Dissertations / Theses on the topic 'Batteria'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Batteria.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tontodonati, Vera. "Gestione termica di pacchi batteria per autobus elettrici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textVerrini, Davide. "Sistema di test automatizzato di pacchi batteria per trazione elettrica." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textShi, Wen. "Caratterizzazione e modellazione di alcuni processi produttivi della batteria al litio." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textCecchini, Leonardo. "Modelli per la Simulazione del Comportamento della Batteria di Veicoli ELettrici." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25107/.
Full textIon, Lucian Petrisor. "Progettazione di un nodo sensore wireless per il monitoraggio della batteria dei droni." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24018/.
Full textIgnesti, Tommaso. "Studio di sistemi innovativi per la gestione termica di batterie per veicoli elettrici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23626/.
Full textBalestri, Giulio. "Studio analitico sperimentale della strategia di interazione tra generazione fotovoltaica e sistema di accumulo elettrochimico in una microrete isolata." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14018/.
Full textCalonaci, Luca. "Banco prova batterie al litio per applicazioni di trazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textGualdi, Davide. "Metodi numerici per la caratterizzazione e validazione di un modello circuitale del secondo ordine per una batteria." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14116/.
Full textForesi, Carlo. "Studio di un approccio non invasivo per la manutenzione degli accumulatori elettrochimici che equipaggiano la locomotiva E464." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4749/.
Full textBraconi, Dario. "Green two-wheeled mobility : Material Hygiene and life cycle analysis of anelectric scooter." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157045.
Full textNegli ultimi anni i veicoli elettrici sono emersi come un ’alternativa sostenibile ai veicoli tradizionali. L’introduzione di un gruppo propulsore elettrico permette emissioni inquinanti più basse ma comporta anche l’introduzione di nuovi materiali nel ciclo di vita del prodotto, e.g., le terre rare e il litio contenuti rispettivamente nel motore e nelle batterie. Questi materiali hanno un impatto ambientale e hanno bisogno di essere trattati correttamente. Lo scopo di questa tesi è di avere una comprensione quantitativa del bilancio dal punto di vista ambientale legato al l’adozione di sistema di propulsione elettrico. Inoltre, è indagato come questo bilanco possa essere influenzato migliorando il ricic laggio e la gestione dell’ultima fase di vita del prodotto. Nello specifico, in questa tesi, uno scooter elettrico è stato scelto come caso di studio. Lo scopo è di comparare questo scooter con uno tradizionale considerando il ciclo di vita del prodotto. Il mezzo di trasporto a due ruote è stato scelto perché considerato più semplice da modellare in quanto privo di componenti non inerenti al trasporto (es. aria condizionata, hi-fi, etc.). Questo report anzitutto include una definizione del caso di studio, questa sezione presenta anche una descrizione delle principali tecnologie coinvolte nel prodotto studiato. In questa parte del lavoro è anche riportato il risultato di interviste a rottamatori di scooter per illustrare l’attuale iter di rottamazione di uno scooter. La parte centrale della tesi tratta i differenti scenari di riciclaggio. Sfruttando la mentalità Material Hygiene vengono proposte un’analisi qualitativa e differenti scenari di rici claggio. Gli scenari di riciclaggio coinvologono il progettista a livelli differenti. Questi scenari riguardano i componenti del sistema di propulsione elettrico. Essi sono principalmente il motore elettrico e le batterie al litio. L’ultima parte dell’analisi riguarda il Life Cycle Assessment di uno scooter elettrico al fine di dare un significato quantitativo al confronto tra i cicli di vita delle due alternative. Inoltre, il life cycle assessment ha lo scopo di verificare e quantificare i benefici di impatto ambientale collegati all’adozione degli scenari di riciclaggio proposti. Per svolgere il Life Cycle Assessment è stato usato un sofware, SimaPro 7.3. Questo software permette all’utente di inserire l’elenco dei materiali di un prodotto e di associare a ciascun materiale il proprio impatto ambientale. Il software ha a disposizione per la modellazione i database di impatto ambientale EcoInvent 2.2. Parole chiave: scooter elettrico, batteria al litio, magnete permanente, neodimio, Material Hygiene, Design for Disassembly, Life Cycle Assessment, LCA
Björkman, Carl Johan. "Detection of lithium plating in lithium-ion batteries." Thesis, KTH, Kemiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266369.
Full textMed en ökande efterfråga på hållbara transportlösningar så finns det ett behov av elektrifierade fordon. Ett sätt att lagra energi ombord ett elektrifierat fordon är att använda et litium-jon-batteri. Denna batteriteknologi har många fördelar: t.ex. är dessa batterier återladdningsbara, och de kan leverera höga uteffekter samtidigt som de kan ha ett stort energiinnehåll. för att säkerställa en säker drift av litium-jon-batterier måste batteriets styrsystem vara designat med hänsyn till den elektrokemiska dynamiken inuti batteriet. Dock åldras batteriet med tiden, vilket innebär att denna dynamik ändras med tiden, vilket innebär att styrningen av batteriet måste anpassa sig till denna föråldring. Det är möjligt att förutspå åldring av batterier, men vissa åldringsmekanismer kan ske slumpartat, t.ex. via slumpmässiga förändringar i tillverkningsprocessen av batteriet, eller variationer i användningen av batteriet. Genom att därmed bevaka dessa åldringsmekanismer in situ så kan styrsystemets algoritm anpassa sig utmed batteriåldringen, trots dessa slumpartade effekter. En åldringmekanism hos litium-jon-batterier är s.k. litiumplätering. Denna mekanism innebär att litium-joner elektrokemiskt pläteras i form av metalliskt litium på ytan av litium-jon-batteriets negativa elektrod. Mekanismen kan också inducera andra åldringsmekanismer, t.ex. gasutveckling eller elektrolytreduktion. Detta projekt har undersökt en metod för att detektera litiumplätering in situ efter att plätering har skett, genom att både analysera öppencellspänningens (OCV) förändring med tiden direkt efter uppladdning samt analysera de svällande krafterna som uppstår under uppladdning av batteriet. Resultaten visar på en korrelation mellan en hög sannolikhet för litiumplätering och observationen av en topp i svällningskraft och en platå i OCV-kurvan. resultaten visar också en möjlig korrelation mellan påbörjandet av litium-plätering och påbörjandet av toppen i svällningskraft. Vidare visar även resultaten ett troligt samband mellan signalernas magnitud och mängden pläterat litium. Slutligen visar resultaten också ett möjligt samband mellan irreversibelt pläterat litium och ett svällningstryck som ackumuleras med varje uppladdningscykel. Dock krävs det en validering med mer avancerade analysmetoder för att säkerställa användningsbarheten av dessa två signaler, vilket ej var möjligt inom detta projekt.
Licata, Ivano. "Sistema di controllo ibrido ad alte prestazioni per caricabatterie wireless di veicoli elettrici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textLi, An. "Analyse expérimentale et modélisation d’éléments de batterie et de leurs assemblages : application aux véhicules électriques et hybrides." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10021/document.
Full textAs part of the development of electric and hybrid vehicles, energy management in the battery pack is a major issue. Car manufacturers need a numerical model to represent the dynamic behavior of batteries. The objective of this work is to develop, on the one hand, a characterization method of the dynamic behavior of battery cells and their assemblies, and on the other hand the combined numerical models which are simple, fast, robust and with the best accuracy/simplicity compromise. The first part of the work is dedicated to develop a new experimental characterization method with an equivalent circuit model, which can be applied easily to different battery cells and allows calibrating the complexity of the model (number of the RC circuits) according to the measurement duration of the resting phase after a solicitation. Therefore, the generated model is able to follow the rapid and slow voltage change of the battery cell, which improves voltage and state of charge estimation for the BMS (Battery Management System) applications. The validation tests on different battery cells show that the generated model allows accurate prediction of the battery cell’s dynamic behavior. The second part of the work studies the cell assemblies with cells connected in series. It begins with an energy definition of the cell assembly. Then modelling of the assembly with the developed characterization method is discussed. The validation tests were carried out on different assemblies and show that the dynamic behavior of the assembly can be also well represented with the identified models
Zincarelli, Nicola. "Progetto e realizzazione di un sensore indossabile, passivo e wireless per l'identificazione di fluidi biologici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17665/.
Full textDimitrova, Maria Gloria. "Validazione sperimentale delle prestazioni di un velivolo elettrico." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9471/.
Full textEl, Baradai Oussama. "Elaboration of flexible lithium - ion electrodes by printing process." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI036/document.
Full textThe work presented in this manuscript describes the manufacturing of lithium-ion batteries on papers substrates by printing technique. Its aim is the development of new up scalable and large area techniques as screen printing for the fabrication of lithium-ion batteries and the replacement of conventional toxic components by bio-sourced one and water based solvent. First results shows how it is possible to formulate cellulose based ink tailored for screen printing technology with suitable properties for lithium-ion batteries requirements. Electrodes were manufactured and tested from a physical and electrochemical point of view and two strategies were proposed to enhance performances. Finally, by considering results obtained for the electrodes, a full cell was manufactured with a new assembling strategy based on: front / reverse printing approach and the embedding of the current collectors during printing stage. As a final point cells were characterized and compared with others obtained by conventional assembling strategies
Tonin, Guillaume. "Caractérisation operando des accumulateurs Li/S par tomographie d’absorption et diffraction des rayons X, vers une meilleure compréhension des mécanismes électrochimiques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI036/document.
Full textThe main objective was to identify the degradations phenomena and the limiting processes occurring while cycling Li/S accumulators to therefore put in relation the electrode morphology, the cell design, the electrochemical performances and the degradations phenomena. A new design of operando cell has been developed to be suitable with ESRF experiments. Operando Absorption and X-ray Diffraction tomography technics were performed. Thanks to both technics, the morphological changes and transport limitation kinetics along the 3D positive electrode have been evidenced. In addition, the lithium electrode/electrolyte interface has been characterized and heterogeneous stripping/plating has been evidenced, leading to low electrochemical performances while cycling
D'Onofrio, Teresa. "valutazioni di impatto ambientale di prodotto - applicazione al caso di studio: il carrello elevatore controbilanciato ad uso industriale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textTondini, Davide. "Analisi dinamica e verifica di un prototipo di macchina automatica per la realizzazione di batterie." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22018/.
Full textSvensson, Henrik. "Pre-Study for a Battery Storage for a Kinetic Energy Storage System." Thesis, Uppsala universitet, Elektricitetslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-249173.
Full textEl, Hage Ranine. "Etude et optimisation d'une batterie à circulation tout vanadium." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30101.
Full textThis research focuses on the redox flow batteries (RFBs) conception and optimization. RFBs are devices performing the electrochemical conversion of electric energy to chemical energy (to store); the reverse process allows recovering the stored energy in the form of electricity according to demand. RFBs are well adapted to energy storage from intermittent renewable energy sources. The battery studied is the all-vanadium RFB (VRFB) which was introduced in the 1980's. Owing to the nature of the electrolytes used in the VRFB, the effect of the irreversible cross-contamination, usually encountered in other RFBs such as the Fe-Cr system, is thus overcome. However, the energy density of this system remains lower than 40 Wh.kg-1 (compared to ~ 150 Wh.kg-1 for Li-ion stationary batteries) because of the low solubility (< 2 mol.L-1) of the vanadium salts in sulfuric acid, used as supporting electrolyte. An objective of this thesis is to optimize the formulation of the electrolytes in order to increase the stored energy density. This consists of: i) preparing, analyzing and characterizing the electrolytes (posolyte V(IV)/V(V) and negolyte V(II)/V(III) ), thus expecting to find their optimal composition and ii) understanding the physico-chemical phenomena occurring during the charge-discharge cycling and thus determining the laws governing these processes to overcome any eventual limitation. These aspects were studied using a classical three electrodes cell, enabling to operate with one electrochemical system at a time (the half of the battery). The presence of particles seems to negatively affect the current of the battery even if it enables to increase the stored energy density. On the another hand, the presence of carbon nanoparticles in the posolyte appears to have a beneficial effect on the current due to the increase of the electrode surface area by the formation of aggregates (electronic percolation in the suspension). This part also includes various physical measurements, such as conductivity, density, viscosity and flow rate, as well as powder characterization techniques (SEM, laser diffraction). Another objective is to conceive and elaborate a VRFB (at the laboratory scale) providing an energy density higher than 100 Wh.kg-1, and optimizing as much as possible the power density of the reactor. Mass and charge balances are performed for charge/discharge cycles, to establish correlations that link the response of the system (current, voltage, energy and reversibility) to the (influencing) operating parameters. Conversions, faradic and energy yields were evaluated and optimized
Pulejo, Concetta. "Declinio dell'efficienza fisica psicomotoria negli anziani-uno studio comparativo basato sulla batteria di test ALFFE (Activity Level Functional Fitness in the Elderly) condotto su tre different popolazioni del Portogallo, Italia e Belgio." Phd thesis, Instituições portuguesas -- UP-Universidade do Porto -- -Faculdade de Ciências do Desporto e de Educação Física, 1999. http://dited.bn.pt:80/29103.
Full textMeabe, Iturbe Leire. "Innovative polycarbonates for lithium conducting polymer electrolytes." Thesis, Pau, 2019. http://www.theses.fr/2019PAUU3042.
Full textThe 21st century must address new challenges. The highly qualified life, demanded by modern society, requires constant developments. Energy is the essential ingredient for the economic and social development. The technological revolution that we are now suffering has as a principle the energy produced by coal, oil, and gas. However, the consumption of these energy sources are limited and additionally, during the last decades have been strongly criticized due to the high CO2 emissions released. Besides, the energy produced by renewable energies are promising alternative supplies to limited non-renewable resources. Little by little, the use of fuel-based energy sources will be reduced and renewable solar energy, wind power, hydropower, geothermal energy and bioenergy will be settled in our life. Nevertheless, due to the intermittent availability of these type of resources, good energy storage systems have to be designed. Among the all systems, electrochemical energy storage systems (EESS)s seem to be the best alternative for the use of portable electronics, electric vehicles and smart grid facilities.Generally, a battery contains a liquid electrolyte on it, which is based on a salt dissolved in a liquid organic solvent. This solvent is known to be toxic and highly flammable. Great efforts have been devoted to design safe electrolytes. Thus, polymer electrolytes have been proposed as safe materials. Nevertheless, the ionic conductivity, lithium transference number and electrochemical stability window should be addressed in order to be used in different applications. In this direction, in this thesis different polycarbonates have been proposed as promising host materials and they have been evaluated in as safe electrolytes
Abdalla, Abdallah Hussin. "Iron-based rechargeable batteries for large-scale battery energy storage." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19953/.
Full textCheng, Qingmei. "Materials Design toward High Performance Electrodes for Advanced Energy Storage Applications." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108116.
Full textRechargeable batteries, especially lithium ion batteries, have greatly transformed mobile electronic devices nowadays. Due to the ever-depletion of fossil fuel and the need to reduce CO2 emissions, the development of batteries needs to extend the success in small electronic devices to other fields such as electric vehicles and large-scale renewable energy storage. Li-ion batteries, however, even when fully developed, may not meet the requirements for future electric vehicles and grid-scale energy storage due to the inherent limitations related with intercalation chemistry. As such, alternative battery systems should be developed in order to meet these important future applications. This dissertation presents our successes in improving Li-O2 battery performance for electric vehicle application and integrating a redox flow battery into a photoelectrochemical cell for direct solar energy storage application. Li-O2 batteries have attracted much attention in recent years for electric vehicle application since it offers much higher gravimetric energy density than Li-ion ones. However, the development of this technology has been greatly hindered by the poor cycling performance. The key reason is the instability of carbon cathode under operation conditions. Our strategy is to protect the carbon cathode from reactive intermediates by a thin uniform layer grown by atomic layer depostion. The protected electrode significantly minimized parasitic reactions and enhanced cycling performance. Furthermore, the well-defined pore structures in our carbon electrode also enabled the fundamental studies of cathode reactions. Redox flow batteries (RFB), on the other hand, are well-suited for large-scale stationary energy storage in general, and for intermittent, renewable energy storage in particular. The efficient capture, storage and dispatch of renewable solar energy are major challenges to expand solar energy utilization. Solar rechargeable redox flow batteries (SRFBs) offer a highly promising solution by directly converting and storing solar energy in a RFB with the integration of a photoelectrochemical cell. One major challenge in this field is the low cell open-circuit potential, mainly due to the insufficient photovoltages of the photoelectrode systems. By combining two highly efficient photoelectrodes, Ta3N5 and Si (coated with GaN), we show that a high-voltage SRFB could be unassistedly photocharged and discharged with a high solar-to-chemical efficiency
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Sivertsen, Victoria. "Direct Charging of a Solar Thermal Battery : Direkte soloppvarming av et termisk batteri." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-24286.
Full textPrinsloo, Nick. "Design and development of a battery cell voltage monitoring system." Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/1109.
Full textThe purpose of this thesis was to design and develop a measurement system that would allow accurate measurement of individual cell voltages in a series cell stack. The system was initially proposed to be used in conjunction with an active cell balancer. This would allow for the efficient equalising of cells as well as provide detailed information on the cell stack and how the stack operates over time. Having a system that measures voltages accurately, with which the active cell balancer can be controlled would allow for peak cell lifetime and performance. Current battery management systems are large, complex and inefficient and a new way of battery management had to be investigated. To accurately measure individual cells in a series stack, the high common mode voltage must be negated. Different techniques that are currently used to create galvanic isolation were reviewed; circuits were designed and were simulated to find the most suitable design. The traditional methods used to create galvanic isolation did not provide adequate results. The methods were too inefficient and not accurate enough to be used. The methods that had the required accuracy were too complicated to connect in a useable system. This led to the investigation of integrated circuits created to measure voltages in large cell stacks. An integrated circuit from Linear Technology was chosen and a system was built. A system was thus designed that fulfilled the most desirable design specifications while delivering excellent results. The system allowed accurate, individual voltages to be measured in the presence of high common mode voltages. Accuracies and measurement time were well below the required system specification. Power consumption was high, but different component choice will lower power consumption to within specification. Excellent results were obtained overall with most, although not all results well below the design specifications. By including current measurements, as well as other technologies such as wireless communication, USB connectivity and a better data processor, this system will be at the forefront of current battery management technology.
Luo, Jingru. "Electrode and Electrolyte Design for High Energy Density Batteries:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108928.
Full textThesis advisor: Dunwei Wang
With the fast development of society, the demand for batteries has been increasing dramatically over the years. To satisfy the ever-increasing demand for high energy density, different chemistries were explored. From the first-generation lead–acid batteries to the state-of-the-art LIBs (lithium ion batteries), the energy density has been improved from 40 to over 200 Wh kg⁻¹. However, the development of LIBs has approached the upper limit. Electrode materials based on insertion chemistry generally deliver a low capacity of no more than 400 mAh/g. To break the bottleneck of current battery technologies, new chemistries are needed. Moving from the intercalation chemistry to conversion chemistry is a trend. The conversion electrode materials feature much higher capacity than the conventional intercalation-type materials, especially for the O₂ cathode and Li metal anode. The combination of these two can bring about a ten-folds of energy density increase to the current LIBs. Moreover, to satisfy the safety requirements, either using non-flammable electrolytes to reduce the safety risk of Li metal anode or switch to dendrite-free Mg anode is a good strategy toward high energy density batteries. First, to enable the conversion-type O₂ cathode, a wood-derived, free-standing porous carbon electrode was demonstrated and successfully be applied as a cathode in Li-O₂ batteries. The spontaneously formed hierarchical porous structure exhibits good performance in facilitating the mass transport and hosting the discharge products of Li₂O₂. Heteroatom (N) doping further improves the catalytic activity of the carbon cathode with lower overpotential and higher capacity. Next, to solve the irreversible Li plating/stripping and safety issues related with Li metal anode, we introduced O₂ as additives to enable Li metal anode operation in non-flammable triethyl phosphate (TEP) electrolyte. The electrochemically induced chemical reaction between O₂- derived species and TEP solvent molecules facilitated the beneficial SEI components formation and effectively suppressed the TEP decomposition. The promise of safe TEP electrolyte was also demonstrated in Li-O₂ battery and Li-LFP battery. If we think beyond Li chemistries, Mg anode with dendrite-free property can be a promising candidate to further reduce the safety concerns while remaining the high energy density advantage. Toward the end of this thesis, we developed a thin film metal–organic framework (MOF) for selective Mg²⁺ transport to solve the incompatibility issues between the anode and the cathode chemistry for Mg batteries
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Caroli, Giuliano. "Progettazione di una piattaforma robotica mobile per applicazioni di manipolazione in ambito industriale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textBeechu, Srikar Geethaprabhu. "Development of Lithium Ion Battery Dynamic Model." Master's thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-208838.
Full textLu, Xueyi. "Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228120.
Full textPicciano, Nicholas. "Battery aging and characterization of nickel metal hydride and lead acid batteries." Connect to resource, 2007. http://hdl.handle.net/1811/25087.
Full textTitle from first page of PDF file. Document formatted into pages: contains viii, 139 p.; also includes graphics. Includes bibliographical references (p. 136-139). Available online via Ohio State University's Knowledge Bank.
Picciano, Nicholas I. "Battery Aging, Diagnosis, and Prognosis of Lead-Acid Batteries for Automotive Application." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243871818.
Full textCazot, Mathilde. "Development of Analytical Techniques for the Investigation of an Organic Redox Flow Battery using a Segmented Cell." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0116.
Full textRedox Flow Batteries (RFBs) are a promising solution for large-scale and low-cost energy storage necessary to foster the use of intermittent renewable sources. This work investigates a novel RFB chemistry under development at the company Kemiwatt. Based on abundant organic/organo-metallic compounds, this new technology promises the deployment of sustainable and long-lived systems. The study undertakes the building of a thorough knowledge base of the system by developing innovative reliable analytical tools. The investigation started from the evaluation of the main factors influencing the battery performance, which could be conducted ex-situ on each material composing the cell. The two electrolytes were then examined independently under representative operating conditions, by building a symmetric flow cell. Cycling coupled with EIS measurements were performed in this set-up and then analyzed with a porous electrode model. This combined modeling-experimental approach revealed unlike limiting processes in each electrolyte along with precautions to take in the subsequent steps (such as membrane pretreatment and electrolyte protection from light). A segmented cell was built and validated to extend the study to the full cell system. It provided a mapping of the internal currents, which showed high irregularity during cycling. A thorough parameter study could be conducted with the segmented platform, by varying successively the current density, the flow rate, and the temperature. The outcome of this set of experiments would be the construction of an operational map that guides the flow rate adjustment, depending on the power load and the state of charge of the battery. This strategy of flow rate optimization showed promising outcomes at the lab-cell level. It can be easily adapted to real-size systems. Ultimately, an overview of the hydrodynamic behavior at the industrial-cell level was completed by developing a hydraulic modeling and a clear cell as an efficient diagnostic tool
Fisher, Barbara Anne. "A comparative study of the psychological effects of assault and battery by intimate partners on battered and post-battered women /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu148784331469599.
Full textMawonou, Kodjo. "Développement d’algorithmes adaptatifs embarqués et débarqués du système de gestion batterie pour l’estimation des états de la batterie en usage automobile." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC028.
Full textEnvironmental issues are increasingly concerning to public opinion and authorities. Accordingly, Automobile manufacturers have to propose more environmental friendly vehicles. This thesis project goes to the general scope of battery-driven vehicles. The energy of the electric and hybrid vehicles is stored in batteries pack made of numerous electrochemical cells. Lithium-ion cells are the most commonly used, and are one another connected in series and parallel. These batteries packs, require an enhanced surveillance assured by a dedicated controller called Battery ManagementSystem (BMS).The first part of the work deals with computational burden reductionin the BMS when several battery cells are utilized in battery packs. To improvethe precision of batteries state of charge (SoC) estimation, we have studied and implemented a fractional order model (FOM) based state estimator for Li-ionbatteries.The second part of the study is dedicated to Li-ion batteries health management. First, new state of health (SoH) indicators were designed. Furthermore, a datadriven SoH predictor was designed using EVs data collected over time. The model training was conducted based on extracted user’s behaviors. Finally, a tool is provided for ageing factors ranking
Huynh, Le Thanh Nguyen. "Les accumulateurs au sodium et sodium-ion, une nouvelle génération d’accumulateurs électrochimiques : synthèse et électrochimie de nouveaux matériaux d’électrodes performants." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1123/document.
Full textSince commercialization, Li-ion batteries have been playing an important role as power source for portable electronic devices because of high gravimetric, volumetric capacity and high voltage. Furthermore, the lithium-ion technology is best suited for large-scale application, such as electric vehicles, which poses a resource problem and ultimately cost. On the contrary, sodium is a most abundant element, inexpensive and similarly properties as lithium. In order to solve the problem of lithium raw resource, sodium is proposed as a solution for next generation power source storage. This work investigates the potential derivative vanadium pentoxide materials as sodium intercalation compounds: the V2O5 reference compound, the promizing potassium bronze K0,5V2O5, ε'-V2O5, as well as a lamellar manganese oxide: the sol-gel birnessite and its doped cobalt form. The structure-electrochemistry relationships are clarified through a study combining electrochemical properties, X-ray diffraction and Raman spectroscopy of materials at different insertion rate, end of the reaction and after galvanostatic cycling. New phases are highlighted and specific capacities between 100 and 160 mAh / g in the field of 4V-1V potential can be obtained with sometimes remarkably stable as in the case of NaV2O5 and ε'-V2O5
Schipper, Florian. "Biomass derived carbon for new energy storage technologies." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7204/.
Full textDie Doktorarbeit befasst sich mit der Produktion und Evaluierung poröser Kohlenstoffmaterialien für die Anwendung in Energiespeichertechnologien, namentlich Superkondensatoren und Lithiumschwefelbatterien.
Shamsi, Mohammad Haris. "Analysis of an electric Equivalent Circuit Model of a Li-Ion battery to develop algorithms for battery states estimation." Thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298427.
Full textMONCALVO, ALESSANDRO. "Ottimizzazione di pratiche enologiche per la riduzione di contaminanti biologici in vino." Doctoral thesis, Università Cattolica del Sacro Cuore, 2013. http://hdl.handle.net/10280/1743.
Full textTwo of the major biological metabolites present in wine are the ochratoxin and the biogenic amines. The first of these contaminants was studied in recent decades because of its toxicity in humans, although its presence is not frequent in wines. The biogenic amines are present in every types of wine in different concentration, and some of them, in high concentrations, can cause allergenic reactions in humans. The objectives of this PhD regard three different aspects. Investigate the biological methods to reduce ochratoxin A in wine during winemaking; in particular the study is focused to use a Lactobacillus plantarum strain as malolactic starter. Investigate the presence of Lactobacillus spp., isolated from must and wine, able to produce the amines, using molecular techniques as polymerase chain reaction (PCR) to detect the genes that encode for the enzymes responsible of the synthesis of these compounds. Test the ability of a L. plantarum to perform MLF in relationship with inoculation time and assess the trend of biogenic amines already present in must.
Filler, Frank E. "A pulsed power system design using lithium-ion batteries and one charger per battery." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FFiller.pdf.
Full textThesis Advisor(s): Julian, Alexander L. Second Reader: Crisiti, Roberto. "December 2009." Description based on title screen as viewed on January 28, 2010. Author(s) subject terms: Pulsed power, charger, buck converter, field programmable gate array (FPGA), lithium-ion batteries. Includes bibliographical references (p. 77-79). Also available in print.
Livingston, Lauren. "Domestic Violence: The Psychology Behind Male Battery and the Future of Batterer Intervention Programs." Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/cmc_theses/1788.
Full textLassagne, Adrien. "Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI063.
Full textThis work deals with synthesis and characterization of new polymer electrolytes for lithium metal polymer (LMP) batteries. The main challenge of polymer electrolytes is to combine both high ionic conductivity at low temperature and good mechanical properties. To overcome these issues, block copolymers have been designed. Remarkable properties are reached thanks to the self-assembly of these triblock copolymers. Mechanical properties are given by stiff polystyrene (PS) domains whereas ionic mobility operates in an ionophilic phase, polyoxyethylene (POE) with a lithium salt (LiTFSI). By introducing chemical defects in the POE backbone, melting temperature of the copolymer has been considerably lowered leading to conductivities of about 7.10-5 S.cm-1 and a Young’s modulus of 0.3 MPa at 40°C. If interesting properties are obtained thanks to this strategy, the small fraction of conductivity insured by lithium ions (t+=0.15) remains an issue. The low t+ leads to large concentration gradients limiting the performances of the system. In a second approach, TFSI anions have been covalently tethered on the PS backbone, raising the t+ to 1. An important increase of Li+ conductivity was obtained by adding a perfluorinated spacer between PS and TFSI moieties, with an ionophilic phase based on PEO (2.10-5 S.cm-1 @ 60°C). The chemical modification of the PEO block leads to Li+ conductivities of 10-6 S.cm-1 at 40°C. The composition of these different copolymers have been varied and their structural, thermal, mechanical and transport properties have been studied. Finally the best electrolytes of each category have been assessed in a full cell configuration
grosse, Austing Jan [Verfasser]. "Unitized Bidirectional Vanadium-Air Redox Flow Battery : Kombinierte bidirektionale Vanadium-Luft-Redox-Flow-Batterie / Jan grosse Austing." Aachen : Shaker, 2016. http://d-nb.info/1101184639/34.
Full textRohde, Michael [Verfasser], and Ingo [Akademischer Betreuer] Krossing. "New conducting salts for rechargeable lithium-ion batteries = Neue Leitsalze für wiederaufladbare Lithium-Ionen Batterien." Freiburg : Universität, 2014. http://d-nb.info/1123481490/34.
Full textWarner, Nicholas A. "Secondary Life of Automotive Lithium Ion Batteries: An Aging and Economic Analysis." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366371336.
Full textAbdirahman, Khalid, and Sebastian Förnberg. "Styrsystem för solcellsladdade batterier." Thesis, KTH, Hälsoinformatik och logistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230114.
Full textThe use of solar cells is continuously increasing in Sweden and the powergenerated by the solar cells is usually stored in lead acid batteries. These batterieshave a bad impact on the environment as much energy and environmentallyhazardous materials like lead and sulfuric acid are required to manufacture thesebatteries. Östersjökompaniet AB and many of its customers realize the importanceof sustainable thinking and were interested in knowing if it was possible tomaximize the lifetime of these batteries. During the course of the work, differentmethods of battery charging and discharging were analyzed that could affect thebatteries lifetime and how to take care of them to optimize them. A chargecontroller was used to optimize the charge of the battery. To calculate theremaining state of charge in the battery, the Extended voltmeter method was used.A prototype that was able to charge the batteries optimally, warn when the batterycapacity became too low, and a user-friendly application for battery monitoring wasdesigned. The calculated lifetime of a battery is not an exact science. According tostudies the lifetime of a battery can be doubled if it is c
Grenier, Antonin. "Development of solid-state Fluoride-ion Batteries : cell design, electrolyte characterization and electrochemical mechanisms." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066128/document.
Full textSolid-state fluoride-ion batteries rely on the reversible exchange of the F- ion between a metal and a metal fluoride through a solid electrolyte. These electrochemical devices can theoretically reach energy densities superior to conventional Li-ion commercial batteries. Consequently, fluoride-ion batteries can be seen as a new promising chemistry generating a growing interest. In this context, a part of our work has been dedicated to the development of a cell allowing the evaluation of their electrochemical performance. Moreover, particular attention was given to the electrochemical properties of the solid electrolyte, BaF2-doped LaF3, La1-xBaxF3-x. Finally, the structural changes taking place at the electrodes upon charge/discharge were studied in order to gain insight into the electrochemical mechanisms involved in these devices
Roellinger, Bettina. "De nouveaux hydrogels composites pour la production et le stockage énergétique." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET053.
Full textHydrogels are highly water-absorbent three dimensional viscoelastic networks, mainly based on polymers used in numerous fields such as biotechnology, food and pharmaceutical industry. However, the potential use of these materials in the energy domain has not yet been fully investigated. To bring new insights and perspectives, we have developed during this PhD thesis a spherical macroporous electrode made of a conductive hydrogel. It is composed of sodium alginate, a polyelectrolyte that can form a biocompatible hydrogel when mixed with water in presence of divalent cations. The addition of carbon nanotubes in the solution before gelation leads to the formation of an electronically conductive network. The formulation and the physicochemical characterization are first discussed. Then two direct applications will be detailed. The first one consists in encapsulating electroactive bacteria inside the composite hydrogel. The peculiar metabolism of Geobacter sulfurreducens allows electron transfer with the external medium through oxydo-reduction reactions. Current monitoring allows us to show proliferation and viability of the cells until depletion of nutrients in the medium. The second one is the incorporation of intercalation lithium particles in the same matrix for semi-solid redox flow battery domain. Characterization of the redox couple MnO2/LiMn2O4 and FePO4/LiFePO4 inside the hydrogel, will enable us to develop a Li-ion battery with a 0.65 V nominal tension