To see the other types of publications on this topic, follow the link: Batteries aux ions lithium.

Dissertations / Theses on the topic 'Batteries aux ions lithium'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Batteries aux ions lithium.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Safari, Mohammadhosein. "Vieillissement des batteries à ions lithium : étude expérimentale et modélisation." Amiens, 2011. http://www.theses.fr/2011AMIE0106.

Full text
Abstract:
L’objectif de ce travail de thèse est l’étude du vieillissement et la prédiction de durée de vie des batteries à ions lithium sous différentes conditions d’utilisation. Deux approches ont été développées : une première, de nature empirique, basée sur des concepts empruntés au domaine de la mécanique et une deuxième utilisant un modèle physico-chimique pour une analyse approfondie de données expérimentales de vieillissement. Dans un modèle physico-chimique, un système d’équations décrivant les principaux phénomènes cinétiques et de transport au sein de la batterie est résolu et permet de simuler le comportement de cette dernière sous différentes conditions d’utilisation. Les phénomènes de vieillissement peuvent de surcroît y être intégrés de manière à simuler les pertes de performance de la batterie au cours du temps. Une originalité de ce travail a été d’évaluer la capacité de prédiction d’une méthodologie empirique à partir d’expériences numériques réalisées à l’aide d’un modèle physico-chimique de vieillissement d’une batterie graphite/LiCoO2 où une seule source de vieillissement a été considérée [i. E. , la croissance d’une interphase solide/électrolyte (SEI) à l’électrode de graphite]. Nous avons ainsi démontré que la loi de « Palmgren Miner » (PM), utilisée dans les études de fatigue mécanique, est appropriée et précise pour évaluer l’endommagement de la batterie numérique considérée dans ce travail. Une autre loi de cumul de dommages au cours du temps a également été proposée et validée. Des méthodologies basées sur ces deux lois de cumul ont été mises en œuvre de manière à prédire la durée de vie de la cellule soumise à un profil de courant complexe, typique de ceux utilisés dans un véhicule électrique. Celle basée sur la loi de PM s’est révélée être légèrement plus précise. Un second volet de ce travail de thèse a consisté en l’analyse de données de vieillissement de cellules graphite/ LiFePO4 à partir d’un modèle physico-chimique. Les pertes de performance de la cellule durant un an de cyclage ou stockage à 25 ou 45°C ont été mesurées périodiquement à l’aide de méthodes électrochimiques non invasives, et les mécanismes de vieillissement ont ensuite été étudiés à l’aide d’analyses postmortem et de simulations des données recueillies en cours de vieillissement à l’aide d’un modèle physico-chimique. Quelles que soient les conditions de test, le vieillissement se manifeste majoritairement par une diminution de la capacité alors que l’augmentation d’impédance est faible voire négligeable. La perte de capacité est plus élevée à 45°C qu’à 25°C et à une même température, les tests en cyclage sont plus dégradant que ceux en stockage. Une analyse approfondie des mécanismes de perte de capacité au cours du cyclage ou stockage a été menée en ajustant certains des paramètres du modèle physico-chimique de la batterie à différents états de vieillissement. Le modèle physico-chimique utilisé a été développé et validé sur cellule non vieillie dans un premier temps, à partir de données de charge/décharge galavanostatique de C/10 à 1C. Il reproduit également l’effet mémoire en cyclage de la batterie, grâce à la prise en compte d’une distribution de résistances de contact au sein de l’électrode de LiFePO4 qui est ainsi traitée avec une approche « multiparticules », alors que l’électrode de graphite est modélisée avec une approche « simple particule ». Les simulations des données de vieillissement révèlent que la perte de capacité des batteries en stockage est essentiellement liée à la perte de lithium cyclable dues à des réactions parasites aux électrodes, alors que les batteries en cyclage sont également sujettes à une perte de matière active à l’électrode de graphite. Une analyse cinétique des réactions parasites aux deux électrodes a été réalisée pour les batteries en stockage. De plus, la croissance de la SEI à l’électrode de graphite au cours du stockage a été modélisée de manière à déterminer la constante de vitesse de réduction des molécules de solvant ainsi que son coefficient de diffusion dans la SEI. L’analyse des résultats en stockage montre que la croissance de la SEI est en contrôle mixte diffusionnel et cinétique
The focus of this dissertation is on aging and life prediction of lithium-ion batteries under different modes of operation. To this end, two different approaches are demonstrated in this thesis: the application of an empirical methodology derived from concepts used in mechanical fatigue and analysis of experimental aging data assisted by physics-based simulation. In a physics-based model, the behavior of the cell is described using a set of relevant governing equations. The cell performance can readily be simulated under different modes of operation and moreover, the explicit inclusion of aging phenomena in the set of governing equations might be used to simulate the performance fade of the cell. An originality of our work is to evaluate the prediction capability of the empirical approach using such a physics-based model of a graphite/LiCoO2 cell experiencing a single source of aging [i. E. , the growth of a solid electrolyte interphase (SEI) at the graphite electrode] as a dummy battery. We show that the empirical Palmgren-Miner rule (PM), well-known in the field of mechanical fatigue, is a valid and accurate damage-accumulation law for our case study. Additionally, we propose and validate another relationship for the loss accumulation over time. We demonstrate that the two developed methodologies can successfully predict the life of the cell under a given complex current profile with slightly better prediction ability for the case of the PM rule. The power of simulation-based analysis in aging study of Li-ion batteries is demonstrated for analyzing experimental aging data of a commercial graphite/LiFePO4 cell. Performance decay of this cell during either open-circuit-potential storage or under cycling conditions at 25 and 45°C during one year is monitored by non-destructive electrochemical techniques and is analyzed with the aid of post-mortem analyses and simulations of the cell performance over the course of aging. Data analysis reveals that the aging manifests itself more in terms of capacity loss rather than in terms of impedance increase, regardless of cycling or storage conditions and of temperature. The capacity fade is larger at 45 than at 25°C, regardless of cycling or storage conditions, and at a same temperature, cycling conditions are always more detrimental to capacity fade than storage conditions. An in-depth understanding of capacity-loss mechanism under both storage and cycling conditions is gained by refining some parameters of a mathematical model of the cell at different extents of aging. To do so, first, a simple while accurate model of the cell (without aging) is developed and validated that is able to properly account for the experimental charge/discharge (from C/10 to 1C) and path-dependence effects of the cell. In this model, the LiFePO4 electrode is treated based on a resistive-reactant concept with multiple particles whereas a single-particle approach is used to model the graphite electrode. The simulation-based analysis of the aging data reveals that the capacity fade during cell storage only results from the loss of cyclable lithium because of side reactions whereas the loss of graphite active material is an additional source of aging for the cells under cycling conditions. A simple kinetic analysis of electrode/electrolyte interactions is provided for the cells under storage conditions. Moreover, the growth of SEI at the graphite electrode under storage conditions is simulated in order to refine the solvent-reduction kinetic parameters and solvent diffusion coefficient in the SEI layer. From the analysis, it is shown that the SEI growth during storage is under mixed kinetic/diffusion control
APA, Harvard, Vancouver, ISO, and other styles
2

Mir, Caroline. "Nouveaux sulfures complexes pour application aux batteries au lithium." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEC037.

Full text
Abstract:
Il s’agit d’un travail prospectif de recherche de nouveaux matériaux type oxysulfures qui pourraient substituer les composés couramment utilisés dans les batteries commerciales, qu’il s’agisse de batteries de téléphones ou de véhicules électriques. Il s’agira donc d’un travail exploratoire de synthèse en chimie du solide, à la recherche de phases nouvelles, en corrélation avec une évaluation par les techniques classiques de l’électrochimie du solide. Les couples à tester en premier seraient probablement formés par des éléments de transition tels que le Manganèse, le Fer et le Titane, peu coûteux et peu toxiques. L’accent final de cette thèse sera mis sur l’étude des propriétés de transport électronique et ionique dans les structures chalcogénures et oxy-chalcogénures en même temps que leur caractérisation électrochimique
Synthesis of new oxysulfides materials for lithium ion batteries. Exploratory work on solid state synthesis, research of new phases, and study of the electrochimical properties of these new materials. Transition metals wich will be tested : Mn, Fe, Ti ... cheap and non toxic. An electronic and ionic transport study about these new materials will be done
APA, Harvard, Vancouver, ISO, and other styles
3

Recham, Nadir. "Synthèse, structure et propriétés électrochimiques de nouveaux matériaux pour batteries à ions lithium." Amiens, 2010. http://www.theses.fr/2010AMIE0111.

Full text
Abstract:
Cette thèse concerne la préparation de nouveaux matériaux d’électrodes pour batteries à ions lithium via des procédés de synthèse éco-efficaces. Elle décrit tout d’abord l’élaboration des poudres de LiFePO4 selon un nouveau procédé de synthèse reposant sur l’utilisation des bases latentes; procédé qui est ensuite généralisé à la préparation d’autres matériaux d’électrodes tels LiMPO4; Li2FeSiO4 ou Na2FePO4F. Ces mêmes matériaux sont ensuite préparés par une nouvelle stratégie de synthèse bien particulière centrée sur l’utilisation de liquides ioniques. Il s’agit de la synthèse ionothermale jusque-là peu explorée en synthèse inorganique. Cette nouvelle voie de synthèse, grâce au double rôle de solvant et d’agent structurant du liquide ionique, nous a permis de préparer non seulement des poudres à texture et morphologie contrôlées de matériaux d’électrodes déjà connus mais aussi de découvrir, en la famille des fluorosulfates LiMSO4F, une nouvelle classe de composés d’insertion. L’un d’entre eux, LiFeSO4F, qui rassemble un potentiel de 3,6 V vs. Li, une capacité de 151mAh/g ainsi qu’une bonne conduction ionique se positionne comme un concurrent direct à LiFePO4 qui est aujourd’hui le matériau d’électrode le plus prisé. Bien que moins intéressant électrochimiquement, l’approche ionothermale a été généralisée à la formation des composés AMSO4F (A=Li/Na, M=Mn/Co/Ni) jamais rapportés jusque là. Cette thèse se conclut enfin par la synthèse de nouveaux complexes de bore capables de solubiliser des fluorures (LiF, NaF) ou d’agir comme agent de véhicule du fluor afin d’obtenir, via une réaction d’échange, le composé FeOF lamellaire jusque-là connu seulement sous sa forme rutile
The subject of this thesis is the preparation of new electrode materials for Li ion batteries via eco-efficient syntheses processes. It first reports the making of LiFePO4 powders according to a new synthesis process using latent bases; this process is later generalized to the preparation of other electrode materials such as LiMPO4 (M=Mn, Ni, Co), Li2FeSiO4 or Na2MnPO4F. These materials are then prepared via a new specific synthesis strategy centered on the use of ionic liquids. This is an ionothermal synthesis, hardly explored in inorganic chemistry until now. This new synthesis method, due to its dual role of solvent and structuring agent of the ionic liquid, enabled us to not only prepare powders with controlled morphology and texture from already known materials, but also to discover a new class of insertion compounds namely the family of fluorosulfates LiMSO4F. One of them, LiFeSO4F, has a potential of 3. 6V vs. Li, a capacity of 151mAh/g and a good ionic conductivity, and is a direct opponent to LiFePO4 which is today the most praised electrode material. Although less interesting from an electronic point of view, the ionothermal approach has been generalized to the formation of AMSO4F (A=Li, Na, M=Mn, Co and Ni) compounds, never reported until now. The last point of this thesis is the synthesis of new boron complexes able to solubilize fluorides with high reticular energy (LiF, NaF), or to act as a fluoride carrier in order to obtain, via an exchange reaction, the lamellar compound FeOF, which was only known in its rutile form until now
APA, Harvard, Vancouver, ISO, and other styles
4

Gillot, Frédéric. "Nouvelle classe de matériaux d'insertion à base d'entités structurales et électroniques tétraédriques : applications aux batteries à ions lithium." Montpellier 2, 2003. http://www.theses.fr/2003MON20083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wakem, Fankem Walter. "Outils diagnostiques pour l’étude du LiFePO[indice inférieur 4] dans les batteries au lithium." Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10501.

Full text
Abstract:
La technologie de stockage d’énergie basée sur le lithium est largement utilisée dans le monde depuis sa première commercialisation en 1990. Bien que considérées comme l’une des technologies motrices pour le stockage d’énergie mobile et stationnaire, les batteries au lithium ne sont pas exemptes des phénomènes de vieillissement liés à leur utilisation. Le vieillissement des cellules se manifeste par une baisse importante de la capacité ainsi qu’une augmentation de la résistance interne. La compréhension des phénomènes liés à cette usure contribue à améliorer la durée de vie des cellules par des outils de 1) diagnostiques et de 2) modélisation. La modélisation de ces phénomènes repose sur des principes théoriques d’électrochimie, mais également sur des études de vieillissement accéléré des matériaux d’électrodes en laboratoire. En utilisant le lithium fer phosphate (LiFePO[indice inférieur 4]) comme matériau d’électrode positive, des outils diagnostiques ont été développé afin d’étudier le vieillissement de matériaux d’électrodes de piles boutons au lithium (Li/LFP) et aux ions lithium (C/LFP). Dans la première partie de ce mémoire, les cellules ont été optimisées à travers l’évaluation de l’effet de l’épaisseur et de la compression des électrodes sur leurs performances. Les performances optimales ont été obtenues avec des électrodes de faibles épaisseurs (~ 40 μm) ainsi qu’une compression maximale (5 à 6 espaceurs en acier inoxydable soit 2,5 mm et 3 mm d’épaisseur). L’effet de paramètres de vieillissement sur l’usure des piles boutons a par la suite été évalué. La température (25 °C et 45 °C) et la vitesse de charge/décharge (1C et 4C) ont été choisies comme paramètres de vieillissement accéléré. La spectroscopie d’impédance électrochimique (EIS), notre outil principal d’analyse, a permis de suivre l’évolution des paramètres de transfert de charge (résistances de l’électrolyte et de transfert de charge) et de masse (coefficient de diffusion des ions lithium) tout au long de l’étude. Un modèle de circuit équivalent basé sur la diffusion en coordonnées sphérique a été développé afin d’interpréter les diagrammes de Nyquist obtenus en début et en fin de vie des cellules. Des valeurs de coefficient de diffusion des ions lithium (D[indice inférieur Li+]) de l’ordre de 10-[indice supérieur 11] à 10-[indice supérieur 16] cm[indice supérieur 2]/s ont été trouvées à l’aide du modèle de diffusion sphérique exploitant le rayon des particules de LiFePO[indice inférieur 4]. La température est le paramètre ayant présenté l’effet le plus préjudiciable sur les performances des deux types de cellules, Li/LFP et C/LFP. La plus grande baisse de capacité associée évidemment à une conséquente augmentation de résistance de transfert de charge (R[indice inférieur ct]) a en effet été observé à 45 °C. L’augmentation de la R[indice inférieur ct] a été attribuée à la croissance de l’interface d’électrolyte solide (SEI) et de l’interface perméable solide (SPI) respectivement à la surface des électrodes négative et positive. L’évolution de la SEI (dissolution/reformation) a été évaluée indirectement par le suivi de l’efficacité coulombique (Eff Q). L’efficacité coulombique présente généralement des valeurs de l’ordre de 99 % au début de la vie des cellules. Cette valeur décroit graduellement tout au long de l’étude de vieillissement. Une baisse de l’efficacité coulombique de l’ordre de 50 % a été associée à une consommation d’ions lithium suite à la reformation de la SEI. Des diminutions importantes (de 99 % à 50 %) de l’Eff Q ont été observées à 45 °C, laissant supposer une instabilité de la SEI entrainant une dissolution et une reformation en continu de cette dernière dans les deux types de cellules. Dans les cellules Li/LFP à 45 °C contrairement à celles C/LFP, l’Eff Q fluctue de 99 % à 50 % mais finit par retrouver des valeurs de l’ordre de 97% à la fin de l’étude de vieillissement. Cette observation a conduit à émettre l’hypothèse selon laquelle la SEI est plus stable dans les cellules Li/LFP que dans celles C/LFP. Dans les cellules C/LFP, l’intercalation des ions Li[indice supérieur +] génère un stress dans la structure du carbone entrainant un décollement de la SEI. Le décollement de la SEI découvre des régions de l’électrode négative (EN) de carbone non protégées susceptibles de réagir avec l’électrolyte. Des ions Li[indice supérieur +] sont par conséquent utilisés lors de chaque charge afin de former la SEI sur les surfaces de l’EN nouvellement découvertes, d’où la baisse graduelle de l’Eff Q (de 99 % à 80 %) observée dans les cellules C/LFP. À la fin de l’étude de vieillissement, une analyse physico-chimique post mortem a été effectuée sur des électrodes. Les analyses de microscopie électronique à balayage (MEB) ont permis de détecter des changements de taille et de forme des particules de carbone de l’électrode négative suite à la formation de la SEI ainsi que la présence de la SPI à la surface de l’électrode positive de LiFePO[indice inférieur 4] (LFP). La diffraction des rayons X (DRX) d’électrode positive issues de cellules Li/LFP et C/LFP vieillies a permis d’évaluer les phases en présence ainsi que l’état du LFP. La structure du LFP n’a pas été altérée par le vieillissement. Les diffractogrammes d’électrodes positives issues de cellules Li/LFP n’ont montré que la phase riche en lithium (phase triphylite) confirmant l’hypothèse selon laquelle la baisse de capacité n’était pas la conséquence d’un manque d’ions lithium. Dans le cas des EP issues de cellules C/LFP, il a été observé sur les diffractogrammes la présence des phases riche (triphylite) et pauvre (hétérosite) en lithium. Cela confirme la présence insuffisante de lithium cyclable dans ces cellules à la fin de l’étude (cycle 220). La baisse de capacité enregistrée dans les cellules Li/LFP et C/LFP n’est pas due à la dégradation du LFP, mais plutôt à l’augmentation de l’impédance interne liée à la croissance de la SEI et à la consommation du lithium cyclable. Les résultats issus de ce mémoire ont été présentés au congrès de Electrochemical Society (ECS) Prime 2016 (Walter Wakem Fankem, Barzin Rajabloo, Martin Désilets, Gessie Brisard, Electrochemical Impedance Spectroscopy to Diagnose the Effect of Morphology and as A Tool to Model the Aging Process of Li Batteries, 2 – 7 Octobre 2016, HI). Ils ont également fait l’objet d’un article soumis (Barzin Rajabloo, Ali Jokar, Walter Wakem Fankem, Martin Désilets, Gessie Brisard, A New Variable Resistance Single Particle Model for Lithium Iron Phosphate Electrode, Journal of Power Sources, Avril 2017) en collaboration avec Barzin Rajabloo du groupe de recherche CREEPIUS (département de génie chimique et de génie technologique). Ledit article porte sur le développement d’un modèle de vieillissement semi-empirique de pile bouton Li/LFP basé sur un système de résistance variable.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Wanjie. "Etude des interfaces de batteries lithium-ion : application aux anodes de conversion." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3024/document.

Full text
Abstract:
Les matériaux dits de conversion à base de Sb et Sn, utilisés comme électrodes, apparaissent comme des composés particulièrement intéressants compte tenu de leur forte capacité théorique. Le matériau TiSnSb a été récemment développé en tant qu’électrode négative pour batteries lithium-ion. Ce matériau est capable d’accueilir, de façon réversible, 6,5 Li par unité formulaire, ce qui correspond à une capacité spécifique de 580 mAh/g. Dans le domaine des batteries lithium-ion, les propriétés de l’interface électrode/électrolyte (« solid electrolyte interphase », SEI), formant une couche de passivation protectrice à la surface des électrodes sont considérées comme essentielles pour les performances au sens large des batteries. Cet aspect représente le sujet majeur traité dans ce travail de thèse. Dans cet optique, nous avons tout d'abord étudié les propriétés électrochimiques de l'électrode TiSnSb sous divers aspects, dont les effets du régime de cyclage, l’influence de la nature des additifs au sein de l’électrolyte ainsi que l’utilisation de liquides ioniques à température ambiante (RTILs). En particulier, un système d'électrolyte à base de RTILs a été développé et optimisé vis-à-vis des performances électrochimiques. Afin de caractériser l’interface électrode-électrolyte, deux techniques de caractérisation majeures ont été utilisées : la Spectroscopie Photoélectronique à Rayonnement X (XPS) et la Spectroscopie d'Impédance électrochimique (EIS). Cette étude a permis de cibler certains paramètres essentiels liant les aspects performances électrochimiques à la nature de l’interface électrode-électrolyte
In the past decades, the need for portable power has accelerated due to the miniaturization of electronic appliances. It continues to drive research and development of advanced energy systems, especially for lithium ion battery systems. As a consequence, conversion materials for lithium-ion batteries, including Sb and Sn-based compounds, have attracted much intense attention for their high storage capacities. Among conversion materials, TiSnSb has been recently developed as a negative electrode for lithium-ion batteries. This material is able to reversibly take up 6.5 Li per formula unit which corresponds to a specific capacity of 580 mAh/g. In the field of lithium-ion battery research, the solid electrolyte interphase (SEI) as a protective passivation film formed at electrode surface owing to the reduction of the electrolyte components, has been considered as a determinant factor on the performances of lithium-ion battery. Thus it has been a focused topic of many researches. However, little information can be found about the formation and composition of the SEI layer formed on TiSnSb conversion electrode at this time. With the aim to investigate the influences of the SEI layer on the performances of composite TiSnSb electrode, we first studied the electrochemical properties of the electrode from various aspects, including the effects of cycling rates, electrolyte additives, as well as room temperature ionic liquids (RTILs). Especially, a RTILs-based electrolyte system was developed and optimized by evaluating its physicochemical properties to be able to further improve the performances of TiSnSb electrode. In order to characterize the SEI layer formed at electrode surface, we performed X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). This study allowed to target some essential parameters concerning electrochemical performances linked with the nature of the solid electrolyte interphase.*
APA, Harvard, Vancouver, ISO, and other styles
7

Dollé, Mickael. "Etude par spectroscopie d'impédance électrochimique, couplée à la microscopie électronique, d'interfaces de batteries au lithium et à ions lithium." Amiens, 2002. http://www.theses.fr/2002AMIE0207.

Full text
Abstract:
Les interfaces lithium/électrolyte polymère et carbone/électrolyte ont une importance primordiale sur les performances des batteries au lithium et à ions lithium. L'objectif de ce travail était d'acquérir une meilleure compréhension de ces interfaces dans le but d'optimiser leur fonctionnement. Pour cela, des mesures d'impédance électrochimique 3 électrodes dans des cellules de configurations variées ont été mises au point et un microscope électronique à balayage (MEB) a été amélioré afin de permettre l'étude in situ de l'interface lithium/électrolyte polymère. L'influence de la température et du régime de formation sur la nature chimique et l'épaisseur de la couche de passivation formée à l'interface carbone/électrolyte a ainsi été démontrée tout comme l'importance des conditions de formation sur les performances des matériaux carbonés. L'étude par spectroscopie d'impédance électrochimique a alors été étendue à des batteries LiCoO2/graphite en configuration plastique. Enfin, l'influence de la densité de courant sur la morphologie des dendrites à l'interface lithium/électrolyte polymère a été confirmée et les premières observations par MEB de la croissance de dendrites en direct ont été obtenues. L'ensemble des résultats a permis de mieux comprendre chacune des interfaces étudiées et ainsi de proposer des mécanismes
APA, Harvard, Vancouver, ISO, and other styles
8

Lacassagne, Elodie. "Études des phénomènes de mouillabilité et des cinétiques d’imprégnation des électrodes positives par l’électrolyte : application aux batteries Lithium-Ion." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10140/document.

Full text
Abstract:
Le contact entre l'électrode et l'électrolyte est primordial pour le bon fonctionnement d'une batterie Lithium-Ion. L'imprégnation de l'électrode positive par un électrolyte liquide a toujours été considérée comme totale, cependant les phénomènes ne sont pas exactement connus. Ainsi, ces travaux s'intéressent à l'influence de la composition de l'électrode positive (matière active et agent conducteur) sur cette imprégnation. Après une première étude des propriétés conductrices, électrochimiques et morphologiques d'électrodes présentant des formulations plus ou moins éloignées des formulations industrielles, une méthode utilisant l'équation de Washburn a été développée afin d'étudier l'imprégnation des pores modélisés par un ensemble de tubes capillaires. L'utilisation de l'hexadecane, considéré comme un liquide parfaitement mouillant, a permis de déterminer la taille effective des pores indépendamment de l'électrolyte, et celle-ci a pu être comparée à des résultats obtenus grâce à la méthode de thermoporosimétrie. Puis, les régimes de Washburn obtenus lors de la diffusion de l'électrolyte ont mis en évidence les cinétiques d'ascension. Par la suite, la méthode de Washburn a été utilisée afin de caractériser les propriétés d'imprégnation d'électrodes élaborées avec un nouveau liant et selon un procédé innovant s'affranchissant de l'utilisation de solvant. L'utilisation d'un additif permettant la création de porosité d'une part, et la réticulation du liant d'autre part permettent d'obtenir une imprégnation de l'électrolyte comparable à celle observée pour les électrodes fabriquées par voie solvant
The contact between the electrode and the electrolyte is essential for a Lithium-Ion battery functioning. The impregnation of a positive electrode by the electrolyte has always been considered as total; however the phenomena are not exactly known. Thus, in this work, the influence of the positive electrode composition (active material, conductive agent and binder) on the impregnation has been investigated. After a first study focusing on the conductive, electrochemical and morphological properties of the electrodes, with different types of formulation, a method using Washburn equation has been developed in order to study the impregnation of the electrode’s pores, which were modeled as capillary tubes. With the use of hexadecane, considered as a perfectly wetting liquid, the effective pore size has been determined and then compared to the results given by the thermoporosimetry method. Then, the kinetics of ascension have been identified with the Washburn regimes obtained with the diffusion of the electrolyte in the cathodes. Afterwards, Washburn method has been used in order to characterize the impregnation properties of electrodes elaborated with an innovative process without solvent. Thanks to the use of an additive allowing the creation of porosity in one hand and the reticulation of the binder in the other hand, an impregnation of these new electrode by the electrolyte has been considered as comparable to the one observed for the cathodes made with solvent
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Chunmei. "Study of rechargeable aprotic Li-O2 batteries." Amiens, 2014. http://www.theses.fr/2014AMIE0111.

Full text
Abstract:
Est-il possible d'augmenter la densité d'énergie des batteries au lithium pour apporter l'autonomie souhaitée pour les applications véhicules électriques, voire réseaux? Une note d'espoir peut effectivement provenir des systèmes métaux-air et plus spécialement du Lithium-air qui suscite aujourd'hui l'engouement des fabricants d'automobiles. Sur la base de calculs théoriques, la technologie Li-air pourrait fournir des densités d'énergie de 3500 Wh kg(-1), soit environ 15 fois plus que celles des accumulateurs à ions lithium. Cependant, pour rendre de tels systèmes opérationnels, de nombreux verrous technologiques liés à l'efficacité énergétique et à la tenue en cyclage, pour ne citer que cela, doivent être levés. C'est le but de cette thèse. Pour répondre aux problèmes de stabilité, nos travaux se sont tout d'abord centrés sur l'étude de l'électrode négative avec notamment une tentative de remplacement de l'électrode de Li par une électrode de Si (LixSi). Pour contrecarrer la faible efficacité énergétique du système liée à une forte polarisation entre la décharge et la charge, les mécanismes de réaction d'évolution (OER) et de réduction (RRO) de l'oxygène dans différents solvants ont été étudiés. Nous avons trouvé que le nombre donneur (ND) du solvant utilisé est le facteur clé gouvernant la nucléation-croissance de Li202 soit via la solution soit à surface de l'électrode, ce qui est d'une importance capitale pour améliorer les performances de l'accumulateur Li-O2. Enfin par souci de présenter une étude complète, l'influence de différents additifs sur la RRO a été étudiée. Ces études fondamentales se sont avérées à la fois utiles et nécessaires pour comprendre avec précision ce nouveau système
Rechargeable aprotic Li-02 batteries have gained significant attention because of their high theoretical specific energy of 3500 Wh kg(-1). However, there are many challenges relevant to the development of a practical réversible aprotic Li-O2 battery. The main challenges can be divided into two parts. Firstly, stability issues from: 1) Li métal négative electrodes reacting with contamination from the air, such as H2O and CO2, and some electrolytes, and Li dendrite formation ; 2) positive O2 electrode reactions with the discharge product Li202, and oxidation reaction on charging > 3. 5 V ; 3) electrolyte stability towards O2 reduction products or intermediates. Secondly, the poor discharge/charge voltaic efficiency and cycle life problems, which originate from: 1) large overpotentials on discharge and charge; 2) decomposition of cell component during ORR and OER. In order to overcome these challenges, fundamental studies are critical. This thesis focuses on these two main challenges. With regards to stability issues, an alternative negative electrode was studied, where LixSi is used in place of metallic Li in Li-02 batteries. The results suggest that a LixSi electrode is not stable towards to O2. In addition, an investigation of a new electrolyte, 1-methylimidazole (Me-Im) was discussed. When studying the discharge and charge products at the end of each cycle while using a Me-Im based electrolyte, the data suggests that the stability of Me-Im is not sufficient for use in a rechargeable aprotic Li-Oj battery. The poor discharge/charge voltaic efficiency and cycle life issues of the Li-02 battery are in part related to the fundamental processes occurring during reduction at the O2 electrode and an understanding of these would facilitate development of an efficient, reversible Li-02 battery. With this in mind, the mechanism of O2 reduction reaction (ORR) in aprotic solvents has been studied, with emphasis on the effect of solvent donor number (DN). This has resulted in the development of a mechanism for Li202 formation in aprotic electrolytes, which will be described within. Understanding the mechanism of O2 reduction has enabled strategies to be proposed that may overcome the limitations at the O2 electrode of Li-Oi batteries. For example, the introduction of complexing-cations as additives during ORR is suggested, where the complexing-cations provide "positive charge pockets" that interact with the O2 reduced species, resulting in improving the solubility of Li202 and O2 reduction kinetics. This approach has been demonstrated and shown to have a significant effect on the ORR in an aprotic electrolyte
APA, Harvard, Vancouver, ISO, and other styles
10

Reynaud, Marine. "Élaboration de nouveaux matériaux à base de sulfates pour l'électrode positive des batteries à ions Li et Na." Amiens, 2013. http://www.theses.fr/2013AMIE0121.

Full text
Abstract:
Les prochaines générations de batteries à ions lithium et sodium seront basées sur le développement de nouveaux matériaux d'électrode positive durables, peu chers et sûrs. Dans ce but, nous avons exploré le monde des minéraux à la recherche de structures présentant les pré-requis pour l'insertion et la désinsertion d'ions alcalins. Nous avons alors entrepris l'étude de sulfates bimétalliques dérivés du minéral bloedile, ayant pour formule générale. (,. \/(S04):«H;0 {A = L i , Na, \t= métal de transition 3d, et « = 0, 4). Ces systèmes présentent une cristallochimie riche, montrant des transitions structurales en fonction de la température ainsi qu'avec le départ des molécules d'eau. Les nouvelles structures ont été déterminées en combinant les techniques de diffraction des rayons X. Neutrons et électrons. Nous avons également montré que les composés à base de lithium Liv. V/(S04): présentent des propriétés antiferromagnétiques intéressantes, du fait notamment de leurs structures particulières qui permettent seulement des interactions de super-super-échange. Enfin et surtout, nous avons, parmi les composés isolés, identifié trois sulfates à base de fer, à savoir Na:Fe(S04)2-4H;0, Na2Fe(S04)2 et Li2Fe(S04):, qui présentent des propriétés électrochimiques intéressantes face au lithium et au sodium. Avec un potentiel de 3,83 V vs. L i 7 L i ° , la nouvelle phase marinite Li2Fe(S04)2 affiche le plus haut potentiel jamais observé pour le couple redox Fe"''/Fe"* dans un composé inorganique à base de fer et dépourvu de fluor, et est en fait seulement dépassé par celui de la forme iriplite de LiFeS04F
The next générations of Li- and Na-ion batteries will rely on the development of new sustainable, low-cost and safe positive électrode materials. To this end, we explored the world of minerais with an emphasis on spotting structures having the prerequisites for insertion and deinsertion of alkaline ions. From this survey, we embarked on the investigation of bimetallic sulfates derived from the bloedite minerai and having the gênerai formula /4,/W(S04)2 nHzO {A = Li, Na, M = 3d transition métal and n = 0, 4). Thèse Systems présent rich crysta chemistry, undergoing phase transitions upon heating and removal of water. The new structures were determined by combining X-ray, neutron and électron diffraction techniques. We have aiso shown that lithium-based compounds LixM(S04)2 présent interesting antiferromagnetic properties resulting from their peculiar structures, which solely enable super-super-exchange interactions. Finally, and more importantly, we identified among the isolated compounds three iron-based sulfates, namely Na2Fe(S04)2 4H2O, Na2Fe(S04)2 and Li2Fe(S04)2, which présent attractive electrochemical properties against both lithium and sodium. With a potentiel of 3. 83 V vs. L'C/U°, the new marinite phase Li2Fe(S04)2 displays the highest potentiel ever observed for the Fe"'VFe"* redox couple in e fluorine-free iron-based inorgenic compound, only riveled by the triplite form of LiFeS04F
APA, Harvard, Vancouver, ISO, and other styles
11

Pierre, André Albert Bernard. "Etude des mécanismes de vieillissement des interfaces de batteries Lithium-ion appliquées aux énergies renouvelables." Thesis, Pau, 2015. http://www.theses.fr/2015PAUU3001/document.

Full text
Abstract:
Le développement des énergies renouvelables, telles que le solaire photovoltaïque ou l’éolien, est fortement conditionné par la nature intermittente de ces sources d’énergie. Cette intermittence se traduit par un décalage entre pics de production et de consommation. Le stockage de l’énergie électrique revêt donc un caractère primordial dans la gestion de ce décalage. Pour accomplir cette tâche, la technologie lithium-ion est une bonne candidate parmi les technologies de stockage électrochimique de l’énergie. Mais les applications visées exigent des durées de vie bien supérieures à celles requises pour l’électronique portable ou pour les véhicules électriques. En effet les performances des batteries, notamment en termes de capacité, doivent être préservées pendant des durées de 15 à 20 ans. Cette thèse a alors pour but l’étude des mécanismes de vieillissement à long terme d’accumulateurs Li-ion composés d’oxydes lamellaires Li(NixMnyCo1 x y)O2 à l’électrode positive et de graphite à l’électrode négative, en se focalisant sur les interfaces électrode/électrolyte qui sont le lieu privilégié des mécanismes de vieillissement. Ce travail a été réalisé à l'aide de la spectroscopie photoélectronique à rayonnement X (XPS) et de la spectroscopie d’impédance électrochimique (EIS), deux techniques complémentaires particulièrement bien adaptées à l’étude des interfaces, l'une permettant de sonder les environnements chimiques en extrême surface, l'autre donnant la réponse d’un système à une sollicitation électrique sinusoïdale de fréquence variable. La contrainte importante induite par les durées de vie visées (20 ans) ont conduit à simuler le vieillissement à long terme des batteries en leur faisant subir des sollicitations électrochimiques beaucoup plus importantes que lors d’une utilisation normale Les caractérisations par XPS et EIS ont été systématiquement mises en relation avec l’évolution des performances électrochimiques des batteries considérées. Cette étude a permis d'apporter des améliorations aux batteries pour apporter une meilleure réponse à ces phénomènes de vieillissement en termes de maintien des performances: modification de la formulation des électrodes, des électrolytes, de la nature des matériaux actifs, etc
Development of renewable energy sources such as photovoltaic or wind energy is limited by the intermittent nature of these energy sources. This intermittent nature results in the mismatch between production and consumption peaks. As a result, the storage of electrical energy plays an essential role to manage this mismatch. To this aim, lithium-ion technology appears as a good candidate among other ways of electrochemical storage of energy. However the targeted applications require much greater life span than those commonly admitted for portable electronics or electric vehicles. Battery performances, e.g. rechargeable capacity, should be preserved over 15 or 20 years. This PhD thesis aims at studying the long-term aging mechanisms of Li-ion batteries made up of lamellar oxides Li(NixMnyCo1 x y)O2 at the positive electrode and graphite at the negative electrode. We focused on the electrode/electrolyte interfaces which are the major place of aging processes. The work has been performed by X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS), two complementary techniques especially adapted to the study of interfaces, the former giving access to the chemical environments of atoms at the surface, the latter giving the answer of a system to a sinusoidal electric current with various frequencies. An important technical constraint was the difference between the targeted life span for the application (20 years) and the duration of the thesis (3 years). In order to simulate long-term aging the batteries were submitted to electrochemical stress in much harder conditions than in normal use. XPS and EIS characterizations were constantly related to evolution of electrochemical performances of batteries. This study allowed us during the duration of the project to bring improvements to batteries in order to obtain a better response to aging mechanisms regarding retention of electrochemical performances: e.g. change of electrodes or electrolyte formulation, change of active materials composition, etc
APA, Harvard, Vancouver, ISO, and other styles
12

Kwamou, Kouayep Bertrand Mirador. "Synthèse et caractérisation électrochimique de liquides ioniques à base de phosphonium pour les applications aux batteries au lithium." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5884.

Full text
Abstract:
Les besoins énergétiques de la population mondiale ne cessent de croître, cette croissance est beaucoup plus attribuée à la venue de nouveaux consommateurs des pays émergents. Les réserves de gisement de pétrole fossile, principale source d’énergie de notre civilisation ne suivant pas la demande, la recherche de nouvelles sources d’énergie ou compléments énergétiques de ceux classiques demeure un challenge important pour l’avenir de notre société. Les batteries au lithium demeurent une réponse dite énergie renouvelable pour la lutte que se livrent les pays du globe pour limiter l’échéance de la fin des énergies nécessaires à la survie de notre système économique. Cette batterie offre des performances énergétiques plus grandes que celle alcaline par exemple. Ce travail s’inscrit dans la lignée de l’amélioration continue de la technologie des batteries lithium- ion. Cette amélioration passe par l’optimisation des différentes composantes des piles au lithium comme les électrodes (anode et cathode) et les électrolytes (solvants et ion principal à base de lithium). Ainsi, ce travail comporte trois parties. Dans un premier temps, nous avons investigué de nouveaux solvants dits liquides ioniques à base de phosphonium, ces solvants étant tous des précurseurs respectifs de tri-n-buthylphosphine et tri-n-éthylphosphine (TBPhexTFSI, TBPmetTFSI, TBPhoxTFSI, TBPmetOetTFSI, TEPhexTFSI et TEPhoxTFSI, voir la liste des abréviations). Le choix de ces liquides ioniques à base de phosphonium a été fait dans l’optique de la recherche de ceux ayant les meilleures propriétés chimico-physiques et électrochimiques. De ce fait, les mesures de ces propriétés physico-chimiques comme leur conductivité, viscosité, stabilité thermique ont été effectuées. La supériorité des liquides à base de phosphonium ayant des cations à chaîne oxygénée sur ceux non oxygénées a été démontrée. La conductivité du TBPhoxTFSI respectivement supérieure à celle du TBPhexTFSI et la viscosité de TBPhoxTFSI est inférieure à celle du TBPhexTFSI). Cette étude a aussi démontré l’importance d’avoir des liquides ioniques de phosphonium à cation asymétrique de petite dimension pour bénéficier des meilleures propriétés chimico-physiques, notamment les conductivités des TEPhexTFSI et TEPhoxTFSI étant meilleures que celle du TBPhexTFSI et TBPhoxTFSI. Les études électrochimiques, notamment la voltampérométrie cyclique à balayage, ont permis d’étudier les fenêtres de potentiel électrochimique de certains de ces liquides ioniques. Il a été démontré que les liquides ioniques ayant un cation à chaîne carbonylée asymétrique courte et non oxygénée ont des fenêtres de potentiel électrochimique plus large (respectivement 5 et 5,5V pour le TBPmetTFSI et TEPhexTFSI). Notre étude s’est basée seulement sur deux liquides ioniques ayant pour précurseur la tri-n-buthylphosphine : le TBPmetTFSI et le TBPhoxTFSI. Le choix de ces deux liquides ioniques de phosphonium découle aussi des études effectuées sur leurs propriétés chimico-physiques intéressantes. Dans l’amélioration des composantes des batteries lithium-ion, la recherche des meilleures électrodes demeure aussi un enjeu stratégique important dans cette technologie. Les cathodes à plus grande capacité énergétique sont dans cette logique. Les cathodes des piles rechargeables au lithium sont composées de matériaux du type oxydes mixtes des métaux de transition. Un des facteurs importants du choix de ces matériaux est la diffusion rapide du lithium dans leur structure interne c’est-à-dire la vitesse des réactions d’intercalations et de désintercalations des ions de lithium pendant le fonctionnement de ces types de piles. Les matériaux dits à structure cristalline olivine type LiFePO[indice inférieur 4] ont eu une grande percée il y a environ 10 ans. De nos jours ils sont encore présents, mais de façon améliorée par l’ajout des additifs de carbone généralement dans un pourcentage de 7 à 10% en poids et prennent le nom de LiFePO[indice inférieur 4]/C. Nous avons ainsi réussi à synthétiser par approche sol-gel le LiFePO[indice inférieur 4]/C ; ce matériau a ensuite été caractérisé par diffraction à rayon-X, par microscope électronique à balayage (MEB) et comparé à ce matériau de LiFePO[indice inférieur 4] commercial de la compagnie MTI Corporation. Deux conditions expérimentales ont été utilisées pour les caractérisations électrochimiques de ces cathodes de LiFePO[indice inférieur 4] commercial et LiFePO[indice inférieur 4]/C, soit dans les électrolytes classiques 1M LiPF[indice inférieur 6]–EC-DMC (3/7 vol) et dans les électrolytes mixtes 1M LiPF[indice inférieur 6]–EC-DMC (3/7 vol.) + x TBPmetTFSI ou TBPhoxTFSI. Les voltampérogrammes cycliques obtenus dans ces conditions classiques et mixtes ont démontré que les liquides ioniques TBPmetTFSI et TBPhoxTFSI pouvaient être utilisés comme additifs aux solvants classiques jusqu’à des concentrations de 50% en volume de ceux classiques comme EC-DMC (3/7 vol.) tout en favorisant les processus d’intercalation et dedésintercalation du lithium durant le cycle de fonctionnement des batteries lithium-ion. La quasi-réversibilité des pics redox dans ces proportions des liquides ioniques est un indice de bon fonctionnement des batteries lithium-ion avec des électrolytes mixtes composés de solvants classiques et de liquides ioniques à base de phosphonium.
APA, Harvard, Vancouver, ISO, and other styles
13

Lemoine, Kévin. "Nouveaux matériaux fluorés d'électrodes positives à cations 3d mixtes pour batteries à ions lithium : Elaboration, caractérisation structurale et propriétés électrochimiques." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1030.

Full text
Abstract:
Ce travail concerne l’application d'une stratégie de synthèse en deux étapes pour préparer de nouveaux matériaux fluorés à base de fer dans l’objectif de les tester en tant que composé actif d’électrodes positives pour batteries à ions lithium : élaboration d’un précurseur suivie d’un traitement thermique adéquat. L’étude porte dans un premier temps sur les fluorures hydratés 3D à valence mixte de fer, Fe2F5(H2O)2 de structure weberite inverse et Fe3F8(H2O)2. Par traitement thermique sous air, deux hydroxyfluorures sont stabilisés, FeF2.5(OH)0.5 de structure pyrochlore et FeF2.66(OH)0.34 de structure HTB respectivement. L’étude de leur comportement électrochimique montre d’excellentes capacités ≈ 170 mAh.g-1 (2-4 V). Afin d’étudier l'impact de la nature des cations 3d sur les performances, les hydrates équivalents à cations mixtes, M2+Fe3+F5(H2O)2 (M = Mn, Ni) et M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu ; M3+ = V, Fe), ont été synthétisés en milieu solvothermal dans une seconde partie. Des intermédiaires amorphes oxyfluorés apparaissent lors de la dégradation thermique sous air avec en particulier CuFe2F6O, obtenu à partir de CuFe2F8(H2O)2, qui présente une capacité remarquable de 310 mAh.g-1 (2-4 V). Enfin, des fluorures d’ammonium à cations mixtes NH4M2+Fe3+F6 (M = Mn, Co, Ni, Cu), obtenus par mécanosynthèse et la voie solvothermale, ont conduit aux premiers fluorures à cations mixtes trivalents M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) de structure pyrochlore par oxydation topotactique sous fluor moléculaire F2 en température
This work presents an innovative synthetic strategy to develop new fluorinated iron-based materials as positive electrodes for Li-ion batteries. This two-step elaboration method consists in the preparation of fluorinated precursors followed by an appropriate thermal treatment. The study initially focuses on tridimensional mixed valence iron fluorides, Fe2F5(H2O)2 with the inverse weberitestructural type and Fe3F8(H2O)2. The calcination under air leads to the formation of two new hydroxyfluorides, FeF2.5(OH)0.5 and FeF2.66(OH)0.34 with pyrochlore and HTB structural types respectively which present excellent electrochemical capacities ≈ 170 mAh.g-1 (2-4 V). In a second part, the 3d-cation effect on oxyfluorides performances is evaluated from equivalent mixed metal cation hydrates, M2+Fe3+F5(H2O)2 (M = Mn, Ni) and M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu, M3+ = V, Fe), synthesized solvothermally. Their thermal degradation under air reveals amorphous oxyfluorinated intermediates and among them, CuFe2F6O, obtained from CuFe2F8(H2O)2, with an remarkable capacity of 310 mAh.g-1 (2-4 V). In the last part, mixed ammonium fluorides (NH4)M2+Fe3+F6 (M = Mn, Co, Ni, Cu) are synthesized using mechanochemical and solvothermal routes. Their thermal topotactic oxidation under molecular fluorine F2 leads to the first trivalent mixed-cation fluorides M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) with pyrochlore typestructure
APA, Harvard, Vancouver, ISO, and other styles
14

Belchi, Lorente Daniel. "Proposition d’un modèle produit agile pour l’écoconception : application aux batteries Li-ion." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI050/document.

Full text
Abstract:
Les produits high-tech sont couramment utilisés dans de nombreux secteurs industriels ainsi que dans nos vies de tous les jours. Ils améliorent notre qualité de vie, mais à quel prix ? En effet, la fabrication, l’utilisation et la fin-de-vie de ces produits high-tech génèrent des impacts environnementaux, économiques et sociaux importants. Ces impacts proviennent principalement des matériaux utilisés, de l’énergie consommée pour leur fabrication et pendant leur utilisation et des mauvaises conditions de travail pour l’extraction des matières premières et leur transformation. L’étape de fin-de-vie des produits high-tech contribue également à une grande partie des impacts, car cette phase est souvent négligée lors du processus de conception.Certaines études ont été faites afin de réduire l’impact environnemental des produits, mais ne considèrent qu’une partie des étapes de cycle de vie (par ex. la fabrication) et excluent d’autres étapes comme la fin-de-vie. D’autres études essayent d’intégrer les contraintes de toutes les étapes de cycle de vie mais négligent l’intégration des enjeux environnementaux et ne considèrent que les enjeux classiques de la conception (coûts, qualité, performance, etc.). D’autres études encore visent à intégrer les contraintes de toutes les étapes de cycle de vie et les enjeux environnementaux, mais ne sont pas adaptées à l’évolution rapide des développements dans le cas des produits high-tech (nouvelles technologies, nouveaux matériaux, etc.).Nous proposons donc un outil d’aide à la conception de produits high-tech, qui a pour objectif la prise en compte de toutes les étapes de cycle de vie — et notamment de la fin-de-vie — pour mieux considérer les enjeux environnementaux en plus des enjeux classiques de la conception. Il s’agit d’un modèle-produit agile pour l’écoconception : le MPAE, capable de guider les concepteurs tout au long du processus de conception sur les questions environnementales, malgré les nombreuses alternatives de conception envisagées lors de la conception des produits high-tech.Dans cette thèse, l’outil est appliqué sur un cas théorique de conception avec l’exemple des batteries Li-ion utilisées dans les véhicules électriques. Le modèle développé permet de cibler les paramètres de conception et les acteurs du cycle de vie à l’origine des impacts environnementaux, pour mieux considérer et tenter de les réduire.En résumé, cette thèse réinterroge l’application du concept de modèle produit dans le cas de la prise en compte des impacts environnementaux en conception afin d’aboutir à leur intégration efficace
High-tech products are widely used in many industrial sectors as well as in our everyday lives. They improve our quality of life, but with a high price to pay? The manufacture, use and end-of-life of these products cause strong environmental, economic and social impacts. These impacts are mainly due to the materials and to the energy used for the manufacturing, to their use, but also to bad working conditions to obtain raw materials. The end-of-life stage for high-tech products is a huge source of impacts because not considered during the design.Some researches have been conducted to reduce the environmental impact of high-tech products, but they only consider partially the life cycle stages (eg. The manufacturing phases) and exclude other stages, such as the end-de- life. Further studies are trying to integrate all the life cycle constraints but neglect the integration of environmental issues and they only consider the classical design constraints (cost, quality, performance, etc.). Other studies aimed at integrating the al the life cycle constraints and the environmental issues, but they are not adapted to quick features evolutions during the design process of high-tech product (new technologies, new materials, etc.We therefore propose a tool to guide the design of high-tech products, which aims to integrate all life-cycle stages including the end-of-life and environmental issues in addition to classic design issues. This is an agile product model for eco-design (APME), which considers the rapid evolution of the solutions during the development of high-tech products.In this thesis, the model is theoretically applied in a case study related to Li-ion batteries for electric automotive applications. The developed model is able to highlight the main design parameters and the main actors of the product life cycle which induce high environmental impacts to try to reduce them.This thesis considers the use of the product model concept when taking into account environmental impacts during the design process, for their efficient integration
APA, Harvard, Vancouver, ISO, and other styles
15

Berthault, Manon. "Etude de la dynamique du lithium dans un système électrochimique Li-ion par traçage isotopique en combinant les spectrométries RMN et ToF-SIMS." Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALI034.

Full text
Abstract:
De récentes études montrent que la dégradation des performances d’une cellule Li-ion peut être associée à une inactivation d’une partie du matériau d’électrode. Celle-ci peut résulter de l’isolement de particules vis-à-vis du réseau percolant, de la dissolution du matériau actif, de sa délamination, ou de la dégradation de sa structure à l’échelle nanoscopique ou mésoscopique. Une perte de lithium actif peut également expliquer ces pertes de performance en cyclage. Par exemple, la formation de l’Interphase d’Electrolyte Solide (SEI), qui a lieu lors des premiers cycles électrochimiques, piège du lithium de façon irréversible. La perte de capacité spécifique associée à la création de cette couche est assez faible dans le cas des électrodes de graphite (9%), mais est conséquente pour des électrodes de silicium (jusqu’à 20%). De plus, cette interphase a un fort impact sur la durée de vie et la sécurité de la cellule.Mes travaux portent sur la dynamique du lithium au sein d’une cellule Li-ion, en particulier de la SEI, et utilise une méthode particulière : le traçage isotopique. Cette approche se développe timidement depuis 2011, puisqu’une dizaine d’études seulement ont été publiées. Dans toute la littérature actuelle, les isotopes sont introduits dans différentes parties du système électrochimique (anode, cathode ou électrolyte) avant cyclage. Dans ce travail, les isotopes du lithium ont été ajoutés à différents états de charges (100% ou 0%) afin de marquer sélectivement la SEI. Plus précisément, l’accumulateur subit une charge/décharge, est ouvert, puis l’électrode négative est prélevée et réinsérée dans une nouvelle cellule contenant l’isotope complémentaire. En combinant des analyses de spectrométrie de masse d’ions secondaires à temps de vol (ToF-SIMS) et de résonance magnétique nucléaire (RMN) 7Li/6Li haute résolution à l’état solide, il est possible de déterminer la distribution de 6Li et du 7Li dans différentes parties de l’électrode.Dans un premier temps, le développement basé sur la méthodologie présentée ci-dessus a été réalisé dans un système de demi-pile comprenant une électrode de graphite. L’hypothèse fondée sur la présence de potentiels effets de fractionnement isotopique a été examinée par ToF-SIMS et écartée. Les échanges de 6Li et 7Li apparaissant entre la SEI et l’électrolyte ont ensuite été étudiés par des expériences de diffusion pure et de couplage migration/diffusion en cyclage. Les résultats montrent que la diffusion libre des ions lithium dans la SEI de l’électrode de graphite délithiée est très rapide et qu’une homogénéisation complète des abondances isotopiques apparait en moins de 20 minutes. Ces échanges sont beaucoup plus lents lorsque des cycles de lithiation/délithiation sont effectués.Dans un second temps, la SEI d’une électrode de silicium a été examinée en détail dans des conditions similaires. Celle-ci a été analysée par RMN, par ToF-SIMS ainsi que par spectrométrie de photoélectrons X (XPS). La première lithiation du silicium a également été étudiée. Les expériences d’échanges isotopiques par diffusion pure ont cette fois été réalisées sur des électrodes lithiées. . Elles ont permis de mettre en évidence que plusieurs phénomènes conduisent à la redistribution des isotopes dans la SEI, comme dans les particules de silicium. Durant la première heure de contact, les échanges isotopiques conduisent à l'homogénéisation complète des isotopes. Nos résultats suggèrent également une cinétique de relaxation du lithium dans le silicium plus lente (50h), aboutissant à distribution des isotopes encore différente
Currents studies show that performance degradation of Li-ion cells can be attributed to a loss of active material. This can result from particle isolation from the percolated network, from the dissolution of the active material, from the structure degradation at the nanoscale or at the mesoscale or from delamination. A loss of active lithium can also explain such performance fading. The formation of the Solid Electrolyte Interphase (SEI), which takes place during the first cycle, eventually traps lithium. The irreversible capacity loss associated to the generation of this layer is quite low for graphite electrodes (9%), but it is significant for silicon electrodes (20%). In addition, this interface has a strong impact on the lifespan and safety of the system.My research aims at investigating the lithium dynamics within the SEI during the first cycles of charge and discharge by using Li isotopic tracing. Since 2011, this approach has been used about 10 times in the Li-ion battery field. In all the current literature, isotopes are introduced in specific parts of a cell (anode, cathode or electrolyte) before electrochemical cycling. In this work, Li isotopes are added at different states of charge (100% or 0%) in order to selectively label the SEI. More specifically, the accumulator is charged/discharged, opened, and the cycled negative electrode is removed and inserted into a new cell containing the complementary isotope. By using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and 7Li and 6Li Solid State Nuclear Magnetic Resonance (NMR), it is then possible to characterize the distribution of 7Li and 6Li in the electrode.In a first step, the study of a graphite electrode in a half-cell configuration based on the methodology presented above has been achieved. Hypothesis based on the presence of potential effects of isotope fractionation has been investigated by ToF-SIMS and excluded. 6Li/7Li exchanges appearing at the SEI/electrolyte interface have been studied by pure diffusion and diffusion/migration experiments performed after electrochemical cycling. Results show that self-diffusion of Li+ ions in the SEI of a delithiated-graphite electrode occurs rapidly and a complete homogenization of isotopes abundance appears in less than 20 minutes. These exchanges are slower when (de)lithiation cycling is performed.In a second step, the SEI of a silicon electrode has been thoroughly investigated by using solid-state NMR, ToF-SIMS and X-ray photoelectron spectroscopy (XPS). The first lithiation (first charge), concomitant to the SEI formation, has also been studied. Isotope exchange experiments by pure diffusion have been performed on lithiated electrodes. They have shown that several phenomena lead to the redistribution of isotopes in the SEI, as in silicon particles. During the first hour of contact, isotope result to the complete homogenization of isotopes. Results also suggest a slower relaxation kinetics of lithium in silicon (50h), leading to an new isotope distribution
APA, Harvard, Vancouver, ISO, and other styles
16

Sun, Meiling. "Elaboration of novel sulfate based positive electrode materials for Li-ion batteries." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066686/document.

Full text
Abstract:
Le besoin croissant de batteries à ions lithium dans notre société exige le développement de matériaux d'électrode positive, avec des exigences spécifiques en termes de densité énergétique, de coût et de durabilité. Dans ce but, nous avons exploré quatre composés à base de sulfate: un fluorosulfate - LiCuSO4F et une famille d'oxysulfates - Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Leur synthèse, structure et performances électrochimiques sont présentées pour la première fois. Étant électrochimiquement inactif, LiCuSO4F présente une structure triplite ordonnée qui est distincte des autres fluorosulfates. L'activité électrochimique des composés oxysulfate a été explorée face au lithium. Plus spécifiquement, Fe2O(SO4)2 délivre une capacité réversible d'environ 125 mA∙h/g à 3.0 V par rapport à Li+/Li0; Li2VO(SO4)2 et Li2Cu2O(SO4)2 présentent respectivement les potentiels les plus élevés de 4.7 V vs. Li+/Li0 parmi les composés à base de V et de Cu. Enfin, la phase Li2Cu2O(SO4)2 révèle la possibilité d'une activité électrochimique anionique dans une électrode positive polyanionique. Leurs propriétés physiques, telles que les conductivités ioniques et les propriétés magnétiques, sont également rapportées. Dans l'ensemble, les oxysulfates sont intéressants à étudier en tant qu'électrodes positives polyanioniques pour les batteries à ions lithium
The increasing demand of our society for Li-ion batteries calls for the development of positive electrode materials, with specific requirements in terms of energy density, cost, and sustainability. In such a context, we explored four sulfate based compounds: a fluorosulfate – LiCuSO4F, and a family of oxysulfates – Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Herein their synthesis, structure, and electrochemical performances are presented for the first time. Being electrochemically inactive, LiCuSO4F displays an ordered triplite structure which is distinct from other fluorosulfates. The electrochemical activity of the oxysulfate compounds was explored towards lithium. Specifically, Fe2O(SO4)2 delivers a sustained reversible capacity of about 125 mA∙h/g at 3.0 V vs. Li+/Li0; Li2VO(SO4)2 and Li2Cu2O(SO4)2 respectively exhibit the highest potential of 4.7 V vs. Li+/Li0 among V- and Cu- based compounds. Last but not least, the Li2Cu2O(SO4)2 phase reveals the possibility of anionic electrochemical activity in a polyanionic positive electrode. Their physical properties, such as ionic conductivities and magnetic properties are also reported. Overall, this makes oxysulfates interesting to study as polyanionic positive electrodes for Li-ion batteries
APA, Harvard, Vancouver, ISO, and other styles
17

Ben, Hassine Mohamed. "Contribution de la microscopie électronique à la compréhension des mécanismes de vieillissement des matériaux de batteries lithium-ion associées aux énergies renouvelables." Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0006.

Full text
Abstract:
Le travail présenté dans cette thèse s'inscrit dans le cadre du projet ANR VISION (Etude fine des mécanismes de Vieillissement des batteries Li-ION associées aux énergies renouvelables). Tout un arsenal de techniques de microscopies, allant d'observations à l'échelle micrométrique (MEB) jusqu’à l'échelle atomique (METHR, HR-HAADF) couplées à des techniques spectroscopiques (Microanalyse X et perte d'énergie des électrons), a été mis en oeuvre afin d'identifier les différents modes de dégradations des batteries vieillies sous une des sollicitations électrochimiques très importantes. Les accumulateurs Li-ion étudiés utilisent des matériaux Li[Ni1-x-yMnxCoy]O2 (NMC) pour l'électrode positive et du carbone graphitisé pour l'électrode négative. Nos études ont permis, non seulement de visualiser et de mieux comprendre les modes de dégradation des batteries stationnaires SAFT, mais également d'utiliser des techniques innovantes de microscopie (telles le HR-HAADF ou bien encore la tomographie FIB) afin de révéler la texture et la structure de la matière active avant et/ou après cyclage. Parallèlement, une étude plus fondamentale sur des matériaux modèles (Li2Ru1-ySnyO3…) présentant des propriétés structurales et électrochimiques similaires aux matériaux utilisés dans des batteries commerciales, a été réalisée. Au travers de cette étude, des sur-structures ont pu être observées lors du cyclage et le rôle de l'oxygène dans les processus redox, qui sont derrière la grande capacité délivrée par les composites riches en lithium (tels que : Li2MnO3-LiMO2, M = Ni, Co…), a pu être discuté
The work presented in this thesis is part of the ANR project VISION (fine Study of the Aging mechanisms Battery Li-ION associated with renewable energy). An arsenal of electron microscopy techniques allowing to do observations from the micrometer scale (SEM) to the atomic scale (HRTEM, HR-HAADF) coupled with spectroscopic techniques (X microanalysis and electron energy loss) has been implemented to identify the aging processes occurring in long cycled Li-ion batteries. The so-studied Li-ion batteries are using Li[Ni1-x-yMnxCoy]O2 (NMC) and graphitic carbon as positive and negative electrode materials, respectively. These studies allowed us, not only, to visualize and obtain a better understanding in the degradation modes in SAFT stationary batteries but also to perform innovative microscopy techniques (such HR-HAADF or FIB tomography) in order to reveal the texture and the structure of the active materials. In the same way, a fundamental study on model materials (Li2Ru1-ySnyO3…), having structural and electrochemical properties similar materials used in commercial batteries, has been achieved. Through this study, superstructures were observed, by TEM, during the cycling and the role of oxygen in redox processes, which are behind the high capacity delivered by the lithium-rich composites (such as: Li2MnO3-LiMO2, M = Ni, Co…), has been discussed
APA, Harvard, Vancouver, ISO, and other styles
18

SIGALA, CATHERINE. "Materiaux a potentiels extremes pour batteries aux ions lithium. La solution solide spinelle licr#ymn#2#-#yo#4 (0y) et la famille d'oxydes amorphes li#xmvo#4 (m=ni, co, zn, cd)." Nantes, 1995. http://www.theses.fr/1995NANT2047.

Full text
Abstract:
Deux familles d'oxydes d'elements de transition ont ete etudiees. La synthese et la caracterisation des composes ont ete effectuees prealablement a une etude de leur comportement electrochimique vis a vis de l'intercalation-desintercalation du lithium. L'etude de la solution solide licr#ymn#2#-#yo#4 (0y) montre que la substitution progressive du mn#i#i#i par le cr#i#i#i dans le spinelle limn#2o#4 s'accompagne d'une diminution de la capacite specifique observee autour de 4 volts et, correlativement, d'une augmentation de celle obtenue vers 5 volts. Il en resulte un gain d'energie specifique qui atteint 16% (par rapport a limn#2o#4) pour 0,25y,,62. L'oxydation du mn#i#i#i en mn#i#v intervient en deux etapes a 4 et 4,15 volts. L'amplitude de la seconde diminue lorsque la teneur en cr augmente alors que celle de la premiere reste constante jusqu'a y 0,5. Ce phenomene est interprete en terme d'evolution des repulsions entre atomes de lithium premiers voisins. Au voisinage de 5 volts, l'oxydation du cr#i#i#i peut etre distinguee de celle de l'electrolyte (lipf#6+carbonates), autorisant ainsi une quantification separee des deux phenomenes. Le second represente une capacite parasite faible (<3% de la capacite reversible). Les meilleures performances en cyclage sont obtenues pour y=0,25 dont la perte de capacite est 2 fois plus faible que celle du compose de reference limn#2o#4. Les nouveaux materiaux amorphes li#xmvo#4 (m = ni, co, zn et cd), obtenus par lithiation electrochimique des composes cristallises limvo#4, presentent la particularite d'intercaler reversiblement, a bas potentiel, une quantite importante de lithium par groupement formulaire. Dans le compose li#8nivo#4, obtenu apres une decharge a 20mv, les cations de transition ne sont pas reduits jusqu'a l'etat metallique ce qui indique un transfert electronique partiel du lithium vers la matrice hote. La capacite specifique de ce materiau, apres 200 cycles effectues dans des conditions rapides, est superieure de 50% a celle des meilleurs graphites
APA, Harvard, Vancouver, ISO, and other styles
19

Castro, Laurent. "Matériaux d’électrode positive à base de phosphates pour accumulateurs Li-ion et phénomènes aux interfaces : apport de la spectroscopie photoélectronique à rayonnement X (XPS)." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3046/document.

Full text
Abstract:
Ce travail de thèse est centré sur l’étude de matériaux LiMPO4 (M=Fe, Mn, Co) et de leur évolution en cyclage (processus rédox et interfaces électrode / électrolyte) dans des accumulateurs Li-ion. Il a été mené essentiellement sur la base d’analyses en spectroscopie photoélectronique à rayonnement X (XPS) couplées à des tests électrochimiques. Une oxydation de surface du phosphate LiFePO4 a été mise en évidence lors d’une exposition à l’air de ce matériau avec la formation d’impuretés de surface type Fe2O3. Au plan structure électronique, l’analyse des bandes de valence des matériaux LiMPO4 (M=Fe, Mn, Co) a notamment permis, pour LiFePO4, la visualisation de l’électron spin down du niveau Fe 3d amenant la première preuve expérimentale de la configuration électronique particulière (3d↑)5(3d↓)1 de Fe2+dans ce matériau. Ce travail a également contribué à mieux comprendre l’influence de la température de fonctionnement ainsi que de la nature de l’électrode négative sur les mécanismes de vieillissement des accumulateurs Li-ion. Pour les accumulateurs LiFePO4 // Graphite, la comparaison d’interfaces solide/électrolyte distribuées spatialement a montré que le vieillissement se caractérisant par la perte de lithium actif pouvait être mis en parallèle avec une hétérogénéité de fonctionnement de l’électrode positive. Enfin, l’extension des travaux aux matériaux prometteurs d’électrode positive Li(FeMn)PO4 a révélé que le potentiel de travail de fin de charge plus élevé pour le phosphate mixte, comparativement à LiFePO4, résultait dans une réactivité accrue vis-à-vis de l’électrolyte dont les conséquences ont été analysées
This thesis is focused on the study of LiMPO4 (M = Fe, Mn, Co) materials and on their evolution upon cycling (redox process end electrodes / electrolyte interfaces) in lithium ion cells. It is based on X-Ray Photoelectron Spectroscopy (XPS) analyses coupled with electrochemical tests. During air exposure, a surface oxidation of phosphate LiFePO4 was observed that lead to the formation of surface impurities such as Fe2O3. Concerning electronic structure, the analysis of LiMPO4 (M=Fe, Mn, Co) materials valence spectra allowed for LiFePO4 the visualization of spin down Fe 3d electron which is the first experimental proof of the particular electronic configuration (3d↑)5(3d↓)1 of Fe2+ in this material. This work also allowed a better understanding of the effect of the working temperature as well as the nature of the negative electrode on Li-ion cells ageing mechanisms. For LiFePO4 // Graphite cell, the comparison of spatially distributed solid/electrolyte interfaces showed that ageing mechanisms, characterized by a loss of active lithium, could be associated with a heterogeneity of working of the positive electrode. In addition, the extension of these studies on new promising Li(FeMn)PO4 materials for positive electrode showed that higher working potential of mixed phosphate material compared to LiFePO4 material leads to a higher electrolyte reactivity which consequences were analysed
APA, Harvard, Vancouver, ISO, and other styles
20

El, Baradai Oussama. "Elaboration of flexible lithium - ion electrodes by printing process." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI036/document.

Full text
Abstract:
Le travail présenté dans ce mémoire concerne la réalisation des batteries souples lithium-ion. Il a comme objectif le développement de nouveaux procédés comme l'impression par sérigraphie pour la fabrication de batteries et le remplacement des polymères issus de la chimie de synthèse par des matériaux bio-sourcés utilisables en milieu aqueux. Les résultats obtenus ont montré qu'il est possible de formuler des encres aqueuses à base des matériaux actifs classiquement utilisés pour l'élaboration d'électrodes (anode et cathode) de batterie Li-ion mais avec des liants dérivés de cellulose en substitution du PVDF qui intègre les formulations standards. Cette encre, dont les propriétés rhéologiques sont compatibles avec le procédé d'impression sérigraphique, permet l'obtention d'électrodes présentant des propriétés spécifiques aux bons fonctionnements de la batterie. Les résultats obtenus ont montré que cette technique d'impression du séparateur pouvait être utilisée pour remplacer la technique de déposition classique des matières actives sur les collecteurs de courant, basée sur un procédé d'enduction à lame (blade coating). Enfin, une batterie lithium-ion imprimée a pu être élaborée en utilisant la stratégie d'impression recto/verso du séparateur avec l'intégration des collecteurs de courant pendant la phase d'impression, validant ainsi cette nouvelle technique d'assemblage
The work presented in this manuscript describes the manufacturing of lithium-ion batteries on papers substrates by printing technique. Its aim is the development of new up scalable and large area techniques as screen printing for the fabrication of lithium-ion batteries and the replacement of conventional toxic components by bio-sourced one and water based solvent. First results shows how it is possible to formulate cellulose based ink tailored for screen printing technology with suitable properties for lithium-ion batteries requirements. Electrodes were manufactured and tested from a physical and electrochemical point of view and two strategies were proposed to enhance performances. Finally, by considering results obtained for the electrodes, a full cell was manufactured with a new assembling strategy based on: front / reverse printing approach and the embedding of the current collectors during printing stage. As a final point cells were characterized and compared with others obtained by conventional assembling strategies
APA, Harvard, Vancouver, ISO, and other styles
21

Sotta, Dane. "Liquides ioniques gélifiés pour les batteries lithium-ion." Amiens, 2011. http://www.theses.fr/2011AMIE0115.

Full text
Abstract:
Les systèmes de stockage de l'énergie électrique au lithium sont prometteurs pour les applications "transport" (véhicules électrifiés). Dans ces batteries, la nature de l'électrolyte conditionne la gamme de température de fonctionnement et la sûreté du système. Ce travail de recherche s'inscrit dans ce contexte et porte sur l'étude de nouveaux électrolytes gélifiés pour batteries Li-ion. La première phase de ce travail a été consacrée à la formulation et caractérisation d'électrolytes gélifiés constitués d'un réseau polymère de type époxy-amine, d'un liquide ionique et d'un sel de lithium. Les propriétés physico-chimiques de ces systèmes ternaires ont été discutées en fonction de leur composition. Des valeurs de conductivité ionique satisfaisantes pour l'application visée ont été mesurées pour des gels fortement chargés en liquide ionique. Des membranes d'électrolytes gélifiés ont été mises en œuvre en assemblages avec des électrodes à insertion et leurs propriétés électrochimiques ont été caractérisées dans des cellules prototypes. Parallèlement, une étude plus fondamentale a été engagée pour investiguer les phénomènes de transport des espèces chargées au sein des gels. Au delà des mesures classiques basées sur la spectroscopie d'impédance électrochimique, l'utilisation de plusieurs méthodes de spectroscopie par Résonance Magnétique Nucléaire a mis en évidence l'existence d'interactions locales entre la résine et les ions lithium, impactant sensiblement leur mobilité. Ce travail a permis de faire le lien entre les interactions moléculaires et les propriétés électriques et, ainsi, de mieux comprendre les limitations propres aux systèmes choisis pour dégager des pistes d'amélioration de leurs propriétés
Lithium batteries are promising electrical energy storage devices for application in electric vehicles. In these systems the nature of the electrolyte is a key point to control the temperature range of use and the security conditions of the battery. In this context, this work is aimed at developing new gel polymer electrolytes for lithium-ion batteries. The first part of this study has been devoted to formulation and characterization of gelled electrolytes based on an epoxy-amine resin, an ionic liquid and a lithium salt. Physico-chemical properties of these ternary systems have been discussed according to their composition. Gels with high ionic liquid contents exhibit satisfactory ionic conductivity for the considered application. Gel polymer membranes have ben processed and coupled to insertion electrodes to study their electrochemical properties in appropriate prototype cells. In a parallel study, we have focused our investigation on transport properties of charged species in these gels. Besides classical measurements based on Electrochemical Impedance Spectroscopy, several Nuclear Magnetic Resonance Spectroscopy methods have been implemented to study local and long range ion mobility. They have shown that particular interactions are established in the gels between the resin and the lithium ions with reduced mobility for the latter. This work has highlighted the link between molecular interactions and electrical properties in the ternary gels and thus it has enabled a better knowledge of the inner limitations of these systems. Finally, further routes have been proposed to optimize gel polymer electrolytes in lithium-ion batteries
APA, Harvard, Vancouver, ISO, and other styles
22

Demeaux, Julien. "Impact des phénomènes aux interfaces électrode/électrolyte sur les performances des batteries Li-ion haute tension : faiblesses et atouts des électrolytes à base de carbonates d'alkyles et de sulfones face aux électrodes LiNi0,4Mn1,6 O4 et Li4Ti5O12." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4032/document.

Full text
Abstract:
Les accumulateurs LiNi0.4Mn1.6O4 (LNMO)/Li4Ti5O12 (LTO), permettent d’atteindre théoriquement les densités de puissance et d’énergie fournissant une autonomie suffisante aux véhicules électriques. Cependant, deux problèmes majeurs liés à LNMO limitent leurs performances : l’oxydation prononcée des électrolytes à base de carbonates d’alkyles et la dissolution d’ions de métaux de transition (Mn2+, Ni2+). Les formulations à base de carbonate d’éthylène (EC) ont une aptitude à former des films polymères couvrant la matière active. Les cyclages galvanostatiques, faisant suite ou non à un stockage, confirment la supériorité de ces électrolytes, conduisant à des pertes de capacité réduites de l’électrode LNMO. D’autre part, les sulfones sont des composés prometteurs pour une utilisation dans les batteries LNMO/LTO. L’emploi de cellules symétriques et asymétriques démontre que les sulfones sont non-réactives vis-à-vis des interfaces LNMO/électrolyte et LTO/électrolyte. Cependant, cette non-réactivité ne permet pas le dépôt de films polymères qui auraient permis de stopper la dissolution d’ions Mn2+ et Ni2+ à partir de l’électrode positive. Ceci résulte en des performances dégradées à 30°C des accumulateurs par rapport à ceux employant EC dans les électrolytes
LiNi0.4Mn1.6O4 (LNMO)/Li4Ti5O12 (LTO) accumulators should theoretically achieve the power and energy densities that provide sufficient autonomy to electric vehicles. However, two major issues related to the use of LNMO limit their performances: the pronounced oxidation of the alkylcarbonate-based electrolytes and the transition metal ion (Mn2+, Ni2+) dissolution. The ethylene carbonate (EC)-based formulations get an ability to form polymer-covering films onto the active material. The galvanostatic cycling tests, after storage or not, confirm the superiority of these electrolytes, leading to reduced capacity losses of the LNMO electrode. Furthermore, sulfones are promising compounds to be applied to LNMO/LTO batteries. The use of symmetric and asymmetric cells demonstrates that sulfones are non-reactive towards the LNMO/electrolyte and LTO/electrolyte interfaces. However, this non-reactivity does not allow the deposition of polymer films, which would have enabled to stop the Mn2+ and Ni2+ dissolution from the positive electrode. This results in degraded performances of batteries at 30°C compared to those using EC in electrolytes
APA, Harvard, Vancouver, ISO, and other styles
23

Sandu, Izabela. "Nouveaux matériaux d'électrode négative pour batteries à ions lithium." Nantes, 2003. http://www.theses.fr/2003NANT2073.

Full text
Abstract:
Le travail présenté dans ce mémoire se propose d'étudier les mécanismes mis en jeu lors de l'insertion du lithium dans différents dioxydes de métaux du groupe IV, ainsi que leur comportement en tant que matériau d'électrode négative pour batteries à ions lithium. L'intérêt de cette classe de composés réside dans leur grand pouvoir d'insertion d'ions lithium, ce qui leur confère des capacités spécifiques importantes comparées à celles du graphite. . .
APA, Harvard, Vancouver, ISO, and other styles
24

Ponnuchamy, Veerapandian. "Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary Mixtures of Carbonate Solvents : A Numerical Approach." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY004/document.

Full text
Abstract:
En raison de l'augmentation de la demande d'énergie, ressources écologiques respectueux de l'environnement et durables (solaires, éoliennes) doivent être développées afin de remplacer les combustibles fossiles. Ces sources d'énergie sont discontinues, étant corrélés avec les conditions météorologiques et leur disponibilité est fluctuant dans le temps. En conséquence, les dispositifs de stockage d'énergie à grande échelle sont devenus incontournables, pour stocker l'énergie sur des échelles de temps longues avec une bonne compatibilité environnementale. La conversion d'énergie électrochimique est le mécanisme clé pour les développements technologiques des sources d'énergie alternatives. Parmi ces systèmes, les batteries Lithium-ion (LIB) ont démontré être les plus robustes et efficaces et sont devenus la technologie courante pour les systèmes de stockage d'énergie de haute performance. Ils sont largement utilisés comme sources d'énergie primaire pour des applications populaires (ordinateurs portables, téléphones cellulaires, et autres). La LIB typique est constitué de deux électrodes, séparés par un électrolyte. Celui-ci joue un rôle très important dans le transfert des ions entre les électrodes fournissant la courante électrique. Ce travail de thèse porte sur les matériaux complexes utilisés comme électrolytes dans les LIB, qui ont un impact sur les propriétés de transport du ion Li et les performances électrochimiques. Habituellement l'électrolyte est constitué de sels de Li et de mélanges de solvants organiques, tels que les carbonates cycliques ou linéaires. Il est donc indispensable de clarifier les propriétés structurelles les plus importantes, et leurs implications sur le transport des ions Li+ dans des solvants purs et mixtes. Nous avons effectué une étude théorique basée sur la théorie du fonctionnelle densité (DFT) et la dynamique moléculaire (MD), et nous avons consideré des carbonates cyclique (carbonate d'éthylène, EC, et carbonate de propylène, PC) et le carbonate de diméthyle, DMC, linéaire. Les calculs DFT ont fourni une image détaillée des structures optimisées de molécules de carbonate et le ion Li+, y compris les groupes pures Li+(S)n (S =EC,PC,DMC et n=1-5), groupes mixtes binaires, Li+(S1)m(S2)n (S1,S2=EC,PC,DMC, m+n=4), et ternaires Li+(EC)l(DMC)m(PC)n (l+m+n=4). L'effet de l'anion PF6 a également été étudié. Nous avons aussi étudié la structure de la couche de coordination autour du Li+, dans tous les cas. Nos résultats montrent que les complexes Li+(EC)4, Li+(DMC)4 et Li+(PC)3 sont les plus stables, selon les valeurs de l'énergie libre de Gibbs, en accord avec les études précédentes. Les énergies libres de réactions calculés pour les mélanges binaires suggèrent que l'ajout de molécules EC et PC aux clusters Li+ -DMC sont plus favorables que l'addition de DMC aux amas Li+-EC et Li+-PC. Dans la plupart des cas, la substitution de solvant aux mélanges binaires sont défavorables. Dans le cas de mélanges ternaires, la molécule DMC ne peut pas remplacer EC et PC, tandis que PC peut facilement remplacer EC et DMC. Notre étude montre que PC tend à substituer EC dans la couche de solvation. Nous avons complété nos études ab-initio par des simulations MD d'une ion Li immergé dans les solvants purs et dans des mélanges de solvants d'intérêt pour les batteries, EC:DMC(1: 1) et EC:DMC:PC(1:1:3). MD est un outil très puissant et nous a permis de clarifier la pertinence des structures découvertes par DFT lorsque le ion est entouré par des solvants mélangés. En effet,la DFT fournit des informations sur les structures les plus stables de groupes isolés, mais aucune information sur leur stabilité ou de la multiplicité (entropie) lorsqu'il est immergé dans un environnement solvant infinie. Les données MD, ainsi que les calculs DFT nous ont permis de donner une image très complète de la structure locale de mélanges de solvants autour le ion lithium, sensiblement amélioré par rapport aux travaux précédents
Due to the increasing global energy demand, eco-friendly and sustainable green resources including solar, or wind energies must be developed, in order to replace fossil fuels. These sources of energy are unfortunately discontinuous, being correlated with weather conditions and their availability is therefore strongly fluctuating in time. As a consequence, large-scale energy storage devices have become fundamental, to store energy on long time scales with a good environmental compatibility. Electrochemical energy conversion is the key mechanism for alternative power sources technological developments. Among these systems, Lithium-ion (Li+) batteries (LIBs) have demonstrated to be the most robust and efficient, and have become the prevalent technology for high-performance energy storage systems. These are widely used as the main energy source for popular applications, including laptops, cell phones and other electronic devices. The typical LIB consists of two (negative and positive) electrodes, separated by an electrolyte. This plays a very important role, transferring ions between the electrodes, therefore providing the electrical current. This thesis work focuses on the complex materials used as electrolytes in LIBs, which impact Li-ion transport properties, power densities and electrochemical performances. Usually, the electrolyte consists of Li-salts and mixtures of organic solvents, such as cyclic or linear carbonates. It is therefore indispensable to shed light on the most important structural (coordination) properties, and their implications on transport behaviour of Li+ ion in pure and mixed solvent compositions. We have performed a theoretical investigation based on combined density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations, and have focused on three carbonates, cyclic ethylene carbonate (EC) and propylene carbonate (PC), and linear dimethyl carbonate (DMC). DFT calculations have provided a detailed picture for the optimized structures of isolated carbonate molecules and Li+ ion, including pure clusters Li+(S)n (S=EC, PC, DMC and n=1-5), mixed binary clusters, Li+(S1)m(S2)n (S1, S2 =EC, PC, DMC, with m+n=4), and ternary clusters Li+(EC)l(DMC)m(PC)n with l+m+n=4. Pure solvent clusters were also studied including the effect of PF6- anion. We have investigated in details the structure of the coordination shell around Li+ for all cases. Our results show that clusters such as Li+(EC)4, Li+(DMC)4 and Li+(PC)3 are the most stable, according to Gibbs free energy values, in agreement with previous experimental and theoretical studies. The calculated Gibbs free energies of reactions in binary mixtures suggest that the addition of EC and PC molecules to the Li+-DMC clusters are more favourable than the addition of DMC to Li+-EC and Li+-PC clusters. In most of the cases, the substitution of solvent to binary mixtures are unfavourable. In the case of ternary mixtures, the DMC molecule cannot replace EC and PC, while PC can easily substitute both EC and DMC molecules. Our study shows that PC tends to substitute EC in the solvation shell. We have complemented our ab-initio studies by MD simulations of a Li-ion when immersed in the pure solvents and in particular solvents mixtures of interest for batteries applications, e.g. , EC:DMC (1:1) and EC:DMC:PC(1:1:3). MD is a very powerful tool and has allowed us to clarify the relevance of the cluster structures discovered by DFT when the ion is surrounded by bulk solvents. Indeed, DFT provides information about the most stable structures of isolated clusters but no information about their stability or multiplicity (entropy) when immersed in an infinite solvent environment. The MD data, together the DFT calculations have allowed us to give a very comprehensive picture of the local structure of solvent mixtures around Lithium ion, which substantially improve over previous work
APA, Harvard, Vancouver, ISO, and other styles
25

Chazel, Cedric. "Etude par RMN de matériaux d'électrode pour batteries lithium-ion." Bordeaux 1, 2006. http://www.theses.fr/2006BOR13133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Allart, David. "Gestion et modélisation électrothermique des batteries lithium-ion." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC261/document.

Full text
Abstract:
Ces travaux de thèse se focalisent sur la modélisation électrothermique des batteries Lithium-ion de grande puissance, appliquée pour les véhicules électriques et pour le stockage d’énergie intégré au réseau. Une approche plus particulière est donnée sur la modélisation thermique de la batterie et de ses connectiques dans le but d’anticiper les comportements thermiques sous des sollicitations dynamiques de courant. De nombreuses investigations ont été réalisées dans le but de déterminer les différents paramètres électriques et thermiques de l’accumulateur, nous avons également cherché à comparer plusieurs méthodes de caractérisation différentes.La première partie du manuscrit est consacrée à la caractérisation et à la modélisation électrique.La seconde partie présente la caractérisation thermique et le modèle thermique de la batterie. Nous proposons une approche couplée de différents modèles thermiques, dans le but de prédire les comportements thermiques au niveau de la surface et du cœur de la cellule, mais également au niveau des connectiques et des câbles.Enfin, la dernière partie présente la modélisation électrothermique d’un module assemblé de trois cellules en séries. Les résultats de simulations ont été validés sur des régimes à courant constant, ainsi que sur des régimes de courant dynamique.Le travail accompagne l’intégration des modèles thermiques dans une plateforme de simulation de systèmes énergétique et ouvre des pistes vers des outils d’aide à la conception de packs de batteries, sur l’aide au dimensionnement de systèmes de refroidissement et sur le développement d’outil de diagnostic thermique des batteries
This thesis work focuses on the electrothermal modeling of high-power Lithium-ion batteries, applied for electric vehicles and the energy storage connected to the the grid. A particular approach is given on the thermal modeling of the battery and its connectors in order to anticipate the thermal behaviors under dynamic charge and discharge current, which is very useful for the thermal management systems of the batteries. Numerous investigations have been carried out in order to determine the different electrical and thermal parameters of the accumulator, we have also tried to compare several different methods.The first part of the manuscript is dedicated to characterization and electrical modeling.The second part presents the thermal characterization and the thermal model of the battery. We propose a coupled approach of different thermal models, with the aim of predicting the thermal behaviors at the level of the surface and the core of the cell, but also at the level of the connectors and the wire.Finally, the last part presents the electrothermal modeling of a small assembled module of three cells in series. The results of simulations have been validated on constant current regimes, as well as on dynamic current regimes.The work aims to integrate the thermal models in a simulation platform of energy systems and opens up paths towards tools to help in the design of battery packs, assistance with the dimensioning of cooling systems and the development of thermal diagnostic tool for batteries
APA, Harvard, Vancouver, ISO, and other styles
27

Dulac, Anne-Marie. "Matériaux d'électrode positive à haut potentiel pour batteries à ions lithium." Nantes, 2002. http://www.theses.fr/2002NANT2103.

Full text
Abstract:
Après la mise en oeuvre successive de matériaux d'électrode positive fonctionnant autour de 3 V (LiMnO2) et 4 V (LiNiO2, LiCoO2), la recherche se tourne vers des matériaux à haut potentiel (>4,5 V). Ceux-ci permettent, pour une même capacité, d'obtenir des énergies beaucoup plus élevées, supérieures à 500 Wh/Kg. Dans un premier temps, la détermination des facteurs influant sur le potentiel des matériaux d'électrode, à l'aide de quelques exemples, a permis d'appréhender ce phénomène. Une étude plus complète, mêlant calculs de structure électronique et absorption des rayons X a notamment révélé l'importance de l'effet polarisant du lithium et de la structure magnétique dans le cas du phosphate LiCoPO4. . .
APA, Harvard, Vancouver, ISO, and other styles
28

Padigi, Sudhaprasanna Kumar. "Multivalent Rechargeable Batteries." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2464.

Full text
Abstract:
Li+ ion batteries have been the mainstay of high energy storage devices that have revolutionized the operating life time of consumer electronic devices for the past two decades. However, there is a steady increase in demand for energy storage devices with the ability to store more energy and deliver them at high power at low cost, without comprising safety and lifetime. Li-ion batteries have had significant challenges in increasing the amount of stored energy without affecting the overall lifetime and the ability to deliver stored energy. In order to store and deliver more energy, more lithium ions need to be inserted and extracted from a given electrode (cathode or anode). Upon inserting a large number of Li ions, the crystal lattice of the materials undergo severe mechanical distortions, leading to un-desirable structural changes. This results in underutilization of theoretical energy storage capacities of the electrodes and early failure of the batteries owing to instabilities in the electrode materials. Unlike monovalent Li+ ions, multivalent rechargeable batteries offer a potential solution to the above problems. Multivalent cations, such as Ca2+, are doubly-ionized as opposed to Li+ which is a monovalent cation. The advantages of using Ca2+ ions instead of Li+ ions are multifold. Due to the doubly-ionized nature, only half the number of Ca2+ ions need to be inserted and extracted from a given electrode to store and deliver energy from a high capacity cathode as compared to Li+ ions. This reduces the probability of lattice distortion and un-desirable structural changes, further leading to increased utilization of high theoretical energy storage capacities of the electrodes (cathode and anode). The use of Ca2+ ions also helps in delivering twice the amount of current density as compared to Li+ ions due to its doubly ionized nature. In this work, a set of eight metal hexacyanoferrate compounds were synthesized using the following metal ions: Ba2+, Mn2+, Zn2+, Co2+, Fe3+, Al3+, Sn4+, Mo5+. The resulting metal hexacyanoferrate compounds were subjected to physical characterization using scanning electron microscope (SEM) and powder x-ray diffraction (XRD), to determine physical properties such as size, morphology, unit cell symmetry and unit cell parameters. This was followed by electrochemical characterization utilizing cyclic voltammetry and galvanic cycling, to determine the specific capacity and kinetics involved in the transport of Ca2+ ions to store charge. Optical characterization of the metal hexacyanoferrates using Fourier transform infrared (FTIR) spectroscopy, allowed for the identification of metal-nitrogen stretching frequency, which was used as a measure of the strength of the metal-nitrogen bond to understand the role of the above mentioned metal ions in electron density distribution across the unit cell of the metal hexacyanoferrates. The specific capacity utilization of the metal hexacyanoferrates, when compared to the electronegativity values (Xi) of the above mentioned metal ions, the σ- parameter, and the metal-nitrogen stretching frequency (v), revealed an empirical trend suggesting that the materials (FeHCF, CaCoHCF and CaZnHCF) that possessed intermediates values for the above mentioned parameters demonstrated high capacity utilization (≥50%). Based on these empirical trends, it is hypothesized that a uniform distribution of electron density around a unit cell, as reflected by intermediate values of the electronegativity (Xi) of the above mentioned metal ions, the σ-parameter and the metal-nitrogen stretching frequency (v), results in minimal electrostatic interactions between the intercalating cation and the host unit cell lattice. This results in relatively easy diffusion of the cations, leading to high specific capacity utilization for metal hexacyanoferrate cathodes. These parameters may be used to select high efficiency cathode materials for multivalent batteries.
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Shijun. "Iron phosphates as cathodes for lithium-ion batteries." Diss., Online access via UMI:, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gopal, Venkatesh. "Synthesis, structural and electrochemical characterizations of new materials for li-ion batteries." Caen, 2013. http://www.theses.fr/2013CAEN2082.

Full text
Abstract:
Ce travail de thèse est axée sur la découverte de nouveaux matériaux d'électrodes utilisées dans les batteries Li ou Na ion et rechargeables. Notre approche pour générer et identifier de nouveaux matériaux d'électrode à fort potentiel est basé sur la synthèse directe par chimie douce (précipitations, hydrothermale), échange d'ions et réactions électrochimiques d'oxydation/réduction. Dans le système des oxydes de vanadium, une nouvelle classe de matériau a été synthétisé avec la formule générale AVO3 (avec A = Li, Na, Ag, Cu). Dans le cas du lithium, nous avons observé la formation d’une nouvelle phase Li2VO3 de structure NaCl désordonnée délivrant une capacité spécifique réversible de 250 mAh/g à un potentiel moyen de 2,5 V vs Li/Li+. Un autre nouveau matériau d'électrode à base de phosphate de vanadium Na2VO(HPO4)2 a été préparé par échange ionique à partir du phosphate acide de vanadium VO(H2PO4)2. Ce composé est un conducteur ionique ( = 10-3S/cm à 200°C) et livré une capacité spécifique de 70 mAh/g à tension plus élevée ~ 3,9 V vs Li/Li+ avec une excellente réversibilité. A la recherche de nouvelles compositions dans le système Li-M-O, nous avons synthétisé la nouvelle phase Li5W2O7 à partir de la phase en ruban Li2W2O7 par insertion électrochimique de lithium. Cette phase présente une structure de type NaCl ordonnée et un comportement électrochimique attrayant avec une capacité spécifique initiale de 162 mAh/g. Nous avons étudié également la phase Ag2W2O7 iso-structurale qui offre quant à elle une capacité de 193 mAh/g
This thesis work is focused on the discovery of new electrode materials used in rechargeable lithium and sodium ion batteries. Our approach to generate and identify new high potential electrode materials is based on direct soft chemistry synthesis (precipitation, hydrothermal), ion exchange and electrochemical oxidation/reduction reactions. In the A-V-O system (A=Li, Na, Ag, Cu), a new class of material has been synthesized by lithium/sodium insertion with the general formula A2VO3. We found that the fully reduced phase Li2VO3 is showing a disordered rock-salt-type structure and delivered a reversible specific capacity of 250 mAh/g at an average potential of 2. 5 V vs. Li+/Li. Another candidate Li5W2O7 has been explored as new electrode material for Li-ion batteries in the A-W-O system. Starting from the ribbon-type structure Li2W2O7, the fully reduced phase Li5W2O7 is showing an ordered rock-salt-type structure and the electrochemical behavior of these new phases is attractive with an initial specific capacity of 162 mAh/g. We studied also the iso-structural phase Ag2W2O7 and it delivers a capacity of 193 mAh/g. Another new electrode material based on vanadium phosphate Na2VO(HPO4)2 has been prepared by ion exchange method starting from the acidic vanadium phosphate VO(H2PO4)2. This compound is an ionic conductor (=10-3S/cm at 200°C) and delivered a specific capacity of 70 mAh/g at higher voltage ~3. 9 V vs. Li/Li+ with an excellent reversibility
APA, Harvard, Vancouver, ISO, and other styles
31

Belaid, Sofiane. "Formulation et procédé d'élaboration sans solvant d'électrodes de batteries Lithium-ion." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10038.

Full text
Abstract:
Ces travaux de recherche ouvrent une nouvelle voie d’élaboration par voie sèche (sans utilisation de solvants organiques) d’électrodes pour batterie lithium-ion. Le procédé consiste en l’extrusion des différents constituants de l’électrode (liant, matière active et agent conducteur) en présence d’un polymère sacrificiel. Une première étude a porté sur le choix de l’agent conducteur et la nature du revêtement du substrat collecteur afin d’optimiser les propriétés électriques de l’électrode. Ensuite, afin d’une part justifier la cohésion des charges malgré un faible taux de liant et d’autre part expliquer certaines pertes de performances notamment en terme de conductivité électrique et ionique, nous avons étudié les interactions charges-polymère et mis en évidence la présence de polymère adsorbé/greffé à la surface des charge, connu sous le terme de « bound rubber ». Dans une dernière étude, nous avons enfin montré qu’il était possible de contrôler le taux de porosité de l’électrode permettant ainsi de formuler sans solvant une électrode répondant totalement au cahier des charges initial. En effet, des électrodes avec un taux de matière active supérieur à 80 %m (taux de charges global supérieur à 80 %vol), un taux de porosité de 40 %, une épaisseur inférieure à 100 μm, électriquement conductrices, et enfin de capacité initiale de 145 mA.h/g ont été réalisées
This study aims to find a new way of lithium-ion battery electrodes production using dry process. The production procedure consists on the extrusion of different compounds of the electrode (binder, active material and conductive agent) with a sacrificial polymer. First, a study was established to choose optimal conductive agent and coating material of the collector substrat in order to optimize electrical properties of the electrode. Then the interaction between charges and polymer was studied to justify charges cohesion despite the low amount of the binder and to explain some performances loss mainly in terms of ionic and electrical conductivity. This study revealed the presence of adsorbed / grafted polymer on the surface of charges, known as "bound rubber". Finally, we showed that electrode porosity could be controlled. In addition it was proved that it is possible to perform a dry electrode responding to initial specifications. In fact, electrodes with active material content greater than 80 wt% ( rate of global fillers greater than 80 vol % ), a rate of porosity of 40 vol % , a thickness less than 100 μm, high electrically conductive and finally a specific capacity of 145 mA.h/g were performed
APA, Harvard, Vancouver, ISO, and other styles
32

Kuntz, Pierre. "Evolution du comportement sécuritaire de batterie lithium-ion pendant leur vieillissement." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI069.

Full text
Abstract:
La technologie des batteries lithium-ion est de plus en plus répandue en raison de sa haute densité énergétique et de sa bonne cyclabilité. Aujourd'hui, les véhicules électriques fonctionnent avec des technologies au lithium-ion. Malgré leurs nombreux avantages, il a été prouvé que les batteries lithium-ion sont la cause de nombreux incendies accidentels de voiture. La sécurité des batteries est donc une problématique importante pour continuer à développer des véhicules plus performants et plus durables, mais aussi pour assurer la sécurité des utilisateurs. Selon les conditions d'utilisation, différents mécanismes de vieillissement interne à la cellule peuvent être activés et induire des modifications physico-chimiques des composants internes. Ainsi, le vieillissement d'une cellule a une forte influence sur son comportement en matière de sécurité. Trois références de cellules lithium-ion commerciales de type 18650 sont étudiées et vieillies en utilisant un cyclage représentatif BEV (Battery Electric Vehicle) à différentes températures (-20°C, 0°C, 25°C, 45°C) selon la norme internationale IEC 62-660. Des analyses ante-mortem et post-mortem (analyses électrochimiques des électrodes, MEB, EDX, GD-OES, XRD, GCMS, DSC, FTIR...) sont réalisées sur les composants internes afin d'identifier clairement quel mécanisme de vieillissement se produit en fonction des caractéristiques de la cellule et des conditions de vieillissements. Ensuite, des tests de sécurité sont effectués (ARC, court-circuit et surcharge) pour évaluer le comportement de chaque cellule en matière de sécurité. En comparant le comportement de sécurité des cellules neuves à celui des cellules âgées, il sera possible de comprendre l'impact de chaque mécanisme de vieillissement sur le comportement sécuritaire des cellules
Lithium-ion battery technology is more and more widespread due to its high energy density and good cycleability. Today electric vehicles runs with Lithium-ion technologies. Despite Lithium-ion technology has numerous advantages, it has been proved that lithium-ion battery are the cause of many accidental car fires. Thereby battery safety is a key issue to continue to develop more performant and enduring vehicle, but also to ensure the user’s safety. Depending on the condition of use, different aging mechanisms inside the cell could be activated and induce physical and chemical modifications of the internal components. Therefore, aging of a cell has a strong influence on its safety behavior. Three references of commercial 18650-type lithium-ion cells are investigated using BEV (Battery Electric Vehicle) representative aging at various temperatures (-20°C, 0°C, 25°C, 45°C) according to the international standard IEC 62-660. Ante-mortem and post-mortem analyses (half coin cell at the electrode level, SEM, EDX, GD-OES, XRD, GCMS, DSC, FTIR…) are performed on internal components in order to identify clearly, which aging mechanism occurs in accordance to the cell characteristics and the aging conditions. Then safety test are performed (ARC, short-circuit and overcharge) to evaluate the safety behavior of each cell. By comparing safety behavior of fresh cell vs. aged cells, it will be possible to understand the impact of each aging mechanism on cell safety behavior
APA, Harvard, Vancouver, ISO, and other styles
33

Khatib, Rémi. "Les origines de l'hystérésis de potentiel dans les batteries Li-ion." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20216/document.

Full text
Abstract:
Dans les années 2000, les matériaux de conversion sont apparus comme une alternative intéressante aux matériaux d'insertion actuellement utilisés dans les batteries Li-ion. Ils réagissent avec le lithium pour former une électrode constituée de nanoparticules métalliques encapsulées dans une matrice lithiée. Pour comprendre ces réactions, le phosphure de cobalt (CoP) a été étudié au moyen de techniques théoriques et expérimentales. La complexité de ces systèmes nanocomposites n'a pas permis de caractériser toutes les espèces présentes dans l'électrode. Cependant, les calculs DFT ont prédit la formation de composés intermédiaires dont les potentiels de formation sont cohérents avec l'expérience. De plus, ces travaux ont mis en évidence l'importance de la réactivité de surface quant à l'origine de l'hystérésis de potentiel qui nuit au rendement énergétique de ce type d'électrode. La méthodologie développée spécialement pour les réactions de conversion, mais transférable vers d'autres réaction électrochimique, a été validée par les mesures expérimentales
In the 2000s, conversion materials appeared as an interesting alternative to the insertion materials currently used in Li-ion batteries. They react with lithium to form an electrode constituted of metallic nanoparticles embedded into a lithiated matrix. To understand those reactions, cobalt phosphide (CoP) has been studied by theoretical and experimental techniques. The complexity of those nanocomposite systems does not allow to characterize all the species present inside the electrode. However, DFT calculations predicted the formation of intermediate compounds whose the formation potentials are in agreement with the experiment. Moreover, these studies have highlighted the importance of surface reactivity about the voltage hysteresis which harms to the electrode efficiency.The methodology especially developed for conversion reactions, but transferable to others electrochemical reaction, was validated by experimental measures
APA, Harvard, Vancouver, ISO, and other styles
34

Chazel, Cédric. "Etude par RMN de matériaux d'électrode pour batteries lithium-ion." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00092375.

Full text
Abstract:
Ce travail de thèse s'inscrit dans le cadre général de l'étude des matériaux d'intercalation de type LiMO2 et LiM2O4 (M : métal de transition) utilisés comme matériaux d'électrode dans les batteries lithium-ion. La RMN du solide permet de caractériser l'environnement local du lithium dans ces matériaux, grâce à l'exploitation des interactions hyperfines dues à la présence d'une certaine densité d'électrons célibataires (déplacement de contact de Fermi) ou de conduction (déplacement de Knight) sur le noyau de lithium.
En suivant la transformation de la phase lamellaire LiNiO2 en phase spinelle LiNi2O4 par RMN du lithium, nous avons étudié la nature du signal asymétrique de LiNiO2 et l'influence de l'écart à la stoechiométrie du matériau, puis mis en évidence une mobilité électronique couplée à la mobilité ionique pour les phases désintercalées LixNiO2 en relation avec l'ordre Li/lacune et Ni3+/Ni4+, et enfin mis en évidence des défauts structuraux au sein de la spinelle LiNi2O4 obtenue par traitement thermique de Li0.5NiO2.
La RMN du lithium des phases intercalées issues des spinelles LiTi2O4 et Li4Ti5O12 a montré que Li2Ti2O4 est métallique avec un déplacement de Knight du signal de RMN du lithium identique à LiTi2O4, et que Li7Ti5O12 présente des signaux de nature intermédiaire entre déplacement de Knight et contact de Fermi.
APA, Harvard, Vancouver, ISO, and other styles
35

Augeard, Amaury. "Etude des risques d'arc électrique dans les batteries lithium-ion." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22616.

Full text
Abstract:
La sûreté de fonctionnement des batteries est un point clé pour la croissance de ce marché et le déploiement de solutions hybrides afin de réduire la consommation d’énergie. L’électrification croissante de ces systèmes ne fait qu’aggraver l’augmentation de l’occurrence de ce problème qui bien que connu depuis longtemps dans le domaine des applications DC ne fait l’objet de recherches intensives que depuis peu comme en témoigne le développement récent des premiers détecteurs d’arc pour l’aviation. L’arc dans les batteries représente aujourd’hui un risque potentiel pour l’intégrité du matériel et des personnes du fait de l’utilisation des batteries au sein d’applications industrielles de fortes puissances. Afin de caractériser ce risque et d’en évaluer la dangerosité, plusieurs bancs d’essais sont réalisés au niveau élément et système afin de reproduire le phénomène d’arc électrique. Les essais réalisés permettent d’extraire les caractéristiques intrinsèques de l’arc. En complément de cette caractérisation, un modèle d’arc permettant d’évaluer les paramètres et d’améliorer la compréhension de ce phénomène est réalisé. Des solutions de limitation, voire de suppression de l’arc issues de cette étude sont proposées. Parmi ces nombreuses solutions, l’utilisation de capteurs optiques, les méthodes numériques pour le traitement des signaux issus de l’arc, la modification de l’architecture batterie ainsi que l’augmentation du niveau de tension lors de l’amorçage de l’arc ouvrent la voie à la conception de systèmes de batteries innovants et plus sûrs en termes de fiabilité, sécurité et de robustesse. Les nombreuses perspectives de recherches proposées permettront également d’améliorer la couverture de ce risque
The operational security of batteries is a key element in the growth of this market and the deployment of hybrid solutions to reduce energy consumption.The increasing electrification of these systems can only exacerbate the occurrence ratio increase of this problem. Although known for a number of years in the field of DC applications, electric arcs are the subject of intensive research for a short time as shown by the recent development of the first arc sensors for aviation. Electric arcs in batteries currently represent a potential risk to the integrity of the equipment and people because of the use of these batteries in industrial high power applications. To characterize this risk and assess its dangerousness, several test benches were designed at the cell and system level to reproduce the electric arc phenomenon. The tests carried out allow extracting the intrinsic characteristics of the arc. In addition to this characterization, an arc model to evaluate the parameters and improve the understanding of this phenomenon is realized. Limiting mitigation solutions or suppression of the arc resulting from this study are proposed. Among the many solutions, the use of optical sensors, the numerical methods for digital signal processing from the arc, the modification of the architecture as well as the increase of the arc ignition voltage pave the way for the design of innovative and safer batteries systems in terms of reliability, security and robustness. The numerous proposed research perspectives will also improve the coverage of this risk
APA, Harvard, Vancouver, ISO, and other styles
36

Mohajer, Sara. "Stratégies de charge rapide de batteries lithium-ion prenant en compte un modèle de vieillissement." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0027.

Full text
Abstract:
Un modèle décrivant les phénomènes physiques internes de batteries lithium-ion est développé pour une détection précise de leur état, avec application au domaine de l'industrie automobile. Pour pouvoir utiliser le modèle à des fins de contrôle de charge rapide, un observateur de vieillissement est tout d'abord conçu et intégré au modèle de batterie. Dans un second temps, une stratégie de contrôle de charge rapide robuste est conçue. Elle est basée sur un contrôleur Crone capable de gérer les grandes incertitudes paramétriques du modèle de batterie tout en atteignant l'objectif de charge rapide. Enfin, quelques simplifications du modèle de batterie, de la technique d'optimisation et de la définition des profils de charge rapide sont proposées et évaluées afin de rendre l'ensemble de la stratégie de recharge rapide applicable à un système embarqué de gestion de batterie
A physics-based battery model is developed for an accurate state-detection of batteries in the automotive industry. In order to use the model for the purpose of fast charging control an aging observer is designed and integrated to the battery model. In a subsequent step a robust fast charging control is introduced to design a controller able to deal with large parametric uncertainties of the battery model while achieving the fast charging target. Finally some simplifications in the battery model structure, in the optimization technique and in the definition of fast charging profiles are proposed and evaluated to make the whole model applicable for an onboard battery management system
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Luyuan Paul. "Matériaux à hautes performance à base d'oxydes métalliques pour applications de stockage de l'énergie." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI031/document.

Full text
Abstract:
Le cœur de technologie d'une batterie réside principalement dans les matériaux actifs des électrodes, qui est fondamental pour pouvoir stocker une grande quantité de charge et garantir une bonne durée de vie. Le dioxyde d'étain (SnO₂) a été étudié en tant que matériau d'anode dans les batteries Li-ion (LIB) et Na-ion (NIB), en raison de sa capacité spécifique élevée et sa bonne tenue en régimes de puissance élevés. Cependant, lors du processus de charge/décharge, ce matériau souffre d'une grande expansion volumique qui entraîne une mauvaise cyclabilité, ce qui empêche la mise en oeuvre de SnO₂ dans des accumulateurs commerciaux. Aussi, pour contourner ces problèmes, des solutions pour surmonter les limites de SnO₂ en tant qu'anode dans LIB / NIB seront présentées dans cette thèse. La partie initiale de la thèse est dédié à la production de SnO₂ et de RGO (oxyde de graphène réduit)/SnO₂ par pyrolyse laser puis à sa mise en oeuvre en tant qu'anode. La deuxième partie s'attarde à étudier l'effet du dopage de l'azote sur les performances et permet de démontrer l'effet positif sur le SnO₂ dans les LIB, mais un effet néfaste sur les NIB. La partie finale de la thèse étudie l'effet de l'ingénierie matricielle à travers la production d'un composé ZnSnO₃. Enfin, les résultats obtenus sont comparés avec l'état de l'art et permettent de mettre en perspectives ces travaux
The heart of battery technology lies primarily in the electrode material, which is fundamental to how much charge can be stored and how long the battery can be cycled. Tin dioxide (SnO₂) has received tremendous attention as an anode material in both Li-ion (LIB) and Na-ion (NIB) batteries, owing to benefits such as high specific capacity and rate capability. However, large volume expansion accompanying charging/discharging process results in poor cycleability that hinders the utilization of SnO₂ in commercial batteries. To this end, engineering solutions to surmount the limitations facing SnO₂ as an anode in LIB/NIB will be presented in this thesis. The initial part of the thesis focuses on producing SnO₂ and rGO (reduced graphene oxide)/SnO₂ through laser pyrolysis and its application as an anode. The following segment studies the effect of nitrogen doping, where it was found to have a positive effect on SnO₂ in LIB, but a detrimental effect in NIB. The final part of the thesis investigates the effect of matrix engineering through the production of a ZnSnO₃ compound. Finally, the obtained results will be compared and to understand the implications that they may possess
APA, Harvard, Vancouver, ISO, and other styles
38

Dridi, Zrelli Yosra. "Électrochimie et spectroscopie Raman de matériaux d’électrode positive pour batteries Li-ion." Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1126/document.

Full text
Abstract:
Dans ce travail de thèse, la microspectrométrie Raman a été mise à profit pour décrire les changements structuraux induits par la réaction électrochimique d'insertion/désinsertion des ions lithium dans des composés de structure lamellaire LiCoO2 et cubique LiMn2O4 et LiNi0.4Mn1.6O4, utilisés comme électrodes positives dans les batteries Li-ion. L'étude du composé d'électrode LiCoO2 pendant le processus de charge permet de mettre en évidence une région biphasée où la phase initiale coexiste avec une nouvelle phase hexagonale caractérisée par une expansion du paramètre inter-feuillets de l'ordre de 3% et un affaiblissement de la liaison Co-O dans le plan des feuillets. Dans le cas de LiMn2O4, une nouvelle attribution du spectre Raman a pu être proposée. Pendant la charge à 4V, un mécanisme à trois phases (phase initiale LiMn2O4, phase intermédiaire, phase pauvre en lithium) est décrit par spectroscopie Raman alors que la diffraction des RX ne permet pas d'observer la phase intermédiaire dans nos conditions de mesure. L'étude de l'insertion électrochimique du lithium dans LiMn2O4 (région 3V), a permis de montrer pour la première fois par spectroscopie Raman la formation progressive d'une phase tétragonale de composition Li2Mn2O4 qui coexiste avec la phase cubique initiale et qui est pure en fin de décharge. La réversibilité de cette transition structurale a également été démontrée. Dans le cas du composé substitué au nickel, LiNi0.4Mn1.6O4, une attribution complète du spectre Raman est proposée pour la première fois. L'étude par diffraction des RX du matériau en fonction de l'état de charge et de décharge met en évidence une conservation de la structure cubique avec des variations modérées de paramètres de maille. Le spectre Raman présente quant à lui des variations très significatives qui rendent compte de la présence dans des proportions différentes des espèces redox impliquées dans le fonctionnement électrochimique (Mn4+, Mn3+, Ni2+, Ni3+, Ni4+). Une analyse spectrale par décompositions de bandes permet d'identifier et de quantifier les proportions relatives des différents couples redox du nickel. Une réversibilité complète de la signature Raman est observée en décharge. Une application concrète et originale de la spectroscopie Raman a consisté à étudier le mécanisme d'autodécharge qui est observé pour le matériau LiNi0.4Mn1.6O4 complètement chargé. L'évolution des spectres Raman permet de mettre en évidence une réduction rapide et quantitative des ions Ni4+ pendant les premières heures de séjour dans l'électrolyte, puis un processus plus lent de réduction des ions Ni3+. Enfin, pour la première fois également, l'insertion du lithium dans le composé LiNi0.4Mn1.6O4 a été explorée par microspectrométrie Raman et a permis notamment d'identifier l'empreinte Raman de la phase la plus réduite de symétrie tétragonale Li2Ni0.4Mn1.6O4. L'originalité de ce travail a été d'apporter un grand nombre de données Raman expérimentales sur des matériaux d'électrode performants fonctionnant à 4V. De nouvelles attributions ont pu être proposées pour les composés initiaux, et des données vibrationnelles inédites ont été fournies sur les composés formés en charge et en décharge. Dans certains cas, ces données ont permis, sur la base d'une analyse détaillée des spectres Raman par décompositions de bandes, de proposer un raisonnement quantitatif sur l'existence de phases ou d'espèces redox en mélange. Il conviendrait bien sûr de corroborer ces nouvelles données et attributions par des calculs théoriques ab initio capables de simuler les fréquences et les intensités des modes vibrationnels dans les structures hôtes et lithiées
In this work, we show the relevance of Raman spectroscopy as a useful technique to investigate the local changes induced by the electrochemical reaction of intercalation/deintercalation of lithium in positive electrode materials for rechargeable lithium ion batteries.Raman investigations concern three types of high voltage cathode materials (4-5Volts) which are layered LiCoO2 and cubic LiMn2O4 and LiNi0.4Mn1.6O4.During electrochemical deintercalation of LiCoO2, we show the existence of a two phase region where the initial hexagonal phase coexist with a second hexagonal phase with a 3% expansion of the lattice parameter indicating a weakening of the Co-O bond in the Li1-xCoO2 material.On the other hand, a new assignment of LiMn2O4 Raman spectrum was proposed. During the charge in the 4V region, a three region phase (initial LiMn2O4 phase, intermediary phase and poor lithium phase) was described using Raman spectroscopy. RX measurements can not detect this intermediary phase. Lithiated phase Raman signature shows a specific local order: Fd3m for extreme phases and F43m for partially lithiated phase. A rich Raman band spectrum is attributed to this later phase in coherence with literature calculations. Structural changes reversibility is demonstrated. Identification of this intermediary phase as a major component of a cycled electrode, underline the incomplete reduction and explain the important loss of capacity observed during cycling. Raman study of LiMn2O4 electrochemical insertion in the 3V region, has demonstrated for the first time a progressive formation of tetragonal Li2Mn2O4 phase, which is in coexistence with initial cubic phase and is pure at the end of discharge. Structural transition reversibility was also demonstrated.In the case of LiNi0.4Mn1.6O4, the assignment of the Raman spectrum of LiNi0.4Mn1.6O4 is provided for the first time. DRX study in function of the state of charge and discharge, exhibit cubic structure conservation with moderate lattice parameters variations. The Raman spectrum of the spinel oxide exhibits drastic spectral changes during Li extraction. These changes have been directly related to the Mn and Ni oxidation states in the cathode material under operation. It comes out that electrochemical reactions of LiNi0.4Mn1.6O4 are reversible and based on three redox couples of Mn3+/Mn4+, Ni2+/Ni3+, and Ni3+/Ni4+. An original and concrete Raman spectroscopy application is the study of self discharge mechanism of completely charged LiNi0.4Mn1.6O4. Raman spectra evolution exhibits a quantitative Ni4+ reduction during the first hours, and then a slower Ni3+ reduction process. Finally, LiNi0.4Mn1.6O4 lithium insertion has been explored for the first time using Raman spectroscopy, and a tetragonal Li2Ni0.4Mn1.6O4 phase has been identified.The originality of this work is the important number of experimental Raman data of 4V electrode materials. New assignment of initial compound has been proposed and original vibrationnal data of compound during charge/discharge has been presented. These Raman data has permitted to propose a quantitative explanation which must be completed with ab initio calculations to simulate vibrationnal modes frequencies/ intensities
APA, Harvard, Vancouver, ISO, and other styles
39

Marino, Cyril. "Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion : caractérisation des interfaces électrode/électrolyte." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20175/document.

Full text
Abstract:
Ce mémoire est consacré à l'étude de deux matériaux d'électrodes négatives pour batteries Li-ion : NiSb2 et TiSnSb. Ces matériaux de conversion possèdent des capacités presque deux fois supérieures à celle du graphite, actuellement utilisé, mais ils souffrent i) d'une faible cyclabilité causée par les variations volumiques caractéristiques de ce type d'électrode et ii) d'une grande perte de lithium irréversible lors de la 1ère insertion due à la réactivité de surface avec l'électrolyte. Les mécanismes réactionnels avec le lithium ont été étudiés en profondeur par diffraction des rayons X, spectrométrie Mössbauer (119Sn et 121Sb). Les études in situ et ex situ en spectroscopie d'absorption X ont permis d'identifier la formation de nanoparticules de métal de transition très réactives et dont l'instabilité est probablement à l'origine des phénomènes de relaxation observés dans l'électrode à l'état déchargé. L'amélioration des performances a été réalisée grâce à l'élaboration d'électrodes composites contenant des fibres de carbone et de la CMC. Cette formulation d'électrodes permet d'atteindre une cyclabilité de 250 cycles pour TiSnSb à régimes variables entre 4C et C. L'ajout de FEC dans l'électrolyte apparait également comme une solution pour augmenter la durée de vie des électrodes.L'interface électrode/électrolyte a été analysée par Résonance Magnétique Nucléaire, Spectroscopie Photoéletronique à rayonnement X et spectroscopie infrarouge. Li2CO3 est l'espèce majoritairement formée lors de la réduction de l'électrolyte en 1ère décharge (lié à la création de nouvelles surfaces lors de la réaction et à expansion volumique). Lors de la charge, une restructuration (ou fragmentation) de la SEI (couche de passivation) est probable à cause de la contraction de l'électrode. L'épaisseur de la couche de SEI à l'interface continue de croitre après 15 cycles
The thesis is devoted to the study of two negative electrode materials for Li-ion batteries: NiSb2 and TiSnSb. These conversion type materials have high capacities greater than graphite electrode used in current devices. However, these compounds suffer from i) a low cyclability caused by volumetric variations which are characteristic of this type of electrode, and ii) a loss of lithium (irreversible process) during the 1st insertion due to the reduction of the liquid electrolyte on the surface of active material.The mechanisms have been studied by X-Ray Diffraction, Mössbauer Spectroscopy (119Sn and 121Sb). The in situ and ex situ X-ray Absorption Spectroscopy analysis have allowed identifying both the formation of highly reactive Ti and Ni nanoparticles and a relaxation effect in the discharged electrode at 0V. The improvement of performances is based on the composite electrodes formulation using carbon fibers as conductive additive and Carboxymethyl cellulose CMC as binder. A cyclability of 250 cycles at C and 4C rate is reached for TiSnSb electrodes. The addition of Fluoro Ethylene Carbonate (FEC) in the electrolyte is another way to increase the life span of electrodes.The electrode/electrolyte interface has been analyzed by Nuclear Magnetic Resonance, X-ray Photoelectron Spectroscopy and Infrared Spectroscopy. During the discharge, among the species produced from the reduction of electrolyte Li2CO3 is in the majority because new surfaces are created (volumetric expansion). On charge, a fragmentation of the Solid Electrolyte Interphase (SEI) deposited on the surface of the active material grains is observed. Moreover, first XPS investigations have shown that the SEI thickness continuously increases on cycling
APA, Harvard, Vancouver, ISO, and other styles
40

Benjelloun, Nadia. "Nouveaux matériaux d'électrodes élaborés sous forme de couches minces pour batteries lithium-ion." Montpellier 2, 2002. http://www.theses.fr/2002MON20109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Maiza, Mariem. "Evaluating the impact of transport with inertia on the electrochemical response of lithium ion battery electrodes." Thesis, Amiens, 2018. http://www.theses.fr/2018AMIE0032.

Full text
Abstract:
L'invention des batteries au lithium (LIBs) a déclenché le déploiement massif de technologies portables et encourage de nos jours l'électrification du transport. Ceci mène au besoin de LIBs avec une densité d'énergie encore plus importante, des temps de recharge plus court, un coût plus faible et une sécurité maximale. Dans ce contexte, cette thèse de doctorat se concentre sur la modélisation présentant un outil pour caractériser et simuler les performances de LIB sous des conditions dynamiques pour des applications de puissance. Un nouveau modèle mathématique représentant l'inertie de transport du lithium avec l'approche de Maxwell-Cattaneo-Vernotte est proposé. L'implication de ce modèle dans la simulation sur la réponse dynamique de LIBs sous des pulsations de courant est exploré. Ce modèle est construit avec une approche multi échelle et démontré pour des matériaux actifs de type graphite pour les électrodes négatives. Tout d'abord, un modèle analytique est développé pour extraire et caractériser la diffusion du lithium ainsi que l'inertie dans le matériau actif de l'expérience de PITT. Les valeurs extraites sont par la suite intégrées dans des modèles de demi-cellule pour calibrer la réponse expérimentale en courant. Une étude comparative des modèles p-2D et 3D réalisés de manière systématique. Les résultats montrent l'implication de la diffusion inter-particule sur la performance de LIB aussi bien que la dynamique onduleuse de transport du lithium dans la phase solide soulignant fortement l'inhomogénéité/anisotropie de la dispersion du lithium dans le graphite à une échelle macroscopique. Finalement, la faisabilité d'intégrer le modèle proposé dans un modèle de cellule complète est explorée
The invention of the lithium ion batteries (LIBs) triggered the massive deployment of portable technologies, and is nowadays encouraging the electrification of the transportation. This leads to the need of LIBs with even higher energy densities, shorter recharging times, lower cost and maximal safety. This PhD thesis focuses on computational modeling as a tool to characterize and simulate the LIB operation under dynamical conditions representative of power applications. It proposes a new mathematical model accounting for lithium transport inertia within the Maxwell-Cattaneo-Vernotte framework, and explores its implications for the simulation of the dynamical response of LIBs to current pulses. This model is built through a multiscale approach and demonstrated for graphitic active materials for negative electrodes. First, an analytical model is derived to extract and characterize lithium diffusion and inertia in the active material from PITT experiments. Extracted values are then used in a half cell model to fit experimental current evolution curves, through p-2D and 3D-resolved models which are comparatively investigated. The results show the implication of inter-particle diffusion on the performance of the LIB as well as the wavy lithium transport dynamics in the solid phase emphasizing the inhomogeneous/anisotropic lithium dispersion in the graphitic material at a macroscopic level. Finally, the feasibility of utilizing such a model for complete cell simulations is investigated
APA, Harvard, Vancouver, ISO, and other styles
42

Lander, Laura. "Exploration of new sulfate-based cathode materials for lithium ion batteries." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066330/document.

Full text
Abstract:
Ces vingt dernières années, les batteries lithium-ion sont devenues dominantes parmi les technologies de stockage d’énergie électrique. Selon les applications, ces batteries (ou les matériaux qui la constituent) doivent présenter différentes spécificités: notamment une grande densité d’énergie, un bas coût, des contraintes de sécurité et de durabilité. Dans ce but, le développement de nouveaux matériaux d’électrode est indispensable. Nous nous sommes engagés, dans cette thèse, dans la synthèse des nouveaux composés polyanioniques à base de sulfates et fluorosulfates comme matériaux d’électrodes positives. Au cours de notre étude, nous avons synthétisé un nouveau polymorphe de KFeSO4F, de symétrie monoclinique, dont nous avons déterminé la structure en combinant la diffraction des rayons X et des neutrons sur poudre. Il est possible d’extraire électrochimiquement K+ de KFeSO4F et de réinsérer Li+ dans cette nouvelle matrice «FeSO4F» à un potentiel moyen de 3.7 V vs. Li+/Li0. Ensuite, nous nous sommes penchés vers des matériaux dépourvus de fluor et nous avons découvert une nouvelle phase Li2Fe(SO4)2 orthorhombique, qui présente des propriétés électrochimiques intéressantes avec un potentiel de 3.73 et 3.85 V vs. Li+/Li0 et une bonne cyclabilité. Nous avons également étudié le composé langbeinite K2Fe2(SO4)3 pour son aptitude à intercaler Li+ une fois le K+ extrait, avec cependant peu de succès. Néanmoins, en examinant d’autres phases langbeinites K2M2(SO4)3 avec M=métaux de transition 3d, nous avons découvert un nouveau composé K2Cu2(SO4)3, qui cristallise dans une structure différente de celle des langbeinites. Enfin, nous n’avons pas seulement étudié ces nouveaux matériaux pour leurs propriétés électrochimiques mais nous avons été également capables de révéler d’autres caractéristiques physiques intéressantes, notamment magnétiques. Les composés Li2Fe(SO4)2 orthorhombique et KFeSO4F monoclinique s’ordonnent antiferromagnétiquement à longue distance et leur structure magnétique autorise un couplage magnéto-électrique
Lithium-ion batteries (LIBs) have become the dominating electrical energy storage technology in the last two decades. However, depending on their applications, LIBs need to fulfill several requirements such as high energy density, low-cost, safety and sustainability. This calls for the development of new electrode materials. Focusing on the cathode side, we embarked on the synthesis of novel sulfate- and fluorosulfate-based polyanionic compounds. During the course of our study, we discovered a monoclinic KFeSO4F polymorph, whose structure was determined via combined X-ray and neutron powder diffraction. We could electrochemically extract K+ and reinsert Li+ into this new polymorphic “FeSO4F” matrix at an average potential of 3.7 V vs. Li+/Li0. We then turned towards fluorine-free materials and synthesized a new orthorhombic Li2Fe(SO4)2 phase, which presents appealing electrochemical properties in terms of working potential (3.73 and 3.85 V vs. Li+/Li0) and cycling stability. In a next step, we tested langbeinite K2Fe2(SO4)3 for its aptitude to intercalate Li+ once K+ is extracted, with however little success. Nevertheless, exploring other langbeinite K2M2(SO4)3 phases (M=3d transition metal), we discovered a new K2Cu2(SO4)3 compound, which crystallizes in an orthorhombic structure distinct from the langbeinite one. Finally, we investigated these compounds not only for their electrochemistry, but we were also able to demonstrate other interesting physical properties, namely magnetic features. Orthorhombic Li2Fe(SO4)2 and monoclinic KFeSO4F both present a long-range antiferromagnetic spin ordering whose symmetry allows a magnetoelectric effect
APA, Harvard, Vancouver, ISO, and other styles
43

Rizk, Rania. "Refroidissement passif de batteries lithium pour le stockage d'énergie." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC228.

Full text
Abstract:
Ce mémoire présente une étude sur le refroidissement passif de batteries lithium-ion. Il se compose de deux grandes parties. La première partie est une étude expérimentale et numérique du comportement thermique d’une batterie et la seconde partie est l’étude expérimentale d’un système passif pour le refroidissement de plusieurs batteries. Un banc d’essais expérimental a été conçu pour suivre l’évolution thermique des batteries soumises à différents courants de sollicitation. Les batteries prismatiques étudiées sont de type LFP et de capacité 60 Ah. Dans un premier temps, le comportement thermique d’une batterie soumise à des cycles de charge / décharge, est caractérisé expérimentalement. Nous montrons que la température n’est pas uniforme à la surface de la batterie et la zone la plus chaude est identifiée. Dans un second temps, un modèle numérique tridimensionnel a été développé pour prédire la température en tout point de la batterie. Ce modèle thermique permet de prédire notamment les températures à l’intérieur de la batterie, non mesurées expérimentalement et ceci, pour différents courants de sollicitation. Les données d’entrée du modèle sont issues des essais expérimentaux et de la littérature. Cette phase de caractérisation thermique de la batterie est essentielle pour la conception d’un système de refroidissement. Enfin, une étude expérimentale d’un système de refroidissement passif basé sur des caloducs et des plaques à ailettes est réalisée. Plusieurs configurations sont testées au fur et à mesure en apportant des améliorations aboutissant enfin à un système à dix caloducs munis de plaques à ailettes verticales au niveau du condenseur combinés à des plaques à ailettes placées sur les faces des batteries
This thesis deals with the passive cooling of lithium-ion batteries. It consists of two large parts. The first part is an experimental and numerical study of the thermal behaviour of a battery and the second part is the experimental study of a passive system for the cooling of several batteries. An experimental test bench was designed to monitor the thermal evolution of batteries subjected to different currents. The prismatic batteries studied are made of lithium-iron-phosphate and have a capacity of 60 Ah. In a first step, the thermal behaviour of a battery subjected to charge / discharge cycles is experimentally characterized. We show that the temperature is not uniform at the surface of the battery and the hottest area is identified. In a second step, a three-dimensional numerical model was developed to predict the temperature at any point of the battery. This thermal model makes it possible to predict in particular the temperatures inside the battery, not measured experimentally and this, for different currents. The model input data are from experimental trials and literature. This phase of thermal characterization of the battery is essential for the design of a cooling system. Finally, an experimental study of a passive cooling system based on heat pipes and finned plates is carried out. Several configurations are tested progressively with improvements leading finally to a system with ten heat pipes with vertical finned plates at the condenser combined with finned plates placed on the faces of the batteries
APA, Harvard, Vancouver, ISO, and other styles
44

Boyanov, Siméon. "Performances et mécanismes électrochimiques des phosphures de fer et nickel comme anode dans les batteries lithium-ion." Montpellier 2, 2008. http://www.theses.fr/2008MON20131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Robert, Florent. "L'étain espèce active des nouveaux matériaux d'électrodes négatives pour batteries lithium-ion : spectrométrie Mössbauer et mécanismes." Montpellier 2, 2005. http://www.theses.fr/2005MON20072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kubanska, Agnieszka. "Toward the development of high energy lithium-ion solid state batteries." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4775.

Full text
Abstract:
Les batteries au lithium tout solide présentent un grand intérêt pour le développement de systèmes de stockage de grande densité (volumique) d'énergie et sûrs notamment en raison de leur excellente stabilité thermique par rapport aux technologies lithium-ions à électrolyte liquide. Cependant, avec l'épaisseur de la batterie, de fortes limitations cinétiques sont observées, en raison i/ de la relativement faible mobilité des ions dans les matériaux inorganiques et ii/ de la présence de joints de grains généralement bloquants aux interfaces solide/solide. De plus au cours de la charge/décharge de la batterie, les matériaux actifs (réservoir de l'énergie) changent de volume ce qui induit des contraintes mécaniques interfaciales qui provoquent la formation de micro-fractures très dommageables à la cyclabilité de ces systèmes. Cette thèse concerne la réalisation et la caractérisation de batteries inorganiques monolithiques (avec les électrodes composites) en utilisant une méthode de frittage: Spark Plasma Sintering (SPS). La formulation des électrodes composites est fondamentale car ce sont de multi-matériaux qui doivent présenter de nombreuses fonctionnalités: 1) une grande densité d'énergie 2) une bonne percolation électronique (resp. ionique) enfin 3) une bonne tenue mécanique avec des interfaces électrodes/electrolyte stables afin d'assurer la durée de vie des cellules.Le principal objectif est de trouver des relations, pour des matériaux donnés, entre la texture des poudres initiales, la microstructure des céramiques obtenues par frittage SPS et les propriétés électriques (électronique et ionique) ainsi que les performances électrochimiques
All-solid batteries with inorganic solid electrolytes are attractive candidates in electrochemical energy storage since they offer high safety, reliability and energy density. Aiming to increase the surface capacity strong efforts have been made to increase the thickness of the electrode. However, the thicker electrode, the more stress is generated at the solid/solid interfaces because of the volume change of the active material during lithium insertion/desinsertion upon cycling, which leads to formation of micro-cracks between the components and finally a bad cycling life. The possible answer to this issue is to build in place of a dense phase pure electrode, a composite electrode which is a multifunctional material. This composite electrode should contain a lot of electrochemically active material, the reservoir of energy; together with electronic and ionic conductor additives, to ensure efficient and homogeneous transfer of electrons and ions in the electrode volume.The main scope of this thesis was to develop all-solid-state batteries prepared by SPS method for applications at elevated temperatures. These batteries consist of a two composite electrodes separated by the NASICON-type solid electrolyte Li1.5Al0.5Ge1.5(PO4)3. The main objective was to find relationships, for given materials, between the initial powder granulometry (grain size, size distribution, agglomeration), the microstructure of ceramics obtained by SPS sintering, and the electrochemical performances of the final batteries. By creating electrodes with novel materials and better composition, the trade-off of power density and energy density can be minimized
APA, Harvard, Vancouver, ISO, and other styles
47

Zindy, Nicolas. "Polymères π-conjugués contenant des fonctions imides pour le stockage de l’énergie dans les batteries Li-ion." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bichat, Marie-Pierre. "Nouveaux phosphures de métaux de transition, matériaux d'anode pour batterie lithium-ion." Montpellier 2, 2005. http://www.theses.fr/2005MON20189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Soares, Adrien. "Batteries Lithium-ion innovantes, spécifiques pour le stockage de l'énergie photovoltaïque." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20206/document.

Full text
Abstract:
Le travail de thèse, présenté dans ce mémoire, est consacré à l'étude de nouveaux matériaux d'électrode pour batterie lithium-ion pour le stockage d'énergie photovoltaïque. Ce type de production d'énergie impose de nombreuses intermittences de charge, des non synchronisations entre les périodes de production et de consommation, etc. L'objectif est d'évaluer le comportement de différents types de matériau d'électrode dans des batteries soumises à des profils de charge photovoltaïque pour ensuite sélectionner les plus adaptés à ce stockage spécifique d'énergie. Les matériaux choisis, Li4Ti5O12, Li2Ti3O7, NiP3, TiSnSb, présentent tous des mécanismes de réaction vis-à-vis du lithium très différents. Afin d'améliorer la durée de vie de ces matériaux d'électrodes, un travail d'optimisation des performances électrochimiques a été effectué en travaillant sur leur synthèse puis sur la formulation des électrodes. La formulation d'électrode en utilisant la carboxymethylcellulose sodique a notamment donné d'excellents résultats. La caractérisation de leurs propriétés physico-chimiques a été réalisée par diffraction des rayons X, in situ et en température, MEB, ATD, cyclage galvanostatique, etc.). Afin de reproduire des profils représentatifs de la production photovoltaïque à l'échelle des accumulateurs expérimentaux de laboratoire, un banc de simulation a été élaboré et validé avec un accumulateur de référence à base de Li4Ti5O12. Après cette étape de validation, les différents matériaux d'électrode ont été testés en condition photovoltaïque. Cette étude a permis de montrer que les intermittences de courte de durée (passages nuageux) et les régimes variables qu'impose ce type de production n'ont pas que peu d'influence sur les propriétés électrochimiques de l'ensemble de ces matériaux. Cependant, les périodes d'absence de production (nuit, journée pluvieuse, etc.) correspondant à une relaxation pour le matériau peuvent avoir un impact important. Les matériaux de conversion (NiP3, TiSnSb) ont montré de surprenants bons résultats. Enfin, les observations montrent que chaque type de matériau (mécanisme électrochimique différent) pourrait convenir i) à un type de production photovoltaïque, c'est à dire à une zone géographique et ii) à un type d'application particulière
The thesis work, presented in this manuscript, is devoted to the study of new materials for lithium-ion battery for storing solar energy. This type of energy production imposes intermittent loading, non-synchronization between periods of production and consumption, etc. The objective is to evaluate the behavior of different types of electrode material in batteries under photovoltaic (PV) charge profiles and then to select the most suitable for this specific energy storage. The chosen materials, Li4Ti5O12, Li2Ti3O7, NiP3, TiSnSb, follow all very different reaction mechanisms versus lithium. To improve the cycling life of these electrode materials, a work on electrochemical performance optimization was performed by working on the synthesis and the electrode formulation. The electrode formulation, using in particular carboxymethyl cellulose, presented excellent results. Characterization of their physico-chemical properties was carried out by X-ray diffraction, in situ and as function of temperature, SEM, DTA, galvanostatic cycling, etc.). To reproduce representative profiles of the photovoltaic production at the experimental batteries scale, a test bench has been developed and validated with reference batteries (Li4Ti5O12). After this step of validation, different electrode materials were tested under photovoltaic conditions. This study shows that both intermittences with short duration (clouds) and variable rates of current imposed by this type of production don't strong influence on the electrochemical properties of all these materials. However, periods of no production (night, rainy day, etc.), corresponding to a relaxation for the material, can impact significantly. Materials following conversion mechanism (NiP3, TiSnSb) showed surprising good results. Finally, the observations indicated that each type of material (with different electrochemical mechanism) could be adapted to i) a type of photovoltaic production, ie to a geographical area and ii) a type of application
APA, Harvard, Vancouver, ISO, and other styles
50

Grosjean, Camille. "Usages de batteries lithium-ion comme fonction de stockage d'électricité à la convergence des besoins énergétiques de l'habitat solaire et du transport électrique." Corte, 2012. http://www.theses.fr/2012CORT0023.

Full text
Abstract:
A l’avenir, les secteurs du transport et du résidentiel-tertiaire feront l’objet de contraintes de plus en plus sévères en ce qui concerne la consommation d’énergie et l’émission de polluants. Dans le domaine du transport, la hausse régulière du trafic et l’augmentation du poids et de la puissance des véhicules thermiques ont été plus significatives que la baisse de consommation des moteurs, contribuant à accroître un peu plus leurs empreintes énergétique et écologique. Dans l’habitat, la consommation d’énergie et les émissions liées ont fortement augmenté avec la croissance des besoins en électricité spécifique , le confort et la technologie exigeant plus d’énergie que par le passé malgré une baisse des usages liés à la cuisson et au chauffage. (. . . /. . . )
In the next few years, transportation and residential sectors will be targeted by more severe constraints in terms of energy consumption and pollution emission. As far as transport is concerned, the constant increase of traffic and the heavier weight and power of termal vehicles overpassed the benefits gained through the drop of unit fuel consumption of internal combustion engines, thus worsening further more the energy and carbon footpring of vehicles. As far as households are concerned, energy uses and related emissions have steeply increased with the growth of specific energy needs linked to more comfort and technology, the drop of cooking and heating energy uses being unable to compensate this energy-greedy trend. (. . . /. . . )
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography