo de sorÃÃo. Os estudos das influÃncias das variÃveis: massa do adsorvente; taxa de agitaÃÃo; pH e concentraÃÃo inicial utilizando planejamento experimental fracionÃrio 24-1 demostrou que todas as variÃveis afetaram a resposta (capacidade de adsorÃÃo mg g-1). Como resultado para um maior valor de qtotal, as condiÃÃes observadas foram mantendo o pH em 5,5; massa do adsorvente em 50 mg; taxa de agitaÃÃo em 200 rpm e concentraÃÃo inicial 500 mg L-1. A cinÃtica de adsorÃÃo revelou rÃpida adsorÃÃo, cerca de 30 minutos em geral, seguindo o modelo de pseudo-segunda ordem em todos os processos adsortivos. Modelos de difusÃo intrapartÃcula como de Webber-Morris e Boyd foram estudados a fim de determinar as etapas limitantes do processo. Os dados evidenciaram que para as fibras de tururi e buriti (com exceÃÃo dos Ãons nÃquel) a etapa limitante da velocidade nÃo à a difusÃo intraporo, enquanto para os talos de mamoneira foi verificado que a etapa limitante do processo à a difusÃo intrapartÃcula. O estudo com sistema monoelementar e multielementar foi realizado em pH 5,5, concentraÃÃes variando de 20-500 mg L-1, nos quais os dados foram aplicados aos modelos de Langmuir, Freundlich e Sips. As capacidades de adsorÃÃo (mg g-1) em sistema monoelementar e multielementar das fibras de tururi segue a ordem Pb(188,79)> Cd(92,20)> Cu(32,82)> Ni(22,23) e Cd(77,53)> Pb(43,93)> Cu(24,99)> Ni(19,51), respectivamente. As capacidades de adsorÃÃo (mg g-1) das fibras de buriti em sistema monoelementar e multielementar segue a ordem Cu(143,1)> Pb(112,1)> Ni(103,7) > Cd(86,33) e Pb(69,12)> Cu(49,28)> Ni(45,10)> Cd(24,95), respectivamente. As capacidades de adsorÃÃo (mg g-1) dos talos de mamoneira em sistema monoelementar e multielementar segue a ordem Pb(175,1)> Cd(124,8)> Ni(111,1)> Cu(89,23) e Cu(56,78)> Pb(55,82)> Cd(44,72)> Ni(43,48), respectivamente. Em geral, os resultados evidenciaram melhor aplicabilidade ao modelo de Sips, o qual prediz que os sÃtios disponÃveis para adsorÃÃo sÃo heterogÃneos. Em relaÃÃo ao estudo de adsorÃÃo em leito fixo utilizando talos de mamoneira, a verificaÃÃo da influÃncia das variÃveis: fluxo do adsorvente (1, 2 e 3mL min-1), altura da coluna (5, 7 e 10 cm) e concentraÃÃo inicial (100, 200, 300 mg L-1) pelo planejamento de Box-Behnken, revelou que nÃo hà influencia mutua entre as variÃveis no intervalo estudado. As curvas de ruptura experimentais foram bem aplicadas ao modelo teÃrico de Thomas. O estudo com efluente real de Ãons Cu (II) (setor galvanoplÃstico) utilizando a condiÃÃo otimizada: fluxo (1mL min-1); altura de leito (10 cm) e concentraÃÃo inicial: (245,5 mg L-1) obteve 32,42 mg g-1 de capacidade de adsorÃÃo O adsorvente talos de mamoneira foi utilizado por cinco ciclos para verificar seu potencial de uso, nÃo havendo perdas significativas de eficiÃncia.
APA, Harvard, Vancouver, ISO, and other styles
7

Lindquist, Anna. "Mineraliska material som reaktiva filter för avskiljning av tungmetaller från dagvatten." Thesis, Uppsala University, Department of Earth Sciences, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-88875.

Full text
Abstract:

Highly polluted urban storm water from e.g. highways can contain large amounts of heavy metals that may cause harm if they are discharged into recipients. To remove the heavy metals a possible low-cost method that does not require much maintenance, could be the use of reactive filters with filter materials consisting of industrial residues or other cheap mineral based materials. Dissolved metal ions are removed by reactive filters through the processes of ions binding to active sites on the surface of the filter materials, or by formation of insoluble precipitates.

The ability of CaO-treated granulated blast-furnace slag, iron oxide coated sand, olivine and nepheline to remove seven heavy metals (Cr, Cd, Cu, Ni, Zn, Pb and Hg) from urban storm water was studied. Initially batch experiments were performed where the effect of pH, dissolved organic carbon (DOC) and dissolved ions on the adsorption efficiency was studied. The experiments were conducted with urban storm water and with a reference solution (10 mM NaNO3), both containing the same concentration of heavy metals (approx. 1 μM). The two materials with the best results were further investigated in a column study, where the capacity of the filter was tested. Chemical equilibrium calculations using the program Visual MINTEQ were performed in order to assess the role of precipitation as a mechanism for removal.

The results show that the blast-furnace slag was the most effective filter material and that it has great potential to be used as a heavy metal remover. Also the iron oxide coated sand worked satisfactory. The highest degree of removal was obtained for lead, cadmium and nickel, for which the removal efficiency exceeded 90% after a load of 300 times the water volume in the columns. For some metals, mainly copper, chromium and mercury the dissolved organic matter affected the removal negatively. The chemical mechanisms causing the removal are specific adsorption to the surfaces of the materials, and for the blast-furnace slag probably precipitation of insoluble metal sulfides.


Starkt förorenat dagvatten som rinner av från exempelvis motorvägar, kan innehålla betydliga mängder tungmetaller som kan orsaka skada om de kommer ut i omgivande vattendrag. En billig metod för tungmetallavskiljning, som inte kräver så mycket underhåll, skulle kunna vara att använda reaktiva filtermaterial bestående av restprodukter eller andra mineraliska lågkostnadsmaterial. Reaktiva filter fungerar som metallavskiljare genom att de lösta metalljonerna binder till ytgrupper på filtermaterialen eller att svårlösliga utfällningar bildas.

Förmågan att avskilja sju tungmetaller (Cr, Cd, Cu, Ni, Zn, Pb och Hg) ur dagvatten har undersökts för fyra mineraliska filtermaterial, kalciumoxiddopad masugnsslagg, järnoxidsand, olivin och nefelin. Studien inleddes med skakförsök där adsorptionens pH-beroende undersöktes. Försöken gjordes dels med dagvatten, dels med en referenslösning (10 mM NaNO3) med samma tungmetallkoncentration (ca 1μM). Detta gjordes för att studera effekter av löst organiskt material och andra ligander på adsorptionen. Därefter testades de material som uppvisat bäst resultat i skakförsöket i kolonnförsök, ett försök som mer efterliknar en praktisk tillämpning och där filtrets kapacitet kan studeras. Genom kemiska jämviktsberäkningar med programmet Visual MINTEQ var det möjligt att undersöka om bildningen av svårlösliga metallutfällningar bidrog till metallavskiljningen.

Resultaten visar att slaggen var det effektivaste filtermaterialet och att detta har stor potential att användas för avskiljning av tungmetaller. Även järnoxidsanden fungerade tillfredsställande. De metaller som avskiljdes bäst var bly, kadmium och nickel, för vilka avskiljningen var > 90 % i kolonnförsöket efter en belastning motsvarande 300 gånger vattenmängden i kolonnerna. För vissa metaller, främst koppar, krom och kvicksilver, försämrades avskiljningen betydligt när löst organiskt material fanns närvarande. Mekanismerna som står för avskiljningen är till störst del adsorption till grupper på filtermaterialens ytor, men bildning av svårlösliga metallsulfider är också tänkbar för slaggen.

APA, Harvard, Vancouver, ISO, and other styles
8

Barz, T., V. Loffler, Harvey Arellano-Garcia, and G. Wozny. "Optimal determination of steric mass action model parameters for beta-lactoglobulin using static batch experiments." 2010. http://hdl.handle.net/10454/9039.

Full text
Abstract:
No
In this work, parameters of the steric mass-formalism SMA are optimally ascertained for a reliable determination of the adsorption isotherms of beta-lactoglobulin A and B under non-isocratic conditions. For this purpose, static batch experiments are used in contrast to the protocols based on different experimental steps, which use a chromatographic column. It is shown that parameters can already be determined for a small number of experiments by using a systematic procedure based on optimal model-based experimental design and an efficient NLP-solver. The in different works observed anti-Langmuir shape of the isotherm for small concentrations of beta-lactoglobulin A was corroborated. Moreover, we also found indications for a porosity variation with changing protein concentrations.
APA, Harvard, Vancouver, ISO, and other styles
9

Masindi, Vhahangwele. "Remediation of acid mine drainage using magnesite and its bentonite clay composite." Thesis, 2015. http://hdl.handle.net/11602/755.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Batch adsorption experiment"

1

Yang, Xiaoyan. Experimental and modelling studies of reactive dyes adsorption onto activated carbon in a batch reactor. Birmingham: University of Birmingham, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Batch adsorption experiment"

1

Sposito, Garrison. "Soil Adsorption Phenomena." In The Chemistry of Soils. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190630881.003.0012.

Full text
Abstract:
Adsorption experiments involving soil particles typically are performed in a sequence of three steps: (1) reactio of an adsorptive (ion or molecule) with a soil contacting an aqueous solution of known composition under controlled temperature and applied pressure for a prescribed period of time, (2) separationof the wet soil slurry from the supernatant aqueous solution, and (3) quantitationof the ion or molecule of interest, both in the aqueous solution and in the separated soil slurry along with its entrained soil solution. The reaction step can be performed in either a closed system (batch reactor) or an open system (flow-through reactor), and it can proceed over a time period that is either relatively short (to investigate adsorption kinetics) or very long (to investigate adsorption equilibration). The separation step is similarly open to choice, with centrifugation, filtration, or gravitational settling being conventional methods to achieve separation. The quantitation step, in principle, should be designed not only to determine the moles of adsorbate and unreacted adsorptive, but also to verify whether unwanted side reactions, such as precipitation of the adsorptive or dissolution of the adsorbent, have influenced the experiment. After reaction between an adsorptive i and a soil adsorbent, the moles of i adsorbed per kilogram of dry soil is calculated with the standard equation ni ≡ niT − Mwmi where niT is the total moles of species i per kilogram dry soil in a slurry (batch process) or a soil column (flow-through process), Mw is the gravimetric water content of the slurry or soil column (measured in kilograms water per kilogram dry soil), and mi is the molality (moles per kilogram water) of species i in the supernatant solution (batch process) or effluent solution (flow-through process). Equation 8.1 defines the surface exces, ni, of an ion or molecule adsorptive that has become an adsorbate. Formally, ni is the excess number of moles of i per kilogram soil relative to its molality in the supernatant solution. As mentioned in Section 7.2, this surface excess may be a positive, zero, or negative quantity.
APA, Harvard, Vancouver, ISO, and other styles
2

Kourim, Aicha, Moulay Abderrahmane Malouki, and Aicha Ziouche. "Thermodynamic and Kinetic Behaviors of Copper (II) and Methyl Orange (MO) Adsorption on Unmodified and Modified Kaolinite Clay." In Clay and Clay Minerals [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98625.

Full text
Abstract:
In this study, the adsorption of Copper Cu (II) and methyl Orange (MO) from aqueous solution, on Tamanrasset’s unmodified and modified Kaolinite clay which as low cost adsorbents, was studied using batch experiments. The adsorption study includes both equilibrium adsorption isotherms, kinetics and thermodynamics study. For the characterization of the adsorbent several properties are determined such as pH, the Specific Surface Area, the Point of Zero Charge and the Cation Exchange Capacity. Indeed, various parameters were investigated such as contact time, initial metal and dye concentration, mass of solid, pH of the solution and temperature. The adsorption process as batch study was investigated under the previews experimental parameters.
APA, Harvard, Vancouver, ISO, and other styles
3

Defo, Celestin, and Ravinder Kaur. "Kinetics of Heavy Metals Adsorption on Gravels Derived From Subsurface Flow Constructed Wetland." In Advances in Environmental Engineering and Green Technologies, 193–213. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1871-7.ch011.

Full text
Abstract:
Adsorption kinetics of Ni, Cr, and Pb on gravels collected from constructed wetland was studied at varied metal concentrations and contact period for estimating the removal of heavy metals from wastewater. Batch experiments were conducted by shaking 120 ml of metal solutions having 5 concentration levels each of Ni (1.0, 2.0, 3.5, 5.0 and 6.0 mg l-1), Cr (1.0, 2.0, 3.0, 4.5 and 6.0 mg l-1), and Pb (1.0, 3.0, 6.0, 8.0 and 12.0 mg l-1) with 50 g of gravels for as function of time. Adsorption of Ni, Cr, and Pb on gravels ranged from 34.8 to 47.2, 42.7-54.9, and 47.5-56.9%, indicating their removal in the order: Pb &gt; Cr &gt; Ni. Freundlich model showed a good fit for Ni and Cr (R2&gt;0.9) while Langmuir model fitted better for Pb (R2= 0.7). The pseudo-second-order model showed the best fit to simulate the adsorption rates of these metals on gravel.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Batch adsorption experiment"

1

Stanišić, Tijana, Nataša Karić, Milica Karanac, Maja Đolić, Mirjana Ristić, and Aleksandra Perić-Grujić. "Natural Adsorbents Based on Metal Oxide Structures for Removal of Lead And Arsene Ions from Aqueous Solution." In 34th International Congress on Process Industry. SMEITS, 2021. http://dx.doi.org/10.24094/ptk.021.34.1.43.

Full text
Abstract:
The aim of this research is to examine the efficiency of raw mineral materials that possess good adsorption and techno-economic properties applicable in real systems for the removal of heavy metal ions, primarily lead and arsenic. The adsorption studies were conducted in batch system. To determine the optimal conditions, the adsorption efficiency of the selected ions was tested by variation of the adsorbents mass (5, 7.5, 10 and 20 mg). The materials used in the experimental work are of mineral origin, whose composition consists mainly of SiO2, Al2O3 and Fe2O3. The characterization of analyzed materials was performed using X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM). The maximum removal efficiency of lead ions is 94.8 %, on the material predominantly composed of loam, while for arsenic it is 47.5 % on material based on sandy loam.
APA, Harvard, Vancouver, ISO, and other styles
2

Hamed, Ahmed M., Walaa R. Abd El Ramadan, and S. H. El-Eman. "Study on the Performance of a Fluidized Air Dehumidifier." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76202.

Full text
Abstract:
Transient adsorption/desorption characteristics of solid desiccant particles in fluidized bed have been presented. The system operates in batch mode and the atmospheric air with controlled inlet humidity and temperature is dehumidified by the applied desiccant. Also, heated air is used for regeneration purposes. A simplified analytical solution, with isothermal adsorption assumption, is demonstrated. In the experimental study, spherical particles of silica gel about 3 mm in diameter are used as the working desiccant in the fluidized bed. The experimental system is equipped with the necessary control valves to facilitate operation in adsorption and desorption modes, respectively. To control the humidity of inlet air, a humidifier is designed and fitted in a proper location in the system. Also, the system is well instrumented to measure the inlet and outlet air parameters as well as bed temperatures during the operation modes. Transient values of the mass of adsorbed water in the bed, rate of adsorption and water content in silica gel particles are evaluated from the experimental measurements. Also, numerical values of the volumetric mass transfer coefficient are plotted and discussed for different operating conditions. Model output, which shows the dependence of the dimensionless value of water content in the bed [(w*i − w)/(w*i − wo)] on the dimensionless time, is compared with the experimental results. Good agreement is found at the first period of adsorption, when the adsorption is nearly isothermal. Successive increase in bed temperature, due to the heat of adsorption, results in increase in discrepancy between the model and the experimental data. Accordingly, the isothermal model could be applied with reasonable degree of reality for systems with shorter adsorption/desorption cycles. The effect of air inlet humidity on the system operation has been highlighted. The drop in air humidity is highly affected by its inlet value. It is found that, the maximum decrease in air humidity occurs at the beginning of adsorption for the different inlet values. Also, the rate of water vapor adsorption increases with the increase in the inlet humidity.
APA, Harvard, Vancouver, ISO, and other styles
3

Merceille, Aure´lie, Agne`s Grandjean, and Yves Barre´. "Sodium Nonatitanate for Removal Radioactive Strontium From Aqueous Contaminated Effluent." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59083.

Full text
Abstract:
Sodium titanate materials which have a layered structure consisting of titanate layers and exchangeable sodium ions are promising inorganic ionic exchangers for strontium adsorption from aqueous solution. The materials used in this study include samples synthesized in a hydrothermal method at different temperatures between 60°C and 200°C. Batch kinetics experiments for strontium removal from aqueous solution were performed. Kinetics data were fitted by using a pseudo second order reaction model and a diffusive model. It was shown that the sorption process occurs in one or two diffusion-controlled steps that depend on the synthesis temperature. The strontium extraction capacity depends on the synthesis temperature with a maximum for sample synthesis at 100°C. This sample has good properties of decontamination at laboratory scale.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jing-song, Zheng-lei Bao, Si-guang Chen, and Jin-hui Yang. "Removal of Uranium From Aqueous Solution by Chitosan and Ferrous Ions." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-30305.

Full text
Abstract:
This study focuses on developing a new method to remove uranium from aqueous solution. Chitosan and ferrous ions were used together to remove uranium ions from aqueous solution. Through two-step pH adjustment, the uptake behavior of chitosan and ferrous ions toward uranium in aqueous solution using batch systems were studied in different experimental conditions. The experimental results indicated that the removal of uranium by synergetic effect of chitosan and ferrous ions was more effective than the way of adsorbing uranium ions by chitosan alone. Under the given experimental conditions, the concentration of the residual uranium in the effluent after chitosan and ferrous ions treatment could meet the discharge standard (< 0.05mg·l−1) when initial concentration of uranium ions was 10 mg·l−1 or 100 mg·l−1. The synergetic effect of chitosan and ferrous ions including adsorption, coacervation and coprecipitation, are responsible for the high removal rate of uranium.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Weizu, and Ping Huang. "The Calculation Model of Boundary Lubrication Under Point Contact." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44128.

Full text
Abstract:
A calculation model of boundary lubrication under point contact is established according to some hypothesises. Then, a modified model is developed by the theory of adsorption heat. Tests are carried out on a self designed ball-on-disk machine in a stearic acid (dissolved in petroleum ether) bath. Disks have surface roughness values (Ra) of 0.2 μm and 0.4 μm. The comparison of the calculation results and the experimental results shows a pretty good coincidence. The influence of temperature and sliding speed on the friction coefficient is analyzed base on the calculation model.
APA, Harvard, Vancouver, ISO, and other styles
6

Noubactep, Chicgoua, Peter Volke, Broder Merkel, and Günther Meinrath. "Mitigation of Uranium in Effluents by Zero Valent Iron: The Role of Iron Corrosion Products." In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1258.

Full text
Abstract:
Abstract This study was conducted to investigate the influence of iron corrosion products on the removal precipitation of uranium (VI) from aqueous solutions by zero valent iron (ZVI). Batch experiments were conducted with solutions containing 20 mg /L U(VI) (0.084 mM) at room temperature with washed and untreated scrap iron. The results show significant decrease of the immobilization efficiency of ZVI for uranium in the presence of both atmospheric corrosion products and those generated in situ. Among the relevant groundwater components, those who promote the iron corrosion e.g. SO42−, Cl− produce more corrosion products and have a stronger negative effect on the immobilization process. Carbonate ions also have a negative effect on the immobilization efficiency since they form stable complexes with uranium and reduce the adsorption on the iron surface which is the first step to immobilization. Humic substances didn’t show any negative effect but rather a slight enhancement of the immobilization rate. These results show that washing ZVI materials with hydrochloric acid before testing will overestimate their efficiency in practical use.
APA, Harvard, Vancouver, ISO, and other styles
7

Fujita, Natsuki, Hitoshi Mimura, Takaaki Kobayashi, Kazuyuki Sekino, and Kunitaka Nagamine. "Separation of Nuclides by Different Types of Zeolites in the Presence of Boric Acid." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30193.

Full text
Abstract:
The development of selective adsorbents has become very important for the effective multi-nuclide decontamination. In this study, the selective adsorption properties of 26 nuclides for different types of zeolites (A, L, natural mordenite (NM), Ag-NM) were examined in the presence of boric acid. The batch adsorption experiments were carried out using four kinds of test solutions containing boric acid and calcium hydroxide; (1)DW (distilled water) + H3BO4: 3,000 ppm + LiOH: 10 ppb, (2)DW + Ca(OH)2: 500 ppm + H3BO4: 3,000 ppm + LiOH: 10 ppb, (3)Seawater (30% diluted) + H3BO4: 3,000 ppm, (4)Seawater + H3BO4: 3,000ppm. The uptake (%) of Sr2+ for zeolite A (A-51J), Cs+ for natural mordenite (NM, 2460#, Ayashi, Sendai), and I− for Ag-NM was determined under the following conditions; Concentration of Sr2+, Cs+ and I− ions: 10 ppm, V/m = 100 cm3/g, 25°C, 24 h. The uptake (%) of Sr2+, Cs+ and I− ions was estimated to be above 90%, while tended to decrease in the presence of seawater. Especially, the uptake (%) of I− ions for Ag-NM markedly decreased in the presence of seawater. As for the zeolites A and L, the uptake (%) of 26 elements was determined by using two kinds of test solutions; (1)DW (distilled water) + H3BO4: 3,000 ppm + LiOH: 10 ppb + 26 nuclides: 10 ppm, (2)Seawater (30% diluted) + H3BO4: 3,000 ppm + 26 nuclides: 10 ppm. Zeolite A has relatively large uptake percentage for Sr, Co, Ni and Zn, and zeolite L has high adsorbability to lanthanoid group of Eu, Ce and Pr. The increase in pH led to the enhancement of uptake (%), while the hydrolysis of metal ions should be also considered. The multi-nuclides separation is thus expected by considering the difference in uptake properties of zeolite A, L and natural mordenite.
APA, Harvard, Vancouver, ISO, and other styles
8

Ribeiro, A., C. Vilarinho, J. Araújo, and J. Carvalho. "Integrated Process for Textile Cotton Waste (TCW) Valorization: Waste-to-Energy and Wastewater Decontamination." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66706.

Full text
Abstract:
The increasing of world population, industrialization and global consuming, existing market products existed in the along with diversification of raw materials, are responsible for an exponential increase of wastes. This scenario represents loss of resources and ultimately causes air, soils and water pollution. Therefore, proper waste management is currently one of the major challenges faced by modern societies. Textile industries represents, in Portugal, almost 10% of total productive transforming sector and 19% of total employments in the sector composed by almost 7.000 companies. One of the main environmental problems of textile industries is the production of significant quantities of wastes from its different processing steps. According to the Portuguese Institute of Statistics (INE) these industries produce almost 500.000 tons of wastes each year, with the textile cotton waste (TCW) being the most expressive. It was estimated that 4.000 tons of TCW are produced each year in Portugal. In this work an integrated TCW valorisation procedure was evaluated, firstly by its thermal and energetic valorisation with slow pyrolysis followed by the utilization of biochar by-product, in lead and chromium synthetic wastewater decontamination. Pyrolysis experiments were conducted in a small scale rotating pyrolysis reactor with 0.1 m3 of total capacity. Results of pyrolysis experiments showed the formation of 0,241 m3 of biogas for each kilogram of TCW. Results also demonstrated that the biogas is mostly composed by hydrogen (22%), methane (14 %), carbon monoxide (20%) and carbon dioxide (12%), which represents a total high calorific value of 12.3 MJ/Nm3. Regarding biochar, results of elemental analysis demonstrated a high percentage of carbon driving its use as low cost adsorbent. Adsorption experiments were conducted with lead and chromium synthetic wastewaters (25, 50 and 100 mg L−1) in batch vessels with controlled pH. It was evaluated the behaviour of adsorption capacity and removal rate of each metal during 120 minutes of contact time using 5, 10 and 50 g L−1 of adsorbent dosage. Results indicated high affinity of adsorbent with each tested metal with 78% of removal rate in chromium and 95% in lead experiments. This suggests that biochar from TCW pyrolysis may be appropriated to wastewaters treatment, with high contents of heavy metals and it can be an effective alternative to activated carbon.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Batch adsorption experiment"

1

Seigel, M. D., D. B. Ward, and C. R. Bryan. Batch and column studies of adsorption of Li, Ni and Br by a reference sand for contaminant transport experiments. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/114552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography