To see the other types of publications on this topic, follow the link: Bath distillation.

Dissertations / Theses on the topic 'Bath distillation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Bath distillation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Bonsfills, Anna. "Contribuición al estudio de la operación de destilación discontinua mediante simulación." Doctoral thesis, Universitat Politècnica de Catalunya, 2001. http://hdl.handle.net/10803/6470.

Full text
Abstract:
El treball presentat en aquesta tesi pretén contribuir a l'estudi mediambiental de la limitació de les emissions de components orgànics volàtils (VOCs), degudes a l'ús de dissolvents orgànics en determinades activitats i instal·lacions industrials, mitjançant la tècnica de la destil·lació discontinua o batch.

Amb aquest objectiu s'ha treballat amb un model matemàtic senzill, basat en els balanços de matèria i en les relacions d'equilibri líquid-vapor, que permeti d'una forma ràpida predir la separació per destil·lació batch de mescles líquides de VOCs. El llenguatge de programació utilitzat ha estat el Fortran 77. Per a poder comprovar la bondat del model en diversos escenaris i la seva eventual millora i validació, s'ha realitzat el muntatge i la posta a punt d' una planta pilot de destil·lació batch.

El model s'ha aplicat en primer lloc a la simulació d'una mescla binària (metanol-aigua), per a poder estudiar el seu comportament en la predicció de la separació per destil·lació batch dels components. Les simulacions realitzades amb el model s'han comparat amb els experiments realitzats en la planta pilot i amb el simulador comercial Batchsim de Pro/II. La mescla metanol-aigua s'ha escollit especialment per a realitzar la posta a punt de la planta pilot, on la mescla citada és la primera que s'experimenta en la planta.

Després d'estudiar la mescla binària, el model s'ha aplicat a una mescla ternària (ciclohexà toluè-clorobenzè). Els resultats obtinguts mitjançant la simulació del model s'han comparat amb els experiments realitzats en la planta pilot i amb el simulador Batchsim de Pro/II, per poder estudiar la capacitat de predicció del model a escala industrial.

Una vegada estudiat el model i la seva validació per a mescles reals sense azeòtrop, el següent pas ha estat estudiar si el model és capaç de predir el comportament de mescles azeotròpiques binàries. Així, el model s'ha aplicat a un azeòtrop binari de mínim punt d' ebullició (toluè-n-butanol). A l'igual que en les mescles anteriors estudiades, els resultats obtinguts per simulació amb la mescla azeotròpica s'han comparat amb els resultats experimentals obtinguts en la planta pilot i amb el simulador Batchsim de Pro/II.

En l'última part del treball s'estudia la resolució de l'azeòtrop toluè-n-butanol mitjançant l' addició d' n-octanol. Els resultats obtinguts per simulació es comparen amb els obtinguts experimentalment i amb el simulador Batchsim de Pro/II.

Després d'estudiar l'aplicació del model senzill a les diferents mescles, es pot concloure que el model utilitzat és una eina útil i vàlida que permet estudiar la separació de mescles binàries i multicomponents per destil·lació batch, així como mescles azeotròpiques binàries. Permet col·laborar en la reutilització de compostos orgànics volàtils, com els dissolvents, i en l'estudi de descàrrega zero en les indústries químiques de procés discontinu, en especial en el sector de la química fina. Aquestes indústries han de disposar de models senzills i de resposta ràpida, com el presentat en aquesta tesi, per poder fer front a les normatives ambientals cada vegada més estrictes.

Per altra banda, les característiques del model el fan apropiat per al càlcul del temps d' operació de separació per destil·lació batch, en programes de seqüenciació òptima d' operacions de processos batch. Els programes informàtics realitzats en aquesta tesi pretenen contribuir a la resolució de problemes de programació d'operacions (scheduling), dins de la planificació de la producció (planning) de plantes discontinues.
El trabajo presentado en esta tesis pretende contribuir al estudio medioambiental de la limitación de las emisiones de componentes orgánicos volátiles (VOCs), debidas al uso de disolventes orgánicos, en determinadas actividades e instalaciones industriales, mediante la técnica de la destilación discontinua o batch.

Para ello se ha trabajado con un modelo matemático sencillo, basado en los balances de materia y en las relaciones de equilibrio líquido-vapor, que permita de una forma rápida predecir la separación por destilación batch de mezclas líquidas de VOCs. El lenguaje de programación utilizado ha sido el Fortran 77. Para poder comprobar la bondad del modelo en diversos escenarios y su eventual mejora y validación, se ha realizado el montaje y la puesta a punto de una planta piloto de destilación batch.

El modelo se ha aplicado en primer lugar a la simulación de una mezcla binaria (metanol-agua), para poder estudiar su comportamiento en la predicción de la separación por destilación batch de los componentes. Las simulaciones realizadas con el modelo se han comparado con los experimentos realizados en la planta piloto y con el simulador comercial Batchsim de Pro/II. La mezcla metanol-agua se ha escogido especialmente para realizar la puesta a punto de la planta piloto, donde dicha mezcla es la primera que se experimenta en la planta.

Después de estudiar la mezcla binaria, el modelo se ha aplicado a una mezcla ternaria (ciclohexano-tolueno-clorobenceno). Los resultados obtenidos mediante la simulación del modelo se han comparado con las experiencias realizadas en la planta piloto y con el simulador Batchsim de Pro/II, para poder estudiar la capacidad de predicción del modelo a escala industrial.

Una vez estudiado el modelo y su validación para mezclas reales sin azeótropo, el siguiente paso ha sido estudiar si el modelo es capaz de predecir el comportamiento de mezclas azeotrópicas binarias. Para ello, el modelo se ha aplicado a un azeótropo binario de mínimo punto de ebullición (tolueno-n-butanol). Al igual que en las mezclas anteriores estudiadas, los resultados obtenidos por simulación con la mezcla azeotrópica se han comparado con los resultados experimentales obtenidos en la planta piloto y con el simulador Batchsim de Pro/II.

En la última parte del trabajo se estudia la resolución del azeótropo tolueno-n-butanol mediante la adición de n-octanol. Los resultados obtenidos por simulación se comparan con los obtenidos experimentalmente y con el simulador Batchsim de Pro/II.

Después de estudiar la aplicación del modelo sencillo a las distintas mezclas, se puede concluir que el modelo utilizado es una herramienta útil y válida que permite estudiar la separación de mezclas binarias y multicomponentes por destilación batch, así como mezclas azeotrópicas binarias. Permite colaborar en la reutilización de compuestos orgánicos volátiles, como los disolventes, y en el estudio de descarga cero en las industrias químicas de proceso discontinuo, en especial en el sector de química fina. Estas industrias deben disponer de modelos sencillos y de respuesta rápida, como el presentado en esta tesis, para poder hacer frente a las normativas ambientales cada vez más estrictas.

Por otro lado, las características del modelo lo hacen apropiado para el cálculo de tiempos de operación de separación por destilación batch, en programas de secuenciación óptima de operaciones de procesos batch. Los programas informáticos realizados en esta tesis pretenden contribuir a la resolución de problemas de programación de operaciones (scheduling), dentro de la planificación de la producción (planning) de plantas discontinuas.
The work presented in this thesis pretends to be a contribution to the environmental study of the limitation of the emissions from volatile organic compounds (VOCs), due to the use of organic solvents, in certain activities and industrial installations, by discontinuous or batch distillation.

A simplified mathematic model based on mass balances and vapor-liquid equilibrium has been used to predict the separation of liquid mixtures of VOCs by batch distillation. The model has been implemented in Fortran 77. A pilot plant of batch distillation has been constructed in order to validate the results obtained by simulation with the model.

First the model has been applied to the simulation of a binary mixture (methanol-water), in order to study the degree of separation of the components in the mixture. The results obtained with the model have been compared with those obtained in the pilot plant and with the commercial simulator Batchsim of Pro/II. The methanol-water mixture is the first mixture that has been experimented in the pilot plant and has served for the start-up of the pilot plant.

After the binary mixture has been successfully studied, the model has been applied to a ternary mixture (cyclohexane-toluene-chlorobenzene). The results obtained by simulation have been compared with the experiences in the pilot plant and with the simulator Batchsim of Pro/II, in order to study the capacity of the model to describe industrial situations.

Once the model has been validated for real mixtures without azeotrope, the model has been applied to a binary azeotropic mixture with a minimum boiling point (toluene-n-butanol) in order to study if the model can predict the behavior of this kind of mixtures. Also, the results obtained with the model have been compared with those obtained in the pilot plant and with those obtained with the simulator Batchsim of Pro/II.

In the last part of the thesis, the resolution of the binary azeotrope toluene-n-butanol has been studied with the simplified model, by adding n-octanol. The results obtained by simulation have been compared with those obtained in the pilot plant and those obtained with the simulator Batchsim of Pro/II.

It can be concluded that the simplified model is a useful and valid tool that permits the study of the separation of binary and multicomponent mixtures by batch distillation, and also binary azeotropic mixtures. The model permits to contribute to the reuse of volatile organic compounds, like solvents, and to study zero discharge in the batch chemical industries, specially in the industry of fine chemicals. These kind of industries need simplified and quick models, like the model presented in this thesis, in order to accomplish environmental restrictions.

The simplified model is also interesting for being applied to calculate operation times in batch process scheduling and in this way to contribute to a better planning of industrial plants.
APA, Harvard, Vancouver, ISO, and other styles
2

Jain, Santosh. "Sythesis of batch distillation processes." Thesis, University of Manchester, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ukeje-Eloagu, Chibuike Igbokwe. "Tray efficiency effects in batch distillation." Thesis, University of Nottingham, 1998. http://eprints.nottingham.ac.uk/13643/.

Full text
Abstract:
Computer simulation has long been recognised as a useful tool in improved process operation and design studies. Commercial simulation packages now available for batch distillation studies typically assume constant tray efficiency. Here, on the basis of both practical work and computer simulation, the effects of tray efficiency variation with tray liquid composition on model accuracy and column performance are investigated. Detailed modelling studies were carried out on a pilot batch distillation unit and tray efficiency was found to be an important factor affecting the model fidelity. Distillation of different methanol/water mixtures revealed that tray efficiency varies with the mixture composition on the tray, the form of the variation being for the efficiency to pass through a minimum at intermediate compositions. This variation of tray efficiency with tray composition is a known phenomenon, which has not been included in batch distillation simulations even though tray compositions change significantly during a batch run. The model developed in this work (Variable Efficiency Model) includes the tray efficiency variation with mixture composition and results in an evident improvement in model accuracy for methanol/water distillation. The potential effects of strong tray efficiency dependence on mixture composition, at a more general level, are investigated using two case studies, based on hypothetical extensions of the tray efficiency concentration dependence observed for methanol/water mixtures. In extreme cases, the efficiency-composition dependence could introduce a significant additional non-linearity to the process behaviour, resulting in unexpected composition and temperature movements. To quantify the potential significance of these effects, the economic performance of a column based on simulation using the Variable Efficiency Model was compared with its performance, using an overall column efficiency (which is the common practice). Using fixed column efficiency was found to under-predict column performance for low purity products and over-predict performance for high purity products.
APA, Harvard, Vancouver, ISO, and other styles
4

Mujtaba, Iqbal Mohammed. "Optimal operational policies in batch distillation." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hegely, Laszlo. "Improvement of Batch Distillation Separation of Azeotropic Mixtures." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/10671/1/hegely.pdf.

Full text
Abstract:
Distillation is the most widespread method for separating liquid mixtures. The separation of azeotropic mixtures requires a special distillation method. My aim was to improve the batch distillation separation of azeotropic mixtures. A new algorithm was presented for the determination of product sequences of batch distillation of multicomponent azeotropic mixtures. Non-conventional configurations were studied by simulation with emphasis on closed operation. The effects of off-cut recycle on a six-batch separation process of a waste solvent mixture were also investigated. Batch extractive distillation was studied for the separation of two azeotropic mixtures. A new extractive policy was also proposed. A generalised model of batch heteroazeotropic distillation with variable decanter hold-up was developed. This model was extended for batch heterogeneous extractive distillation.
APA, Harvard, Vancouver, ISO, and other styles
6

Bryson, James R. "Reduced models for batch and continuous distillation." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Todd, Heather Elizabeth. "Investigating catalyst performance in batch reactive distillation." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1244.

Full text
Abstract:
Reactive distillation (RD) combines chemical synthesis with separation by distillation, but this leads to a non-trivial system: the hardware selection, the system components, the mode of operation and the operating conditions all affect the performance of the RD process. A key process development issue is the identification of suitable catalysts that perform well under reactive distillation conditions, as catalysts are crucial for increasing reaction rate when operating temperature range is limited by evaporation. The main goal of this research is to develop a method, utilizing high throughput technology, which can be used to assess many candidate catalysts for batch RD systems. The identification of potentially suitable catalysts should be made as early as possible, but before experimental work begins the only information available is the catalyst composition and structure. The approach taken in this research is to correlate catalyst properties to the performance in RD tests and the outputs from the dynamic simulations. The case study used is a batch reactive distillation for the esterification of a long-chain fatty acid. Potential catalysts are studied at small scale in a high throughput platform, and further investigation if performaed in an experimental batch RD unit. The most active of the screened catalysts, sulfuric acid and MSA also have the highest initial activity under RD. Heteropoly acids appear to have a good activity level, while ferric sulfate gives intermediate but apparently increasing activity. Some outcomes of the RD experiments were unexpected: the strong homogeneous acid catalysts entail low distillate water yield, and some metal acetates had higher activity than anticipated in the RD tests. This demonstrates that pilot scale experiments currently remain necessary for the evaluation of catalyst performance for RD processes. The insights gained from this study lead to key recommendations for future studies: an increased scope of study with a larger number of candidates which preferable have similar structure; evaluation of additional catalyst performance indicators, performed over the full operating temperature range; use of the smallest suitable experimental column; and more focus on physical factors such as solubility. Use of a simulator with an established physical property calculation tool is essential for successful simulations of batch RD.
APA, Harvard, Vancouver, ISO, and other styles
8

Furlonge, Haydn Ian. "Optimal operation of unconventional batch distillation columns." Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/8078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Edreder, E. A. "Modelling and optimisation of batch distillation involving esterification and hydrolysis reaction systems. Modelling and optimisation of conventional and unconventional batch distillation process: Application to esterification of methanol and ethanol using acetic acid and hydrolysis of methyl lactate system." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4296.

Full text
Abstract:
Batch distillation with chemical reaction when takes place in the same unit is referred to as batch reactive distillation process. The combination reduces the capital and operating costs considerably. Among many different types of batch reactive distillation column configurations, (a) conventional (b) inverted (c) semi-batch columns are considered here. Three reaction schemes such as (a) esterification of methanol (b) esterification of ethanol (c) hydrolysis of methyl lactate are studied here. Four different types of dynamic optimisation problems such as (a) maximum conversion (b) maximum productivity (c) maximum profit and (d) minimum time are formulated in this work. Optimal design and or operation policies are obtained for all the reaction schemes. A detailed rigorous dynamic model consisting of mass, energy balances, chemical reaction and thermodynamic properties is considered for the process. The model was incorporated within the dynamic optimisation problems. Control Vector Parameterisation (CVP) technique was used to convert the dynamic optimisation problem into a nonlinear programming problem which was solved using efficient SQP (Successive Quadratic Programming) method available within the gPROMS (general PROcess Modelling System) software. It is observed that multi-reflux ratio or linear reflux operation always led to better performance in terms of conversion, productivity for all reaction schemes compared to that obtained using single reflux operation. Feed dilution (in the case of ethanol esterification) led to more profit even though productivity was found to be lower. This was due to reduction in feed price because of feed dilution. Semi-batch reactive distillation opertation (for ethanol esterification) led to better conversion compared to conventional batch distillation, however, the total amount of acetic acid (reactant) was greater in semi-batch operation. Optimisation of design and operation (for ethanol esterification) clearly showed that a single cloumn will not lead to profitable operation for all possible product demand profile. Also change in feed and /or product price may lead to adjust the production target to maximise the profitability. In batch distillation, total reflux operation is recommended or observed at the begining of the operation (as is the case for methnaol or ethanol esterification). However, in the case of hydrolysis, total reflux operation was obseved at the end of the operation. This was due to lactic acid (being the heaviest) was withrawn as the final bottom product.
Libyan Petroleum Institute
APA, Harvard, Vancouver, ISO, and other styles
10

Edreder, Elmahboub A. "Modelling and optimisation of batch distillation involving esterification and hydrolysis reaction systems : modelling and optimisation of conventional and unconventional batch distillation process : application to esterification of methanol and ethanol using acetic acid and hydrolysis of methyl lactate system." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4296.

Full text
Abstract:
Batch distillation with chemical reaction when takes place in the same unit is referred to as batch reactive distillation process. The combination reduces the capital and operating costs considerably. Among many different types of batch reactive distillation column configurations, (a) conventional (b) inverted (c) semi-batch columns are considered here. Three reaction schemes such as (a) esterification of methanol (b) esterification of ethanol (c) hydrolysis of methyl lactate are studied here. Four different types of dynamic optimisation problems such as (a) maximum conversion (b) maximum productivity (c) maximum profit and (d) minimum time are formulated in this work. Optimal design and or operation policies are obtained for all the reaction schemes. A detailed rigorous dynamic model consisting of mass, energy balances, chemical reaction and thermodynamic properties is considered for the process. The model was incorporated within the dynamic optimisation problems. Control Vector Parameterisation (CVP) technique was used to convert the dynamic optimisation problem into a nonlinear programming problem which was solved using efficient SQP (Successive Quadratic Programming) method available within the gPROMS (general PROcess Modelling System) software. It is observed that multi-reflux ratio or linear reflux operation always led to better performance in terms of conversion, productivity for all reaction schemes compared to that obtained using single reflux operation. Feed dilution (in the case of ethanol esterification) led to more profit even though productivity was found to be lower. This was due to reduction in feed price because of feed dilution. Semi-batch reactive distillation opertation (for ethanol esterification) led to better conversion compared to conventional batch distillation, however, the total amount of acetic acid (reactant) was greater in semi-batch operation. Optimisation of design and operation (for ethanol esterification) clearly showed that a single cloumn will not lead to profitable operation for all possible product demand profile. Also change in feed and /or product price may lead to adjust the production target to maximise the profitability. In batch distillation, total reflux operation is recommended or observed at the begining of the operation (as is the case for methnaol or ethanol esterification). However, in the case of hydrolysis, total reflux operation was obseved at the end of the operation. This was due to lactic acid (being the heaviest) was withrawn as the final bottom product.
APA, Harvard, Vancouver, ISO, and other styles
11

Skouras-Iliopoulos, Efstathios. "Operation and feasibility of batch hetero-azeotropic distillation." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-394.

Full text
Abstract:

Separation of azeotropic mixtures is of great industrial importance and distillation is the dominating unit operation for such separations. However, the presence of azeotropes and non-idealities in the phase behaviour of such mixtures complicates the separation. In the pharmaceutical and fine/specialty chemical industry, the small-scale production and the requirement for flexibility indicates batch distillation as the best suited process. Among, various techniques to enhance distillation, heterogeneous azeotropic (heteroazeotropic) distillation is a very powerful and widely used one. Thus, there is a need for deeper understanding of the complex behaviour of the separation of heteroazeotropic mixtures in batch distillation columns.

This thesis is concerned with feasibility and operation aspects of heteroazeotropic distillation in different batch column configurations. Both conventional batch columns (rectifiers) and novel configurations (multivessel columns), with and without vapour bypass, are considered. The focus is on closed operations, without product removal. Batch time requirements for operation in all columns are provided for both zeotropic and heteroazeotropic mixtures. The advantages and drawbacks of each configuration are discussed and compared based on dynamic simulations. The configuration of the vapour stream in the middle vessel has an important effect on the time requirements of the process. Later on, a detailed analysis of the process is provided and previous published work concerning different operation modes and separation strategies is put under the right perspective. Simple control schemes are proposed for the practical operation of the columns and the realisation of the desired steady state results. The thesis ends with a detailed feasibility study of the process. The possibilities and limitations raised by different operational modes and separation strategies are illustrated. Simple feasibility conditions and entrainer selection rules are formulated that allow someone to investigate feasibility of the process in a systematic and comprehensive manner.

APA, Harvard, Vancouver, ISO, and other styles
12

Dénes, Ferenc. "New Double-Column Systems for Batch Heteroazeotropic Distillation." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0124/document.

Full text
Abstract:
J'ai étudié deux nouvelles configurations de double-colonne pour distillation hétéroazéotropique. Ces configurations sont appropriées à la récupération simultanée des composants des mélanges binaires hétéroazéotropiques et homoazéotropiques (en utilisant un tiers corps (entraîneur)). Elle sont opérées en système fermé, c'est-à-dire, il n'y a pas de soutirage de produit continu. D'abord, en appliquant un modèle simplifié, j'ai étudié la faisabilité de la séparation d'un mélange hétéroazéotropique (1-butanol – eau), puis celle d'un mélange homoazéotropique (2-propanol – eau) aidé par entraîneur benzène ou cyclohexane, en utilisant le SDC. Puis, j'ai étudié cette configuration par modélisation rigoureuse, en appliquant le simulateur dynamique du logiciel professionnel ChemCAD (CC-DColumn). J'ai comparé la nouvelle configuration avec le RD, sur la base des résultats obtenus par toutes les deux méthodes d'étude. Le SDC s'est avéré faisable et compétitif avec le RD : pendant la même durée ou plus courte, les rendements des composants ont été plus élevés. Puis, on a étendu le SDC à un système plus flexible (système de double-colonne généralisé, SDCG) qui est approprié à la séparation des mélanges binaires homoazéotropiques aidé par entraîneur (en le cas présent : cyclohexane ou n-hexane). J'ai étendu la méthode de faisabilité aussi à l'étude de cette configuration. Le SDCG s'est avéré aussi faisable. En appliquant modélisation rigoureuse, j'ai étudié les effets des nouveaux paramètres opératoires sur la durée, et j'ai comparé le DCG avec le SDC. Le SDCG s'est avéré encore plus avantageux que le SDC : la durée a été plus courte, et les besoins spécifiques d'énergie des produits ont été plus bas. J'ai étudié le SDC et le SDCG aussi par des manipulations exécutées sur installations de taille laboratoire et pilote. D'abord, j'ai fait des manipulations laboratoires pour la séparation du mélange binaire hétéroazéotropique, en utilisant une installation en verre qui a été opérée aussi comme RD et SDC. Le SDC s'est avéré faisable et compétitif avec le RD aussi sur la base des résultats de ces manipulations : pendant la même durée, les rendements des tous les deux composants ont été plus élevés. Puis, en utilisant l'installation pilote comme SDC, j'ai étudié la séparation ci-dessus. Après cette manipulation, j'ai étudié la séparation du mélange binaire homoazéotropique en appliquant n-hexane comme entraîneur, en opérant le système comme RD et SDCG. La manipulation faite avec le SDCG a montré que la production simultanée de deux composants est faisable avec cette configuration
Distillation is the method the most frequently applied for the separation of liquid mixtures, e.g. for the recovery of the components of the waste solvent mixtures. Because of the high energy demand of these processes the optimal design and operation of the distillation equipments are important from economic and also environmental points of view. The separation of the azeotropic mixtures needs special distillation methods like heteroazeotropic distillation. In the pharmaceutical and fine chemical industries it is often applied in batch mode. The aims of the thesis are to study the feasibility of a new Double-Column System (DCS) for batch heteroazeotropic distillation and to compare it with the traditional Batch Rectifier (BR) equipped with a decanterto study the above configurations by rigorous simulationto extend the DCS (Generalised Double-Column System, GDCS) and to study this new configuration by the above methodsto do laboratory experiments for both configurations in order to prove the feasibility of the separation and validate the calculations, respectively. Two new double-column configurations for batch heteroazeotropic distillation were studied. These configurations are designed to produce simultaneously the components of binary heteroazeotropic and homoazeotropic mixtures (by using an entrainer). They are operated in closed system (without continuous product withdrawal). First the feasibility of the separation of a heteroazeotropic mixture (1-butanol – water) and that of a homoazeotropic one by using an entrainer (isopropanol – water + benzene or cyclohexane) in the DCS were investigated by a simplified model. Then the operation of this configuration was modelled by rigorous simulation by using the dynamic simulator of the professional flowsheet simulator ChemCAD (CC-DColumn). On the basis of the results obtained by both methods the new configuration was compared with the BR. The DCS proved to be feasible and competitive with the BR: during the same or shorter time the recoveries of the components were higher. Then the DCS was extended to a more flexible version (Generalised Double-Column System, GDCS), which is suitable for the separation of binary homoazeotropic mixtures (by using an entrainer, in this work: cyclohexane or n- exane). The feasibility method was extended for the study of this configuration, as well. The GDCS proved to be feasible. Then the effects of its additional operational parameters on the duration were studied by rigorous simulation. The GDCS was compared with the DCS by rigorous simulation, as well. The GDCS proved to be more advantageous than the DCS: the duration was shorter and the specific energy demands of the products were lower. The DCS and GDCS were also investigated by laboratory and pilot plant experiments. First laboratory experiments were done for the separation of the binary heteroazeotropic mixture in a simple small size glass equipment operated as BR and DCS. The DCS proved to be feasible and competitive with the BR also on the basis of the results of these experiments: during the same time the recovery of both components were higher. Then a pilot plant was used for the same separation as a DCS. After this experiment the separation of the binary homoazeotropic mixture by using n-hexane as entrainer was studied in the equipment operated as BR and GDCS. The experiment showed that the simultaneous production of two components is feasible also in the GDCS
APA, Harvard, Vancouver, ISO, and other styles
13

Sharif, Mona Adel. "Design of integrated batch processes." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/7577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yildiz, Ugur. "Multicomponent Batch Distillation Column Simulation And State Observer Design." Master's thesis, METU, 2002. http://etd.lib.metu.edu.tr/upload/12605551/index.pdf.

Full text
Abstract:
In the control of batch and continuous distillation columns, one of the most challenging problem is the difficulty in measuring compositions. This problem can be handled by estimating the compositions from readily available online temperature measurements using a state observer. The aim of this study is to design a state observer that estimates the product composition in a multicomponent batch distillation column (MBDC) from the temperature measurements and to test this observer using a batch column simulation. To achieve this, first a model for MBDC is prepared and compared with the data from literature where a case column is utilized. After checking the validity of the simulation package, it is used as a fictitious process for the performance evaluations. In the second phase of the study, an extended Kalman Filter (EKF) is designed by utilizing a simplified model of MBDC and it is implemented for performance investigation on the case column with 8 trays separating the mixture of cyclohexane, n-heptane and toluene. The simplified model utilized in EKF results in response, which have some deviation with rigorous model, mainly due to the simplification of vapor-liquid equilibrium relationship. In the performance evaluation, the tuning parameters of EKF
the diagonal terms of process noise covariance matrix and the diagonal terms of measurement model noise covariance matrix are changed in the range of 50¡
1x10¡
7 and 0:5¡
5x108 and the optimum values are found as 0:00001 and 5000, respectively. The effect of number of measurement points is also investigated with a result of number of component measurements. The effect of measurement period value is also studied and found that it has a major effect on the performance which has to be determined by the available computational facilities. The control of the column is done by utilizing the designed EKF estimator and the estimator is successfully used in controlling the product purities in MBDC under variable reflux-ratio operation.
APA, Harvard, Vancouver, ISO, and other styles
15

Low, Kian Huat. "Optimal configuration, design and operation of batch distillation processes." Thesis, University College London (University of London), 2003. http://discovery.ucl.ac.uk/1383525/.

Full text
Abstract:
The overall objective of this thesis is to study the optimal configuration. design and operating policy of batch distillation processes in different separation scenarios. In so doing, this work also aims to provide conceptual insights and compare the performance of the traditional regular column against unconventional columns. In the first part of the thesis, the optimal operation of extractive batch distillation is investigated. A rigorous dynamic optimisation approach based on a detailed model is employed. In addition to the regular column, the optimal operation of the process in the unconventional middle vessel column is examined. The liquid and vapour stream configurations at the middle section of the column is explored for the first time, resulting in improved process performance. The performance of both columns are compared and the results show how their relative performances are affected by different feed compositions. The second part of the thesis is concerned with the simultaneous design and operation of batch distillation processes. The thesis proposes a stochastic optimisation methodology based on genetic algorithm and penalty function. Using the proposed methodology, the simultaneous optimal designs and operations of the regular column for different design scenarios are investigated using rigorous models. Furthermore, the optimal design of the unconventional multivessel column for multicomponent separation is studied for the first time. The effect of different factors such as objective function, feed composition, relative volatility, product specification and number of components on the optimal design of the multivessel system is investigated. A comparison of the performance of the multivessel system with the regular column is also presented. In the final part of the thesis, the feasibility of the genetic algorithm-penalty function approach in tackling simultaneous configuration selection, column sizing and operation is explored. In the case of binary mixture separation, the regular column was found to be more profitable for feeds with a high fraction of the light component whilst the inverted column is optimal for heavier feeds. There exists a flip point, the location of which is case study specific. For the multicomponent separation case study, the multivessel system is found to be superior to both the regular and inverted configurations
APA, Harvard, Vancouver, ISO, and other styles
16

Gumay, Surachman. "Modelling simulation and optimisation of multi-component batch distillation." Thesis, University of Surrey, 1990. http://epubs.surrey.ac.uk/2721/.

Full text
Abstract:
In this thesis rigorous models for simulating the operation of multi-component batch distillation with a hypothetical start-up procedure are derived and solved by a novel analytical derivative technique. The conventional backward derivative technique which usually solves the model only from the steady-state total reflux condition is also extended to include the solution from the hypothetical start-up condition. Both techniques are shown to give identical results. Simulation and optimisation of a ternary system with slop recycle are analysed by using one of the above rigorous models and solution techniques. Nine modes of operation for handling the recycle slops are developed and a basic mode of operation for evaluating the economic efficiency is defined as the reference. The objective function chosen for the analysis is the profit per cycle time rather than the total product per cycle time. The results of analysis show that the right choice of mode of operation is more significant than the right choice of the constant reflux ratio of the operation. An explicit short-cut model for estimating the instantaneous overhead composition of multi-component batch distillation is successfully derived. The performance of the short-cut model is acceptably accurate and offers some advantages of speed over other published models. The short-cut model is shown to be very powerful for solving the problem of optimal reflux profile.
APA, Harvard, Vancouver, ISO, and other styles
17

Mahmud, Mohamed Taher Mustafa. "Optimal design and operation of multivessel batch distillation with fixed product demand. Modelling, simulation and optimisation of design and operation parameters in multivessel batch distillation under fixed product demand scenario and strict product specifications using simple dynamic model in gPROMS." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4435.

Full text
Abstract:
Increased interest in unconventional batch distillation column configurations offers new opportunities for increasing the flexibility and energy efficiency of batch distillation. One configuration of particular interest is multivessel batch distillation column, which can be viewed as a generalization of all previously studied batch column configuration. In this work, for the first time the optimal design and operation tasks are developed for multivessel batch distillation with strict product specifications under fixed product demand. Also, in this work, two different operation schemes defined as STN (State Task Network) in terms of the option and numbers of off-cuts were considered for binary and ternary separation. Both the vapour load and number of stages in each column section together with the production sequence are optimised to achieve maximum profit function. The performance of the multivessel batch distillation column is evaluated against the performance of conventional batch column with a simple dynamic model using binary and ternary mixtures. It has been found that profitability improves with the multivessel system in both separations. gPROMS, a user-friendly, software is used for the modeling, simulation, and optimisation.
APA, Harvard, Vancouver, ISO, and other styles
18

Bahar, Almila. "Modeling And Control Studies For A Reactive Batch Distillation Column." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608344/index.pdf.

Full text
Abstract:
Modeling and inferential control studies are carried out on a reactive batch distillation system for the esterification reaction of ethanol with acetic acid to produce ethyl acetate. A dynamic model is developed based on a previous study done on a batch distillation column. The column is modified for a reactive system where Artificial Neural Network Estimator is used instead of Extended Kalman Filter for the estimation of compositions of polar compounds for control purposes. The results of the developed dynamic model of the column is verified theoretically with the results of a similar study. Also, in order to check the model experimentally, a lab scale column (40 cm height, 5 cm inner diameter with 8 trays) is used and it is found that experimental data is not in good agreement with the models&rsquo
. Therefore, the model developed is improved by using different rate expressions and thermodynamic models (fi-fi, combination of equations of state (EOS) and excess Gibbs free energy (EOS-Gex), gama-fi) with different equations of states (Peng Robinson (PR) / Peng Robinson - Stryjek-Vera (PRSV)), mixing rules (van der Waals / Huron Vidal (HV) / Huron Vidal Original (HVO) / Orbey Sandler Modification of HVO (HVOS)) and activity coefficient models (NRTL / Wilson / UNIQUAC). The gama-fi method with PR-EOS together with van der Waals mixing rule and NRTL activity coefficient model is selected as the best relationships which fits the experimental data. The thermodynamic models
EOS, mixing rules and activity coefficient models, all are found to have very crucial roles in modeling studies. A nonlinear optimization problem is also carried out to find the optimal operation of the distillation column for an optimal reflux ratio profile where the maximization of the capacity factor is selected as the objective function. In control studies, to operate the distillation system with the optimal reflux ratio profile, a control system is designed with an Artificial Neural Network (ANN) Estimator which is used to predict the product composition values of the system from temperature measurements. The network used is an Elman network with two hidden layers. The performance of the designed network is tested first in open-loop and then in closed-loop in a feedback inferential control algorithm. It is found that, the control of the product compositions with the help of an ANN estimator with error refinement can be done considering optimal reflux ratio profile.
APA, Harvard, Vancouver, ISO, and other styles
19

Ceylan, Hatice. "Control And Simulation Studies For A Multicomponent Batch Packed Distillation Column." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608688/index.pdf.

Full text
Abstract:
During the last decades, batch distillation is preferably used with an increasing demand over continuous one, to separate fine chemicals in chemical and petroleum industries, due to its advantages like, flexibility and high product purity. Consequently, packed distillation columns, with newly generated packing materials, are advantageous compared to plate columns because of their smaller holdups, resistivity to corrosive materials and their higher separation efficiencies. Also, in many industrial applications, mathematical models of distillation systems are frequently used in order to design effective control systems, to train operating personnel and to handle fault diagnostics. Thus, the main objective of this study is to develop a mathematical model for a multicomponent batch distillation column, which is used to separate mixtures at low operating pressures, packed with random packing materials. In multicomponent batch packed distillation, operation with optimum reflux ratio profile is important for efficiency to maximize the amount of the distillate with a specified concentration, for a given time. Therefore, it is also aimed to find the optimum reflux ratio profile for the multicomponent batch packed distillation column. A simulation algorithm is written with the aid of MATLAB and FORTRAN programming languages by taking into account pressure drop and variation of physical properties. The selected incremental bed height, &
#916
z, to be used in the simulation program has an effect on the accuracy of the results. This is analyzed and the optimal incremental height is found to be 3.5 cm for a 1.5m bed height. The change in distillate compositions with a given constant reflux ratio is found to be similar with those of previous studies. The simulation code is also used to obtain responses in distillate compositions for different reflux ratios, condenser holdups and reboiler duties and compared with similar studies found from literature and found to be adequate. Finally, experiments are conducted to verify simulation algorithm by using a lab-scale packed distillation column for the separation of a polar mixture of ethanol and water. It is observed that, there is a good agreement between the experimental and simulation results. After the verification of dynamic model, optimum operation policy to maximize product amount is investigated numerically by using capacity factor approach. The column is operated with and without recycling of the holdups of the slop cut tanks, in order to examine the effect of recycling on capacity factor, CAP. It is observed that, recycling of the molar holdups of the slop cut tanks is resulted in a 28% increase in the separation efficiency.
APA, Harvard, Vancouver, ISO, and other styles
20

Martinez, Claudio de Lima Miguel. "State estimation for improved control in batch reaction and distillation processes." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shen, Weifeng. "Extension of thermodynamic insights on batch extractive distillation to continuous operation." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0083/document.

Full text
Abstract:
Nous étudions la faisabilité du procédé de distillation extractive continue pour séparer des mélanges azéotropiques A-B à température de bulle minimale ou maximale, avec un tiers corps E lourd ou léger. Les mélanges ternaires A-B-E appartiennent aux classes 1.0-1-a et 1.0-2 qui se subdivisent chacune en deux souscas selon la position de la courbe d'univolatilité. La colonne de distillation a trois sections, rectification, extractive, épuisement. Nous établissons les équations décrivant les profiles de composition liquide dans chaque section en fonction des paramètres opératoires: pureté et taux de récupération du distillat, taux de reflux ratio R et rapport des débits d'alimentation FE/F dans le cas d'un tiers corps lourd ; pureté et taux de récupération du produit de pied, taux de rebouillage S et rapport des débits d'alimentation FE/F dans le cas d'un tiers corps léger. Avec un tiers corps lourd alimenté comme liquide bouillant au dessus de l'étage d'alimentation du mélange A-B, nous identifions le distillat atteignable et les plages de valeurs faisables des paramètres R et FE/F à partir du critère général de faisabilité énoncé par Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2009, 48(7), 3544–3559). Pour la classe 1.0-1a, il existe des rapport FE/F et reflux ratio minimum. Le rapport FE/F est plus important pour le procédé continu que pour le procédé discontinu parce que la faisabilité du procédé continu nécessite que les profils d'épuisement et extractifs s'intersectent. Pour la classe 1.0-2, les deux constituants A et B sont des distillats potentiels, l'un sous réserve que le rapport FE/F reste inférieur à une valeur limite maximale. Le procédé continu exhibe également une valeur minimale de FE/F à un taux de reflux ratio donné, contrairement au procédé discontinu. Avec un tiers corps léger alimenté comme vapeur saturante sous l'étage d'alimentation du mélange A-B, nous identifions le produit de pied atteignable et les plages de valeurs faisables des paramètres S et FE/F à partir du critère général de faisabilité énoncé par Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2012, 51, 4643–4660). Comparé au cas des tiers corps lourds, le produit principal est obtenu en pied. Autrement, les comportements des classes 1.0-1a et 1.0-2 sont analogues entre les tiers corps léger et lourd. Avec un tiers corps léger, le procédé continu ajoute la contrainte que les profils de rectification et extractifs s'intersectent. La contrainte d'intersection des profils d'épuisement et extractif est partagée par les deux modes opératoires continu et discontinu. Ce travail valide la méthodologie proposée pour évaluer la faisabilité du procédé de distillation extractive continue et permet de comparer les tiers entre eux en termes de taux de reflux ratio minimum et de rapport de débit d'alimentation minimal
We study the continuous extractive distillation of minimum and maximum boiling azeotropic mixtures A-B with a heavy or a light entrainer E, intending to assess its feasibility based on thermodynamic insights. The ternary mixtures belong to the common 1.0-1a and 1.0-2 class ternary diagrams, each with two sub-cases depending on the univolatility line location. The column has three sections, rectifying, extractive and stripping. Differential equations are derived for each section composition, depending on operating parameters: distillate product purity and recovery, reflux ratio R and entrainer – feed flow rate ratio FE/F for the heavy case; bottom product purity and recovery, reboil ratio and entrainer – feed flow rate ratio for the light entrainer case. For the case with a heavy entrainer fed as a boiling liquid above the main feed, the feasible product and operating parameters R and FE/F ranges are assessed under infinite reflux ratio conditions by using the general feasibility criterion enounced by Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2009, 48(7), 3544–3559). For the 1.0-1a class, there exists a minimum entrainer - feed flow rate ratio to recover the product, and also a minimum reflux ratio. The minimum entrainer - feed flow rate ratio is higher for the continuous process than for the batch because of the additional requirement in continuous mode that the stripping profile intersects with the extractive profile. For the 1.0-2 class both A and B can be distillated. For one of them there exists a maximum entrainer - feed flow rate ratio. The continuous process also has a minimum entrainer - feed flow rate ratio limit for a given feasible reflux ratio. For the case with a light entrainer fed as saturated vapor below the main feed, the feasible product and operating parameters S and FE/F ranges are assessed under infinite reflux ratio conditions by using the general feasibility criterion enounced by Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2012, 51, 4643–4660), Compared to the heavy entrainer case, the main product is removed from the column bottom. Similar results are obtained for the 1.0-1a and 1.0-2 class mixtures whether the entrainer is light or heavy. With a light entrainer, the batch insight about the process feasibility holds for the stripping and extractive sections. Now, an additional constraint in continuous mode comes from the necessary intersection between the rectifying and the extractive sections. This work validates the proposed methodology for assessing the feasibility of continuous extractive distillation processes and enables to compare entrainers in terms of minimum reflux ratio and minimum entrainer feed flow rate ratio
APA, Harvard, Vancouver, ISO, and other styles
22

Lopes, Maíra Mendes. "Estudo comparativo da destilação em batelada operando com refluxo constante e com composição do destilado constante." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-27032009-084519/.

Full text
Abstract:
Este trabalho tem por objetivo comparar dois modos de operação de destilação em batelada: com refluxo constante e composição do destilado constante. Desenvolveuse um modelo matemático para a destilação em batelada de uma mistura binária (metanol-etanol) para operação com cada um destes modos. O modelo consiste basicamente dos balanços de massa e entalpia, relações e diagramas de equilíbrio líquido-vapor (composição de equilíbrio, temperaturas de bolha e orvalho da mistura), estimativa das propriedades físico-químicas da mistura (calor específico, calor latente de vaporização), determinação do número de estágios ideais necessários à separação (pelo método de McCabe-Thiele), cálculo de cargas térmicas no refervedor e condensador, consumo de utilidades (vapor de água e água de resfriamento), estimativa do tempo de destilação e alguns aspectos econômicos sobre o processo (custos de equipamentos e operacionais, capacidade de produção, lucro mensal). Implementou-se em uma planilha eletrônica este modelo para as simulações matemáticas e análise técnico-econômica do processo. Em escala de laboratório (foram realizados, ao todo, oito ensaios, quatro de refluxo constante e quatro de refluxo variável, utilizando uma coluna de pratos perfurados), constatou-se uma boa concordância entre estes resultados experimentais e os calculados a partir da modelagem. Em seguida, estudaram-se, isoladamente em cada modo de operação e de modo comparativo, as principais variáveis de processo (taxa de refluxo, composição do destilado, quantidade de carga, vazão de destilado, etc.) através de simulações matemáticas, tanto no cenário de uma unidade existente como no caso do projeto de uma instalação nova. Para uma instalação existente, verificou-se, que no modo de destilação com composição de destilado constante, mantendo-se a vazão do vapor de topo constante, o tempo de destilação é menor, a capacidade de destilação é maior, resultando em maior lucro mensal. Para uma instalação a ser projetada, de novo, o processo mais vantajoso é o de refluxo variável e vazão de vapor do topo constante, pois requer menores áreas dos trocadores de calor para uma dada separação num tempo fixo de processo. No entanto, para o processamento de uma dada quantidade num mesmo tempo, à medida que se adota, no projeto, um número maior de estágios de separação na coluna, a diferença de lucro mensal torna-se praticamente indistinta para os modos de destilação estudados.
The aim of this study is to compare two operational methods of batch distillation of a binary system (methanolethanol): constant reflux and constant distillate composition. A phenomenological modeling concerning each mode was developed. It was based on material and enthalpy balances, equilibrium relationships, estimation of physical properties (specific heat and latent vaporization heat of mixtures), determination of ideal stages number (using McCabe-Thiele method), calculation of rebolier and condenser thermal loads and areas, steam and cooling water requirement, distillation time and some economical aspects. The mathematical model was implemented into an electronic spreadsheet. The predicted values were compared to experimental results from eight tests carried out in a laboratory sieve tray column (four at constant reflux and four at constant distillate composition), and a good consistency was found. Then several case studies concerning each distillation mode as well as the comparative performance were accomplished through mathematical simulations. Evaluation of the basic process variables such as reflux rate, initial load, distillate composition and flow rate was done. Rating of an existing plant and design of a new installation were considered in this process analysis. For an existing installation, lower distillation time, as well as higher distillation capacity and monthly profit were observed when distilling with constant distillate composition, keeping constant the flow rate of vapor from the column top. This process is also the more advantageous one when designing a new plant since smaller heat exchanger areas are required. However, to process a quantity in a same time, in a design of a new plan, as number of separation stages increases, monthly profit becomes almost the same among the studied distillation modes.
APA, Harvard, Vancouver, ISO, and other styles
23

Miladi, M. M. "Optimal design and operation policies in batch distillation under fixed product demand." Thesis, University of Bradford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shah, Azam. "Neural network minimum entropy modelling and control of a batch distillation column." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Greaves, M. A. "Hybrid modelling, simulation and optimisation of batch distillation using neural network techniques." Thesis, University of Bradford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Conradie, Francois Jacobus. "Batch separation of tetrafluoroethylene, hexafluoropropylene and octafluorocyclobutane." Diss., University of Pretoria, 2011. http://hdl.handle.net/2263/28604.

Full text
Abstract:
This dissertation details research aimed at designing a small batch distillation column to purify tetrafluoroethylene and hexafluoropropylene from a mixture containing tetrafluoroethylene, hexafluoropropylene and octafluorocyclobutane. As no vapour-liquid equilibrium data are available for these chemicals in this mixture, new vapour-liquid equilibrium data were experimentally generated and modelled for use in the design of the batch distillation column. The data were fitted to the Peng-Robinson equation of state, utilizing the Mathias-Copeman alpha function. The model was used with the Wong- Sandler mixing rules alongside the NRTL alpha function. The model was fitted with mean relative deviations lower than 1.2 %, indicating an acceptably accurate description of the VLE data gathered by the model. The experimental data and the model also passed the thermodynamic consistency test for all the systems and isotherms. The design simulations were completed by means of the Aspen Batch Distillation, a module of the Aspen Technologies package. The results show that the optimum design for recovering high-purity products requires six equilibrium stages in the column. The batch column should consist of a still pot, also functioning as a reboiler, a packed column section and a total condenser. The total condenser and the reboiler both count as equilibrium stages. Using this design, a TFE product purity of 99.999 % is predicted with a recovery of 96 %. An HFP product purity of 99 % is predicted at a recovery of 68 %. The recovery of the HFP product can be increased, but entails a significant loss of product purity. The minimum column diameter required to achieve the flow rates suggested in the simulation is 29 mm. The column diameter was selectedas 1¼ ″ (or 31.75 mm) on the basis of the standard pipe diameters available in the industry. Pall ring packing is suggested for use in the column, with an estimated maximum HETP of 0.5 m. As there are five equilibrium stages in the column itself, the column has to be at least 2.5 m high. Copyright
Dissertation (MEng)--University of Pretoria, 2011.
Chemical Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
27

BHANDARI, SHASHANK. "Design of a solvent recovery system in a pharmaceutical manufacturing plant." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190901.

Full text
Abstract:
Solvents play a crucial role in the Active Pharmaceutical Ingredient (API) manufacturing and are used in large quantities. Most of the industries incinerate the waste solvents or send it to waste management companies for destruction to avoid waste handling and cross-contamination. It is not a cost effective method and also hazardous to the environment. This study has been performed at AstraZeneca’s API manufacturing plant at Sodertalje, Sweden. In order to find a solution, a solvent recovery system is modeled and simulated using ASPEN plus and ASPEN batch modeler. The waste streams were selected based on the quantity and cost of the solvents present in them. The solvent mixture in the first waste stream was toluene-methanol in which toluene was the key-solvent whereas in the second waste stream, isooctane-ethyl acetate was the solvent mixture in which isooctane was the key-solvent. The solvents in the waste stream were making an azeotrope and hence it was difficult to separate them using conventional distillation techniques. Liquid-Liquid Extraction with water as a solvent followed by batch distillation was used for the first waste stream and Pressure Swing Distillation was used for the second waste stream. The design was optimized based on cost analysis and was successful to deliver 96.1% toluene recovery with 99.5% purity and 83.6% isooctane recovery with 99% purity. The purity of the solvents was decided based on the quality conventions used at AstraZeneca so that it can be recovered and recycled in the same system. The results were favorable with a benefit of €335,000 per year and preventing nearly one ton per year carbon dioxide emissions to the environment. A theoretical study for the recovery system of toluene-methanol mixture was performed. The proposed design was an integration of pervaporation to the batch distillation. A blend of polyurethane / poly(dimethylsiloxane) (PU / PDMS) membrane was selected for the separation of methanol and toluene mixture. The results of preliminary calculations show 91.4% toluene recovery and 72% methanol recovery with desired purity.
APA, Harvard, Vancouver, ISO, and other styles
28

Hilmen, Eva-Katrine. "Separation of azeotropic mixtures : tools for analysis and studies on batch distillation operation." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemical Engineering, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-513.

Full text
Abstract:

Separation of azeotropic mixtures is a topic of great practical and industrial interest. Most liquid mixtures of organic components form nonideal systems. The presence of some specific groups, particularly polar groups (oxygen, nitrogen, chlorine and fluorine), often results in the formation of azeotropes. Azeotropic mixtures may often be effectively separated by distillation by adding a liquid material (entrainer) to the system.

For the development of separation processes for azeotropic mixtures, there is a need for insight into the fundamental phenomena of nonideal and azeotropic phase equilibria. This thesis includes a detailed survey on azeotropic phase equilibriumdiagrams of ernarymixtures. Diagram analysis is shown to be an efficient tool for prediction of feasible separations. As a simplifying concept it is proposed that all feasible structures of ternary azeotropic phase equilibrium diagrams can be qualitatively represented by a few elementary cells of which only four have so far been reported to exist. This greatly reduces the complexity of azeotropic istillation analysis and is a key to a simple evaluation of the possibilities and limitations of azeotropic mixtures separation.

Insights gained from continuous azeotropic distillation is extended to the operation of batch distillation with focus on the dynamics and control of multivessel and extractive batch distillation as processes for separating azeotropic mixtures. Practical implications of this renewed insight for the fine- and specialty chemical industries are given in the concluding pages of the thesis.

APA, Harvard, Vancouver, ISO, and other styles
29

Demicoli, Daniel. "Novel batch distillation processes for the separation of systems with and without chemical reaction." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=978975030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Masoud, Aboubaker Z. "Dynamic optimisation of batch distillation with and without chemical reaction with emphasis on product demand and operating cost : modelling conventional and unconventional batch distillation in gPROMS and operation parameters to maximise profitability whi." Thesis, University of Bradford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cesur, Serap. "Study of modelling, simulation and different operation modes and control for packed batch distillation columns." Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Aqar, Dhia Y. "Modelling and Optimization of Conventional and Unconventional Batch Reactive Distillation Processes. Investigation of Different Types Batch Reactive Distillation Columns for the Production of a Number of Esters such as Methyl Lactate, Methyl Decanoate, Ethyl Benzoate, and Benzyl Acetate using gPROMS." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17139.

Full text
Abstract:
The synthesis of a number of alkyl esters such as methyl lactate, methyl decanoate, and ethyl benzoate via esterification in a reactive distillation is quite challenging. It is due to the complexity in the thermodynamic behaviour of the chemical species in the reaction mixture in addition to the difficulty of keeping the reactants together in the reaction section. One of the reactants (in these esterification reactions) having the lowest boiling point can separate from the other reactant as the distillation continues. This can result in a significant drop in the reaction conversion in a conventional reactive distillation whether it is a batch or a continuous column. To overcome this challenge, new different types of batch reactive distillation column configurations: (1) integrated conventional (2) semi-batch (3) integrated semi-batch (4) integrated dividing-wall batch distillation columns have been proposed here. Four esterification reaction schemes such as (a) esterification of lactic acid (b) esterification of decanoic acid (c) esterification of benzoic acid (d) esterification of acetic acid are investigated here. A detailed dynamic model based on mass, energy balances, chemical reaction, and rigorous thermodynamic (chemical and physical) properties is considered and incorporated in the optimisation framework within gPROMS (general PROcess Modelling System) software. It is found that for the methyl lactate system, the i-SBD operation outperforms the classical batch operations (CBD or SBD columns) to satisfy the product constraints. While, for the methyl decanoate system, the i-DWCBD operation outperforms all CBD, DWBD and sr-DWBD configurations by achieving the higher reaction conversion and the maximum product purity. For the ethyl benzoate system, the performance of i-CBD column is superior to the CBD process in terms of product quality, and conversion rate of acid. The CBD process is found to be a more attractive in terms of operating time saving, and annual profit improvement compared to the IBD, and MVD processes for the benzyl acetate system.
The Higher Committee for Education Development in Iraq (HCED)
APA, Harvard, Vancouver, ISO, and other styles
33

Vobejda, Lukáš. "Dávkové řízení modelu destilační kolony." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221391.

Full text
Abstract:
This thesis deals with the batch controlling of a distillation column model. The thesis is divided into several parts. The first part, which is more theoretical, summarizes the description of the batch controlling, the distillation process and the equipment used, including the model of the distillation column itself. The second part is focused on the practical implementation. The beginning of this part displays different types of the models produced by the Standard 88. This section is followed by a description of a device database in the environment of FactoryTalk Batch Equipment Editor, creation of a logical phase codes using functions of the PhaseManager in the environment of RSLogix5000 and a creation of a recipe in the environment of FactoryTalk Batch Recipe Editor. The last part of this thesis deals with the visualization created in the FactoryTalk View Studio SE and final testing of the entire process.
APA, Harvard, Vancouver, ISO, and other styles
34

Awad, Pierre. "Identification et compréhension des processus réactionnels conduisant à la génération de composés volatils lors de la distillation charentaise influant sur la qualité des eaux-de-vie de Cognac." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLA044/document.

Full text
Abstract:
La distillation dite « charentaise » est une méthode de distillation discontinue permettant la production d’eaux-de-vie de cognac à partir de vin. La distillation est effectuée dans des alambics en cuivre avec un chauffage à feu nu qui peut être favorable à la génération de composés volatils. Or, les précurseurs et les mécanismes de réactions formant ces composés, pendant la distillation, restent mal connus. La première partie de l’étude consiste à identifier les composés volatils formés au cours de la distillation charentaise. Le bilan matière effectué sur de nombreux composés lors du procédé de distillation a révélé que 2 esters, 3 aldéhydes, 3 terpènes et 12 norisoprénoïdes étaient générés. Par la suite, deux distillations utilisant un mode de chauffe différent (feu nu et vapeur) ont été menées sur un alambic pilote. Le but était d’évaluer l’impact du mode de chauffe sur la génération en composés volatils. L’étude a montré que le mode de chauffe a peu d’effet sur la génération en composés volatils. De plus, les composés formés sont similaires à ceux formés lors de la distillation en alambic traditionnel. Enfin, le troisième axe de l’étude porte sur la caractérisation de l’hydrolyse acide de l’α- terpenyl-O-β-glucopyranoside, précurseur impliqué dans la formation de l’α-terpineol, identifié comme étant généré lors de la distillation charentaise ainsi qu’en alambic pilote. Le suivi de la dégradation dans un réacteur hermétiquement fermé de l’α-terpenyl-O-β-glucopyranoside et dans des conditions représentatives du vin durant la distillation montre l’hydrolyse pour former l’α- terpineol, le trans-terpin et son isomère. Cette étude a révélé que l’hydrolyse du précurseur est favorisée en milieu aqueux et suit une cinétique d’ordre 1
The « charentaise » distillation is a batch distillation method that allows the production of cognac spirits from wine. The distillation is performed in copper alembics through a direct open flame heating that could favor the formation of volatile compounds. The first part of this study consists in identifying the volatile compounds formed during the distillation of cognac spirits. The mass balance performed on volatile compounds revealed that 2 esters, 3 aldehydes, 3 terpenes and 12 norisoprenoids were generated. Thereafter, two distillations using a different heating mode (direct open flame and steam) were conducted on a small-scale alembic. The goal was to assess the impact of the heating mode on the formation of volatile compounds. The study showed that the mode of heating has little effect on volatile compounds’ generation. Moreover, the compounds formed are similar to the ones during the traditional distillation of cognac spirit. Finally, the third part of the study focuses on the characterization of the acid hydrolysis of α-terpenyl-O-β-glucopyranoside which is the suspected precursor to be involved in the formation of α-terpineol, identified as generated during the charentaise distillation and in small-scale distillations. α-terpenyl-O-β- glucopyranoside was placed in two representative model solutions corresponding to the initial wine and the stillage. Both solutions were exposed to 100 °C in a closed reactor system. Results showed that the hydrolysis of the precurseur formed α- terpineol, trans-terpin and its isomere that seems to be 4-(2-hydroxypropan-2-yl)-1- methylcyclohexan-2-ol). Data also revealed that the hydrolysis of the precursor follows a first order reaction model ant that an aqueous media promotes the formation of trans-terpin
APA, Harvard, Vancouver, ISO, and other styles
35

Mehlhorn, Arndt. "Modelización avanzada de columnas de destilación de operación discontinua." Doctoral thesis, Universitat Politècnica de Catalunya, 1998. http://hdl.handle.net/10803/6448.

Full text
Abstract:
La tesis doctoral se compone de dos partes fundamentales: El desarrollo teórico de un modelo de simulación para la destilación discontinua y la validación de este mediante experimentos hechos en una planta piloto de destilación discontinua.
La parte teórica se divide en la parte de desarrollo del modelo y en la parte de la implementación del modelo en un programa de simulación. El nuevo modelo desarrollado es un modelo de transferencia de materia que se distingue de los desarrollos anteriores por su capacidad de contemplar la cinética de la transferencia de materia tal como la hidrodinámica. La incorporación de efectos hidrodinámicos se basa principalmente en la observación de diferentes geometrías de contacto en una columna de platos perforados. Estas geometrías de contacto son canales de vapor y burbujas. En caso de las burbujas se distingue entre grandes y pequeñas con diferentes propiedades hidrodinámicas. De esta forma el modelo contempla tres diferentes clases de vapor, dos clases de vapor de desequilibrio y una de equilibrio (burbujas pequeñas). Para las clases de vapor de desequilibrio se calcula explícitamente los caudales de materia que traviesen la interfase basándose en la teoría de Maxwell-Stefan de transferencia de materia multicomponente.
La parte experimental se divide en la parte de diseño de la columna usada en una planta piloto y en la de la realización de los experimentos. El diseño de la columna tiene como objetivo la obtención de un medio de validación del nuevo modelo desarrollado. Por tanto está equipado con un gran número de sensores de temperatura, de presión y de tomas de muestra. También la realización de los experimentos se adapta al fin de la validación del modelo, ya que la frecuencia de toma de muestra y de capturación de señales de temperatura es elevada.
La memoria de la tesis contiene una comparación amplia de los resultados experimentales con los de la simulación. Estas comparaciones demuestran una determinada superioridad del modelo desarrollado sobre desarrollos anteriores.
APA, Harvard, Vancouver, ISO, and other styles
36

Safdarnejad, Seyed Mostafa. "Developing Modeling, Optimization, and Advanced Process Control Frameworks for Improving the Performance of Transient Energy-Intensive Applications." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6057.

Full text
Abstract:
The increasing trend of world-wide energy consumption emphasizes the importance of ongoing optimization of new and existing technologies. In this dissertation, two energy–intensive systems are simulated and optimized. Advanced estimation, optimization, and control techniques such as a moving horizon estimator and a model predictive controller are developed to enhance the profitability, product quality, and reliability of the systems. An enabling development is presented for the solution of complex dynamic optimization problems. The strategy involves an initialization approach to large–scale system models that both enhance the computational performance as well as the ability of the solver to converge to an optimal solution. One particular application of this approach is the modeling and optimization of a batch distillation column. For estimation of unknown parameters, an L1-norm method is utilized that is less sensitive to outliers than a squared error objective. The results obtained from the simple model match the experimental data and model prediction for a more rigorous model. A nonlinear statistical analysis and a sensitivity analysis are also implemented to verify the reliability of the estimated parameters. The reduced–order model developed for the batch distillation column is computationally fast and reasonably accurate and is applicable for real time control and online optimization purposes. Similar to estimation, an L1-norm objective function is applied for optimization of the column operation. Application of an L1-norm permits explicit prioritization of the multi–objective problems and adds only linear terms to the problem. Dynamic optimization of the column results in a 14% increase in the methanol product obtained from the column with 99% purity. In a second application of the methodology, the results obtained from optimization of the hybrid system of a cryogenic carbon capture (CCC) and power generation units are presented. Cryogenic carbon capture is a novel technology for CO2 removal from power generation units and has superior features such as low energy consumption, large–scale energy storage, and fast response to fluctuations in electricity demand. Grid–level energy storage of the CCC process enables 100% utilization of renewable power sources while 99% of the CO2 produced from fossil–fueled power plants is captured. In addition, energy demand of the CCC process is effectively managed by deploying the energy storage capability of this process. By exploiting time–of–day pricing, the profit obtained from dynamic optimization of this hybrid energy system offsets a significant fraction of the cost of construction of the cryogenic carbon capture plant.
APA, Harvard, Vancouver, ISO, and other styles
37

Almeida, Rafael Nolibos. "Processo de retificação de óleos essenciais por destilação em batelada : termodinâmica, modelagem e simulação." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/141827.

Full text
Abstract:
A grande dificuldade na simulação de processos envolvendo substâncias naturais é o reduzido número de propriedades termo físicas e dados experimentais disponível na literatura. Devido à diversidade e complexidade das moléculas presentes, o estudo do processamento de compostos naturais ainda é pequeno. Neste trabalho, são investigados modelos para predição de tais propriedades termodinâmicas, fundamentais à modelagem e simulação do processo de destilação em batelada de óleos essenciais. Um método de contribuição de grupos é utilizado para predição da pressão de vapor de substâncias puras (CSGC-PVR), quando dados experimentais não são disponíveis. Em relação ao cálculo do coeficiente de atividade, um modelo totalmente preditivo baseado em química quântica computacional é utilizado (COSMO-SAC). De modo geral, este trabalho tem como objetivo a aplicação de propriedades termodinâmicas preditas em um modelo dinâmico, capaz de descrever o processo de retificação através da destilação em batelada. As simulações foram realizadas no simulador orientado a equações EMSO, a fim de demonstrar a viabilidade do método. Os óleos essenciais de Eucalyptus globulus Labill, Eucalyptus citriodora Hook e Cymbopogon winterianus Jowitt foram selecionados devido ao potencial econômico de suas frações. Inicialmente, um conjunto de dados experimentais é comparado às simulações para validação do método. Em um segundo momento, as simulações são realizadas para correlacionar as condições operacionais e cortes de destilado para as misturas dadas. Os perfis de composição e a determinação dos cortes majoritários são apresentados. Duas alternativas são avaliadas para obtenção de maior pureza nos cortes; o uso de bateladas de reciclo e o controle da razão de refluxo através de uma ação proporcional. A influência de diferentes configurações de coluna também é avaliada, variando o número de estágios teóricos, regime de refluxo e acúmulo de coluna. Os métodos utilizados se mostram capazes de predizer o comportamento do processo de fracionamento e podem ser aplicados a um grande número de óleos essenciais.
The great obstacle in simulating processes involving natural products is the small number of thermo-physical properties and experimental data available in the literature. Due to the diversity and complexity of these molecules, studies concerning essential oils processing is still limited. In this work, thermodynamic models are investigated in order to predict such properties, which are requisites to the modelling and simulation of the essential oil batch distillation process. In this work a group contribution method is used to predict the vapor pressure (CSGC-PVR) when experimental data was unavailable. Regarding the activity coefficients, a fully predictive model based on quantum calculations (COSMO-SAC) is used. Moreover, this work also aims the use of those predicted properties in a dynamic model, capable of describing the fractionation process by batch distillation. The simulations were performed in the equation-oriented simulator EMSO, in order to demonstrate the feasibility of the method. Oils of Eucalyptus globulus Labill, Eucalyptus citriodora Hook and Cymbopogon winterianus Jowitt were selected due to their high production and economic potential of its fractions. Initially, a set of experimental data is compared to the simulations in order to validate the method. Then, simulations are performed to relate operational conditions and distillate cuts for the given mixtures. The distillate composition profiles and the determination of the major cuts are presented. Two alternatives are evaluated in order to obtain cuts of higher purity; the use of a recycle batch and a reflux ratio proportional control based on the distillate composition. The influence of different column configurations is also evaluated, varying its number of theoretical stages, reflux ratio regime and column holdup. The methods used are shown able to predict a reasonable behavior for the fractionation process of the essential oils tested and the method can be extended to most of the essential oils.
APA, Harvard, Vancouver, ISO, and other styles
38

Douady, Adrien. "Maîtrise de la distillation charentaise pour la production d'eaux-de-vie nouvelles de cognac à fort potentiel." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLA021.

Full text
Abstract:
Depuis la fin des années 90, la Maison Hennessy, par le biais de son Comité de dégustation expert, observe une diminution de la proportion d’eaux-de-vie à fort potentiel qualitatif. Ainsi, au moyen d’une thèse CIFRE menée avec l’UMR GENIAL, celle-ci a décidé de développer des moyens de caractérisation des eaux-de-vie et d’identifier des facteurs au sein de l’étape de distillation permettant l’obtention d’eaux-de-vie nouvelles plus qualitatives.Ces travaux se sont structurés autour des axes de recherche suivants : (i) la recherche des composés volatils clés par olfactométrie, (ii) le développement d’une méthode sensorielle descriptive quantitative, (iii) la mise en place d’un outil expérimental de distillation ainsi que la réalisation d’essais structurés sous forme de plans d’expériences et enfin (iv) l’étude du comportement des composés volatils au cours de la distillation discontinue.(i) La méthode de fast GC-Olfactométrie a permis l’identification de 7 composés volatils probablement impliqués dans la discrimination du potentiel qualitatif : acétaldéhyde, caproate d’éthyle, acétate d’héxyle, 3-méthylpentanol, 3-éthoxy-1-propanol, acide acétique, acide isobutanoïque.(ii) Le développement d’une méthode sensorielle de type QDA, a abouti à l’élaboration d’une liste de 19 descripteurs sensoriels caractéristiques des eaux-de-vie à fort potentiel ainsi que la création de 22 références aromatiques pour l’entraînement du panel. Le contrôle des performances a mis en évidence la nécessité de poursuivre l’entraînement de façon à disposer d’un panel fiable au sens de la norme AFNOR.(iii) La mise en place d’un hall muni d’alambics pilotes, associée au développement d’une méthodologie de distillation expérimentale et l’utilisation de plans d’expériences ont permis d’étudier l’incidence de 5 facteurs de distillation sur la qualité des eaux-de-vie nouvelles. Les résultats laissent présager d’un effet positif d’une plus grande hauteur de col-de-cygne et de l’absence de recyclage des queues.(iv) Enfin, l’étude du comportement des composés volatils au cours de la distillation a validé une classification établie précédemment dans la littérature et a mis en évidence la possibilité d’utiliser un logiciel commercial de simulation pour représenter leur comportement
Since the end of the 1990's, the Maison Hennessy, thanks to the expertise of its Tasting Committee, has noticed a decrease in the proportion of eaux-de-vies with high qualitative potential. Thus, with the help of a CIFRE thesis led in cooperation with UMR GENIAL, it has been decided to develop means of characterisation of eaux-de-vie and identify factors within the distillation process that will enable the production of more quality-oriented new eaux-de-vie.These works have been structured around the following themes: (i) research of key volatile compounds through olfactometry, (ii) development of a descriptive and quantitative sensory method, (iii) setting up an experimental distillation tool as well as the implementation of structured trials in the shape of designs of experiments, and finally (iv) behavioural study of volatile compounds during batch distillation.(i) The fast GC-Olfactometry method enabled us to identify 7 volatile compounds probably involved in the discrimination of the qualitative potential: acetaldehyde, ethyl caproate, hexyl acetate, 3-methylpentanol, 3-ethoxy-1-propanol, acetic acid, isobutanoic acid.(ii) The development of a QDA-type sensory method led to the elaboration of a list of 19 sensory descriptors representative of eaux-de-vie with strong potential as well as the creation of 22 aromatic references for panel training. The control of performances highlighted the necessity to pursue further the training in order to benefit from a reliable panel according to AFNOR.(iii) The set-up of a dedicated room equipped with pilot pot-stills, associated with the development of an experimental distillation methodology and the use of designs of experiments, enabled to study the effect of 5 distillation factors upon the quality of new eaux-de-vie. The results foreshadow a positive influence of a taller swan's neck and an absence of recycling of tails.(iv) Finally, the behavioural study of volatile compounds during distillation validated a classification previously established in literature and has highlighted the possibility to use a commercial simulation software to describe their behaviour
APA, Harvard, Vancouver, ISO, and other styles
39

Scanavini, Helena Finardi Alvares. "Destilação em batelada de aroma natural de caju e oleo essencial de manjericão : investigação via simulação computacional." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255111.

Full text
Abstract:
Orientadores: Antonio Jose de Almeida Meirelles, Luiz Fernando de Lima Luz Junior
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-08T15:25:45Z (GMT). No. of bitstreams: 1 Scanavini_HelenaFinardiAlvares_M.pdf: 3144443 bytes, checksum: f6733d6ff56270059b3021e96e08e996 (MD5) Previous issue date: 2006
Resumo: O aroma de um alimento é o resultado da combinação de diversas substâncias voláteis, de diferentes classes químicas, sendo que nenhuma delas é individualmente responsável pelo aroma, mas sim a combinação entre elas. Atualmente, os aromatizantes são amplamente utilizados na indústria alimentícia, seja para conferir um determinado aroma a um produto, ou para reforçar o aroma característico já existente, como de um suco, por exemplo. A concentração de sucos de frutas reduz o volume, sendo importante para o armazenamento, embalagem e transporte. Porém, durante o processo convencional de concentração, a maioria dos componentes aromatizantes é perdida, sendo necessário recuperar a fração aromatizante do suco de fruta durante a concentração. Existem vários processos utilizados para a recuperação de aroma e concentração de suco. O aroma concentrado pode, então, ser reincorporado no suco concentrado para obter uma bebida com aroma natural e característico da fruta. O mercado internacional tem demonstrado grande interesse nos sucos de frutas tropicais, entretanto parcela das indústrias nacionais ainda não alcançou desenvolvimento tecnológico para competir em um mercado no qual os produtos obtidos devem apresentar certas características de qualidade. No caso do óleo essencial de manjericão, ele tem atraído a atenção de pesquisadores por possuir grande quantidade de linalol, uma substância de largo emprego na indústria de aromas e perfumes, também encontrada no pau-rosa, árvore amazônica em extinção. Assim, neste trabalho foram estudadas, através da simulação computacional, condições operacionais e construtivas (número de estágios) de colunas de destilação em batelada de aroma natural de caju e de óleo essencial de manjericão. No caso do aroma natural de caju, foram investigadas as condições que garantissem uma maior recuperação dos compostos voláteis desejáveis, para serem reincorporados ao suco concentrado ou utilizados na formulação de outros produtos alimentícios e também a purificação deste aroma em relação ao ácido 2-metil butanóico, considerável indesejável, devido ao seu odor desagradável. Enquanto que para o óleo essencial de manjericão, foram estudadas as melhores condições para o fracionamento de seus componentes de maior interesse comercial, visando a obtenção destes com o maior grau de pureza possível, para a utilização pela indústria alimentícia, de perfumaria ou farmacêutica
Abstract: The flavor is a combination of some volatile substances, of different chemical classes. However none of them is individually responsible for a specific flavor, but a combination of them. Nowadays flavor compounds are widely used in the food industry, either to confer one definitive flavor to a product, or to strengthen an existing characteristic flavor, as of a juice, for example. The fruit juice concentration reduces the volume, being important to the storage, packing and transportation. However, during the conventional concentration process, the majority of the flavor components is lost, being necessary to recover the juice flavor fraction lost during the concentration. There are some information of different processes used for the flavor recovery and juice concentration. The concentrated flavor can then be reintroduced in the concentrated juice to get a beverage with the natural and characteristic flavor of the fruit. The international market has demonstrated a great interest in tropical fruit juices. However, a share of the domestic industries still has not developed technologies to compete in a market in which the products must present certain quality characteristics. In the case of the essential oil of basil, it has attracted the attention of researchers for containing a large amount of linalool, a substance with high ability of setting odors, also found in the wood-rose, an Amazonian tree in extinguishing. Therefore, in this work, it had been studied, through computer simulation, operational and design conditions of a batch distillation column of the natural flavor of cashew fruit and essential oil of basil. In the case of the cashew natural flavor, it was investigated the conditions that guarantee a larger recovery of desirable volatile compounds, to be reintroduced to the concentrated juice or used in the formulation of other nourishing products and also the purification of this flavor in relation to the 2-methylbutanoic acid, considered undesirable and of unpleasant odor. For the essential oil of basil, the best conditions for the purification of its components of larger commercial interest had been studied, aiming at obtaining them with the largest degree of possible purity, for the nourishing, cosmetic or pharmaceutical industry uses
Mestrado
Mestre em Engenharia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles
40

Van, der Merwe Abraham Blignault. "Evaluation of different process designs for biobutanol production from sugarcane molasses." Thesis, Stellenbosch : Stellenbosch University, 2010. http://hdl.handle.net/10019.1/4374.

Full text
Abstract:
Thesis (MScEng (Process Engineering))--Stellenbosch University, 2010.
ENGLISH ABSTRACT: Recently, improved technologies have been developed for the biobutanol fermentation process: higher butanol concentrations and productivities are achieved during fermentation, and separation and purification techniques are less energy intensive. This may result in an economically viable process when compared to the petrochemical pathway for butanol production. The objective of this study is to develop process models to compare different possible process designs for biobutanol production from sugarcane molasses. Some of the best improved strains, which include Clostridium acetobutylicum PCSIR-10 and Clostridium beijerinckii BA101, produce total solvent concentrations of up to 24 g/L. Among the novel technologies for fermentation and downstream processing, fedbatch fermentation with in situ product recovery by gas-stripping, followed by either liquid-liquid extraction or adsorption, appears to be the most promising techniques for current industrial application. Incorporating these technologies into a biorefinery concept will contribute toward the development of an economically viable process. In this study three process routes are developed. The first two process routes incorporate well established industrial technologies: Process Route 1 consist of batch fermentation and steam stripping distillation, while in Process Route 2, some of the distillation columns is replaced with a liquid-liquid extraction column. The third process route incorporates fed-batch fermentation and gas-stripping, an unproven technology on industrial scale. Process modelling in ASPEN PLUS® and economic analyses in ASPEN Icarus® are performed to determine the economic feasibility of these biobutanol production process designs. Process Route 3 proved to be the only profitable design in current economic conditions. For the latter process, the first order estimate of the total project capital cost is $187 345 000.00 (IRR: 35.96%). Improved fermentation strains currently available are not sufficient to attain a profitable process design without implementation of advanced processing techniques. Gas stripping is shown to be the single most effective process step (of those evaluated in this study) which can be employed on an industrial scale to improve process economics of biobutanol production.
AFRIKAANSE OPSOMMING: Onlangse verbeteringe in die tegnologie vir die vervaardiging van butanol via die fermentasie roete het tot gevolg dat: hoër butanol konsentrasies en produktiwiteit verkry kan word tydens die fermentasie proses, en energie verbruik tydens skeiding-en suiweringsprosesse laer is. Hierdie verbeteringe kan daartoe lei dat biobutanol op ʼn ekonomiese vlak kan kompeteer met die petrochemiese vervaardigings proses vir butanol. Die doelwit van die studie is om proses modelle te ontwikkel waarmee verskillende proses ontwerpe vir die vervaardiging van biobutanol vanaf suikerriet melasse vergelyk kan word. Verbeterde fermentasie organismes, wat insluit Clostridium acetobutylicum PCSIR-10 en Clostridium beijerinckii BA101, het die vermoë om ABE konsentrasies so hoog as 24 g/L te produseer. Wat nuwe tegnologie vir fermentasie en skeidingprosesse behels, wil dit voorkom of wisselvoer fermentasie met gelyktydige verwydering van produkte deur gasstroping, gevolg deur of vloeistof-vloeistof ekstraksie of adsorpsie, van die mees belowende tegnieke is om tans in die nywerheid te implementeer. Deur hierdie tegnologie in ʼn bioraffinadery konsep te inkorporeer sal bydra tot die ontwikkeling van ʼn ekonomies lewensvatbare proses. Drie prosesserings roetes word in die studie ontwikkel. Die eerste twee maak gebruik van goed gevestigde industriële tegnologie: Proses Roete 1 implementeer enkellading fermentasie en stoom stroping distillasie, terwyl in Proses Roete 2 van die distilasiekolomme vervang word met ʼn vloeistof-vloeistof ekstraksiekolom. Die derde proses roete maak gebruik van wisselvoer fermentasie met gelyktydige verwydering van produkte deur gas stroping. Die tegnologie is nog nie in die nywerheid bewys of gevestig nie. Om die ekonomiese uitvoerbaarheid van die proses ontwerpe te bepaal word proses modellering uitgevoer in ASPEN PLUS® en ekonomiese analises in ASPEN Icarus® gedoen. Proses Roete 3 is die enigste ontwerp wat winsgewend is in huidige ekonomiese toestande. Die eerste orde koste beraming van die laasgenoemde projek se totale kapitale koste is $187 345 000.00 (opbrengskoers: 35.96%). Die verbeterde fermentasie organismes wat tans beskikbaar is, is nie voldoende om ʼn proses winsgewend te maak nie; gevorderde proses tegnologie moet geïmplementeer word. Gasstroping is bewys as die mees effektiewe proses stap (getoets in die studie) wat op industriële skaal geïmplementeer kan word om die winsgewendheid van die biobutanol proses te verbeter.
Centre for Renewable and Sustainable Energy Studies
APA, Harvard, Vancouver, ISO, and other styles
41

Yau, Chun-yang, and 姚君揚. "Operation and Control of Batch Extractive Distillation SystemOperation and Control of Batch Extractive Distillation SystemOperation and Control of Batch Extractive Distillation System." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/87946904107531864666.

Full text
Abstract:
碩士
國立臺灣科技大學
化學工程系
93
In order to separate mixtures containing azeotrope, usually an entrainer is added into the system. There are two ways to add entrainer, including batch extractive distillation (BED) and solvent enhance distillation (SED). According to the boiling points of the mixture and the entrainer, we can distinguish azeotropes and entrainer into six types, but only 4 types are worthy of study. This research completely analyse and simulate operation steps of these four different systems. An important operation step is developed to save entrainer and operation time. This research also compares different separate methods and control strategies. The influence of the operational parameters on the process is studied by computer simulation. Calculations were carried out with a rigorous simulation software “Aspen plus®”and “Aspen dynamics™”.
APA, Harvard, Vancouver, ISO, and other styles
42

Huang, Cheng Yuan, and 黃正淵. "Operation and control of batch distillation system." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/43163995424164635492.

Full text
Abstract:
碩士
國立臺灣科技大學
化學工程系
92
The batch distillation can be categorized into four types, as shown in the following: regular column, inverted column, middle vessel column and multivessel column, each has its characteristic and advantage. This research compares different operation and control methods via batch distillation simulation. We will discuss how process dynamic response would be influenced if feed composition changes. These includes fixing reflux ratio strategy, fixing composition strategy and total reflux operation strategy within batch distillation columns that are used for the separation of binary system, ternary system and quaternary nonideal system. Simulation results demonstrate fixing composition strategy in temperature control within regular column is suitable for binary system separation. Fixing composition strategy in temperature control and total reflux strategy in temperature control within middle vessel column is suitable for ternary system separation. Finally, total reflux strategy in temperature control within multivessel column is suitable for quaternary system separation.
APA, Harvard, Vancouver, ISO, and other styles
43

Lai, Chin-Hung, and 賴進宏. "Optimal Design of Batch Azeotropic Distillation Processes." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/05246804667585383770.

Full text
Abstract:
碩士
國立成功大學
化學工程學系碩博士班
91
By addressing both flowsheeting and scheduling issues, an integrated design method for the batch azeotropic distillation systems has been developed in this work. The design method can be applied in two stages. First, the optimal flowsheet (state-task network, STN) is synthesized with an integer program (IP). A mixed integer linear programming (MILP) model is then constructed accordingly for generating the optimal schedule. The implementation procedure of the proposed design approach is demonstrated with a series of case studies in this thesis. From the numerical results obtained in various examples, it can be clearly observed that the performance of a batch azeotropic distillation process can be greatly affected by the STN structure. Consequently, the importance of the proposed integrated design approach can be confirmed indirectly.
APA, Harvard, Vancouver, ISO, and other styles
44

Bernot, Christine. "Design and synthesis of multicomponent batch distillation." 1990. https://scholarworks.umass.edu/dissertations/AAI9110105.

Full text
Abstract:
Interest in batch processes has increased with the growing importance of specialty chemicals, characterized by high-value, low-capacity, short-term production and strongly nonideal mixtures. While separation is an important step in these processes, few publications deal with the feasibility and design aspects of batch distillation for azeotropic mixtures. In this dissertation, a simple dynamic model is developed to describe composition changes in batch distillation by decoupling the variations in flows and compositions through a dimensionless warped time. The model is based on constant molar overflow and quasi-steady state assumptions in the column and on a differential model for the batch tank. Two types of batch distillation columns are presented: the batch rectifier, where products are withdrawn at the distillate, and the batch stripper, where products are withdrawn at the bottom. Composition changes for azeotropic mixtures are complex because the sequence of cuts collected depends on the relative amount of each component in the feed. However, in the limiting case of large number of stages and large reflux or reboil ratio, a method is presented to predict the variation of the batch and product compositions as a function of time. As a result, the composition space is divided into regions leading to the same set of fractions. The method is geometrical and requires little or no computation. A systematic procedure to devise a feasible sequence is proposed. This procedure includes determining suitable entrainers to break binary azeotropes. It is shown that the use of a batch stripper is essential in breaking minimum boiling binary azeotropes. The techniques developed are illustrated on the separation of methyl acetate from a quaternary azeotropic feed coming from a transesterification reactor. A simple, tractable, design method is presented to estimate flows, equipment sizes, utility loads and costs for any batch column. This method provides a rapid estimate of the design targets for a variable reflux (or reboil) policy without the need of integrating the column model numerically. This policy, which approximates the constant distillate (or bottom) composition policy, shows significant cost savings over the constant reflux (or reboil) policy.
APA, Harvard, Vancouver, ISO, and other styles
45

Che, Chang Ming, and 張明哲. "A Compartmental Model for Batch Distillation Processes." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/03834252609261922629.

Full text
Abstract:
碩士
國立臺灣大學
化學工程研究所
81
Recently, production of special chemicals becomes increasingly important. Batch distillation is the one of such production processes which separates mixture into a number of products with high quality. In order to obtain products of high quality and high economic efficacy, a good mathematical model and an optimal control strategy are necessary. But, a high-order physical model of separation process is very complex and difficult to carry out optimal control strategy. Therefore ,the use of reduced order models for batch distillation processes becomes very importance. Based on the connatural properties of unsteady-state batch separation processes, eliminate the restrictive assumption of constant molar-overflow in continuous distillation processes and then construct a compartmental model for batch separation processes. Moreover, we introduce the concept of sensitive block to replace the sensitive stage in the orignal compartmental model of continue separation processes. With this concept, one can formulate the refined dynamic compartmental model to satisfy the character of batch dynamic separation processes. From the simulation results, it reveals that the dynamic compartmental models developed are able to capture the underlying dynamics of batch distillation processes. It also shows that the superior robustness performance under different performance ratio and a disturbance duration in reboil heat .
APA, Harvard, Vancouver, ISO, and other styles
46

Lin, Sheng-yu, and 林聖育. "The Optimal Operation of Batch Extractive Distillation System." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/s4u3p3.

Full text
Abstract:
碩士
國立臺灣科技大學
化學工程系
94
This research studied the optimal operation of batch extractive distillation system for Acetone-Methanol-Water system and Methyl acetate-Carbon tetrachloride- Cyclohexane system. By changing reboiler duty, flow rate of entrainer, reflux ratio, and with different object functions, study on the optimal operation of batch extractive distillation was carried out. The first part of this work studied the case when reboiler duty can be changed at each stage, and comparison was made with that of Yau(2005). The next part studied the optimization under constant reboiler duty policy at each stage but the value of this reboiler duty can be varied. In the final part of this study, operation of batch extractive distillation with middle vessel was investigated and applied to Acetone-Methanol-Water system. It was hope that this kind of operation with a middle vessel can overcome the problems of low yield and long operation time for the regular batch extractive distillation. The comparison was made on these two kinds of operations. The operating results in this work were obtained from computer simulation. Calculations were carried out with rigorous simulation software “Aspen plus®”and “Aspen dynamics™”.
APA, Harvard, Vancouver, ISO, and other styles
47

HUANG, TZU-EN, and 黃子恩. "Analysis and Simulation of an Azeotropic Batch Distillation." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/gz2n56.

Full text
Abstract:
碩士
國立臺灣科技大學
化學工程系
95
The common practice in the studies of batch distillation is through simulation of such process. However, simulation results might not match experimental results. To this aim, this work proposed a correction factor between simulation results and experimental results. By comparing the difference between simulation and experimental results, revision is made to the mathematical model based on correction principles to achieve a closer match of the results. In addition, parametric analysis is carried out by comparisons of simulation results with experimental results for various parameters. This verification process greatly increased the acceptability of the revised mathematical model.
APA, Harvard, Vancouver, ISO, and other styles
48

Huang, Han jie, and 黃漢傑. "Operation and control of heteroazeotropic batch distillation system." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/92v2c5.

Full text
Abstract:
碩士
國立臺灣科技大學
化學工程系
95
This research studied the operation and control of the heteroazeotropic batch distillation system. The first part uses regular column to separate the minimum boiling temperature mixture. The next part uses regular column to separate the close-boiling mixture. In this study, we make the operation and control of heteroazeotropic batch distillation system to approach actual condition. For the close-boiling mixture, we compare three kinds of the entrainer and the case without entrainer. We also study and compare three operation and control strategies. The discussion will include effects of the simulation results by changing reboiler duty, the setpoint of the controller, and the content of the entrainer. We also discuss the result of recycling the entrainer and the comparison among different kind of entrainers. In the final part of this study, operation of heteroazeotropic batch distillation with middle vessel was inestigated. It was hope that this kind of operation with a middle vessel can improve the rate of recovery and operating time. We discuss the simulation results of using different entrainers, changing the setpoint of the controller, content of the entrainer, and compare the regular column and middle vessel column. The operating results in this work were obtained from computer simulation. Calculations were carried out with rigorous simulation software “Aspen plus®”and “Aspen dynamics™”.
APA, Harvard, Vancouver, ISO, and other styles
49

Aqar, D. Y., Nejat Rahmanian, and Iqbal M. Mujtaba. "Feasibility of Integrated Batch Reactive Distillation Columns for the Optimal Synthesis of Ethyl Benzoate." 2017. http://hdl.handle.net/10454/13170.

Full text
Abstract:
Yes
The synthesis of ethyl benzoate (EtBZ) via esterification of benzoic acid (BeZ) with ethanol in a reactive distillation is challenging due to complex thermodynamic behaviour of the chemical reaction and the difficulty of keeping the reactants together in the reaction zone (ethanol having the lowest boiling point can separate from the BeZ as the distillation proceeds) causing a significant decrease in the conversion of BeZ in a conventional reactive distillation column (batch or continuous). This might be the reason of not reporting the use of reactive distillation for EtBZ synthesis although the study of BeZ esterification reaction is available in the public literature. Our recently developed Integrated Conventional Batch Distillation (i-CBD) column offers the prospect of revisiting such reactions for the synthesis of EtBZ, which is the focus of this work. Clearly, i-CBD column outperforms the Conventional Batch Distillation (CBD) column in terms of product amount, purity and conversion of BeZ and eliminates the requirement of excess use of ethanol. For example, compared with CBD column, the i-CBD operation can yield EtBZ at a much higher purity (0.925 compared to 0.730) and can convert more benzoic acid (93.57% as opposed to only 74.38%).
APA, Harvard, Vancouver, ISO, and other styles
50

"MULTICOMPONENT BATCH DISTILLATION COLUMN SIMULATION AND STATE OBSERVER DESIGN." Master's thesis, METU, 2002. http://etd.lib.metu.edu.tr/upload/12605551/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography