Journal articles on the topic 'Batteries aux ions lithium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Batteries aux ions lithium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Takeda, Sahori, Yuria Saito, and Hideya Yoshitake. "Restricted Diffusion of Lithium Ions in Lithium Secondary Batteries." Journal of Physical Chemistry C 124, no. 47 (November 13, 2020): 25712–20. http://dx.doi.org/10.1021/acs.jpcc.0c07693.
Full textCheng, Xin-Bing, Ting-Zheng Hou, Rui Zhang, Hong-Jie Peng, Chen-Zi Zhao, Jia-Qi Huang, and Qiang Zhang. "Lithium Batteries: Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries (Adv. Mater. 15/2016)." Advanced Materials 28, no. 15 (April 2016): 2845. http://dx.doi.org/10.1002/adma.201670099.
Full textCheng, Xin-Bing, Ting-Zheng Hou, Rui Zhang, Hong-Jie Peng, Chen-Zi Zhao, Jia-Qi Huang, and Qiang Zhang. "Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries." Advanced Materials 28, no. 15 (February 22, 2016): 2888–95. http://dx.doi.org/10.1002/adma.201506124.
Full textYim, Haena, Seung-Ho Yu, So Yeon Yoo, Yung-Eun Sung, and Ji-Won Choi. "Li Storage of Calcium Niobates for Lithium Ion Batteries." Journal of Nanoscience and Nanotechnology 15, no. 10 (October 1, 2015): 8103–7. http://dx.doi.org/10.1166/jnn.2015.11291.
Full textQu, Jiale, Jiewen Xiao, Tianshuai Wang, Dominik Legut, and Qianfan Zhang. "High Rate Transfer Mechanism of Lithium Ions in Lithium–Tin and Lithium–Indium Alloys for Lithium Batteries." Journal of Physical Chemistry C 124, no. 45 (November 2, 2020): 24644–52. http://dx.doi.org/10.1021/acs.jpcc.0c07880.
Full textZhao, Chen-Zi, Xue-Qiang Zhang, Xin-Bing Cheng, Rui Zhang, Rui Xu, Peng-Yu Chen, Hong-Jie Peng, Jia-Qi Huang, and Qiang Zhang. "An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes." Proceedings of the National Academy of Sciences 114, no. 42 (October 2, 2017): 11069–74. http://dx.doi.org/10.1073/pnas.1708489114.
Full textKim, Yang-Soo, Yonghoon Cho, Paul M. Nogales, and Soon-Ki Jeong. "NbO2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution." Energies 12, no. 15 (August 1, 2019): 2960. http://dx.doi.org/10.3390/en12152960.
Full textZheng, Jiaxin, Jun Lu, Khalil Amine, and Feng Pan. "Depolarization effect to enhance the performance of lithium ions batteries." Nano Energy 33 (March 2017): 497–507. http://dx.doi.org/10.1016/j.nanoen.2017.02.011.
Full textWang, Bo, Sunrui Luan, Yi Peng, Junshuang Zhou, Li Hou, and Faming Gao. "High electrochemical performance of Fe2O3@OMC for lithium-ions batteries." Nanotechnology 32, no. 12 (December 31, 2020): 125403. http://dx.doi.org/10.1088/1361-6528/abcd65.
Full textLi, Linge, Mingchao Wang, Jian Wang, Fangmin Ye, Shaofei Wang, Yanan Xu, Jingyu Liu, et al. "Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries." Journal of Materials Chemistry A 8, no. 16 (2020): 8033–40. http://dx.doi.org/10.1039/d0ta01883j.
Full textYabuuchi, Naoaki, Mitsue Takeuchi, Masanobu Nakayama, Hiromasa Shiiba, Masahiro Ogawa, Keisuke Nakayama, Toshiaki Ohta, et al. "High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure." Proceedings of the National Academy of Sciences 112, no. 25 (June 8, 2015): 7650–55. http://dx.doi.org/10.1073/pnas.1504901112.
Full textTułodziecki, Michał, Graham M. Leverick, Chibueze V. Amanchukwu, Yu Katayama, David G. Kwabi, Fanny Bardé, Paula T. Hammond, and Yang Shao-Horn. "The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries." Energy & Environmental Science 10, no. 8 (2017): 1828–42. http://dx.doi.org/10.1039/c7ee00954b.
Full textZhang, Xue-Qiang, Xiang Chen, Li-Peng Hou, Bo-Quan Li, Xin-Bing Cheng, Jia-Qi Huang, and Qiang Zhang. "Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries." ACS Energy Letters 4, no. 2 (January 7, 2019): 411–16. http://dx.doi.org/10.1021/acsenergylett.8b02376.
Full textHu, Yuhang, Xuanhe Zhao, and Zhigang Suo. "Averting cracks caused by insertion reaction in lithium–ion batteries." Journal of Materials Research 25, no. 6 (June 2010): 1007–10. http://dx.doi.org/10.1557/jmr.2010.0142.
Full textRen, Wei, De Jun Li, and Hao Liu. "Carbon Nanomaterials with Different Dimensions for Anode of Li-Ion Batteries." Key Engineering Materials 519 (July 2012): 118–23. http://dx.doi.org/10.4028/www.scientific.net/kem.519.118.
Full textFontecave, Marc, and Jean-Marie Tarascon. "La sécurité des batteries à ions lithium : possibilité de risque zéro ?" La lettre du Collège de France, no. 33 (July 1, 2012): 34. http://dx.doi.org/10.4000/lettre-cdf.2525.
Full textRectenwald, Michael F., Joshua R. Gaffen, Arnold L. Rheingold, Alexander B. Morgan, and John D. Protasiewicz. "Phosphoryl-Rich Flame-Retardant Ions (FRIONs): Towards Safer Lithium-Ion Batteries." Angewandte Chemie International Edition 53, no. 16 (March 11, 2014): 4173–76. http://dx.doi.org/10.1002/anie.201310867.
Full textRectenwald, Michael F., Joshua R. Gaffen, Arnold L. Rheingold, Alexander B. Morgan, and John D. Protasiewicz. "Phosphoryl-Rich Flame-Retardant Ions (FRIONs): Towards Safer Lithium-Ion Batteries." Angewandte Chemie 126, no. 16 (March 11, 2014): 4257–60. http://dx.doi.org/10.1002/ange.201310867.
Full textKuganathan, Navaratnarajah, and Alexander Chroneos. "Lithium Storage in Nanoporous Complex Oxide 12CaO•7Al2O3 (C12A7)." Energies 13, no. 7 (March 26, 2020): 1547. http://dx.doi.org/10.3390/en13071547.
Full textSubramanya, Usha, Charleston Chua, Victor Gin He Leong, Ryan Robinson, Gwenlyn Angel Cruz Cabiltes, Prakirti Singh, Bonnie Yip, Anuja Bokare, Folarin Erogbogbo, and Dahyun Oh. "Carbon-based artificial SEI layers for aqueous lithium-ion battery anodes." RSC Advances 10, no. 2 (2020): 674–81. http://dx.doi.org/10.1039/c9ra08268a.
Full textLiu, Xiaolin, Jun Yang, Wenhua Hou, Jiulin Wang, and Yanna Nuli. "Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries." ChemSusChem 8, no. 16 (July 16, 2015): 2621–24. http://dx.doi.org/10.1002/cssc.201500574.
Full textShihai, Luo, Gao Mei, Chen Jun, Xing Xianran, Li Zhong, Zhou Xingtai, and Wen Wen. "BiFeO3 as Electrode Material for Lithium Batteries." Journal of New Materials for Electrochemical Systems 14, no. 3 (April 19, 2011): 141–46. http://dx.doi.org/10.14447/jnmes.v14i3.101.
Full textCheng, Yingwen, Yuyan Shao, Ji-Guang Zhang, Vincent L. Sprenkle, Jun Liu, and Guosheng Li. "High performance batteries based on hybrid magnesium and lithium chemistry." Chem. Commun. 50, no. 68 (2014): 9644–46. http://dx.doi.org/10.1039/c4cc03620d.
Full textRudnik, Ewa, and Joanna Knapczyk-Korczak. "Preliminary investigations on hydrometallurgical treatment of spent Li-ion batteries." Metallurgical Research & Technology 116, no. 6 (2019): 603. http://dx.doi.org/10.1051/metal/2019008.
Full textKim, Hyeona, Sung-Beom Kim, Deok-Hye Park, and Kyung-Won Park. "Fluorine-Doped LiNi0.8Mn0.1Co0.1O2 Cathode for High-Performance Lithium-Ion Batteries." Energies 13, no. 18 (September 14, 2020): 4808. http://dx.doi.org/10.3390/en13184808.
Full textLi, Wei, Mika Fukunishi, Benjamin J. Morgan, Olaf J. Borkiewicz, Valérie Pralong, Antoine Maignan, Henri Groult, Shinichi Komaba, and Damien Dambournet. "The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries." Inorganic Chemistry Frontiers 5, no. 5 (2018): 1100–1106. http://dx.doi.org/10.1039/c8qi00185e.
Full textLiu, Xiaoming, Yan Chen, Zachary D. Hood, Cheng Ma, Seungho Yu, Asma Sharafi, Hui Wang, et al. "Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12via correlative neutron and electron spectroscopy." Energy & Environmental Science 12, no. 3 (2019): 945–51. http://dx.doi.org/10.1039/c8ee02981d.
Full textGonzález, J. R., F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela, and J. L. Tirado. "Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries." RSC Advances 6, no. 67 (2016): 62157–64. http://dx.doi.org/10.1039/c6ra11030d.
Full textZhang, Xue-Qiang, Xin-Meng Wang, Bo-Quan Li, Peng Shi, Jia-Qi Huang, Aibing Chen, and Qiang Zhang. "Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries." Journal of Materials Chemistry A 8, no. 8 (2020): 4283–89. http://dx.doi.org/10.1039/c9ta12269a.
Full textCho, Jinil, Yong-keon Ahn, Yong Jun Gong, Seonmi Pyo, Jeeyoung Yoo, and Youn Sang Kim. "An organic–inorganic composite separator for preventing shuttle effect in lithium–sulfur batteries." Sustainable Energy & Fuels 4, no. 6 (2020): 3051–57. http://dx.doi.org/10.1039/d0se00123f.
Full textZhang, Yuzhe, Bin Wang, Qian Cheng, Xinling Li, and Zhongyu Li. "Removal of Toxic Heavy Metal Ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from Waste Batteries or Lithium Cells Using Nanosized Metal Oxides: A Review." Journal of Nanoscience and Nanotechnology 20, no. 12 (December 1, 2020): 7231–54. http://dx.doi.org/10.1166/jnn.2020.18748.
Full textFukushima, Tsuyoshi, Yoshiharu Matsuda, Hiroyuki Hashimoto, and Ryuichi Arakawa. "Solvation of lithium ions in organic electrolytes of primary lithium batteries by electrospray ionization-mass spectroscopy." Journal of Power Sources 110, no. 1 (July 2002): 34–37. http://dx.doi.org/10.1016/s0378-7753(02)00168-4.
Full textZhang, Xue-Qiang, Xiang Chen, Xin-Bing Cheng, Bo-Quan Li, Xin Shen, Chong Yan, Jia-Qi Huang, and Qiang Zhang. "Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes." Angewandte Chemie International Edition 57, no. 19 (March 7, 2018): 5301–5. http://dx.doi.org/10.1002/anie.201801513.
Full textZhang, Xue-Qiang, Xiang Chen, Xin-Bing Cheng, Bo-Quan Li, Xin Shen, Chong Yan, Jia-Qi Huang, and Qiang Zhang. "Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes." Angewandte Chemie 130, no. 19 (March 7, 2018): 5399–403. http://dx.doi.org/10.1002/ange.201801513.
Full textCai, Weiwei, Jing Li, Yunfeng Zhang, Guodong Xu, and Hansong Cheng. "Minimizing Polysulfide Shuttles in Lithium Sulfur Batteries by Introducing Immobile Lithium Ions into Carbon-Sulfur Nanocomposites." ChemElectroChem 1, no. 10 (August 21, 2014): 1662–66. http://dx.doi.org/10.1002/celc.201402154.
Full textRen, Wei, Dejun Li, Hao Liu, Rui Mi, Yi Zhang, Lei Dong, and Lei Dong. "Lithium storage performance of carbon nanotubes with different nitrogen contents as anodes in lithium ions batteries." Electrochimica Acta 105 (August 2013): 75–82. http://dx.doi.org/10.1016/j.electacta.2013.04.145.
Full textIzutsu, Kosuke, Toshio Nakamura, Kentaro Miyoshi, and Kazunori Kurita. "Potentiometric study of complexation and solvation of lithium ions in some solvents related to lithium batteries." Electrochimica Acta 41, no. 16 (January 1996): 2523–27. http://dx.doi.org/10.1016/0013-4686(96)00065-5.
Full textTang, Haoqing, Yaoming Song, Lingxing Zan, Yizhi Yue, Di Dou, Yike Song, Miao Wang, Xiaotong Liu, Tao Liu, and Zhiyuan Tang. "Characterization of lithium zinc titanate doped with metal ions as anode materials for lithium ion batteries." Dalton Transactions 50, no. 9 (2021): 3356–68. http://dx.doi.org/10.1039/d0dt04073h.
Full textZeng, Guisheng, Shenglian Luo, Xiaorong Deng, Lei Li, and Chaktong Au. "Influence of silver ions on bioleaching of cobalt from spent lithium batteries." Minerals Engineering 49 (August 2013): 40–44. http://dx.doi.org/10.1016/j.mineng.2013.04.021.
Full textXu, Meiling, Shumei Kang, Feng Jiang, Xinyong Yan, Zhongbo Zhu, Qingping Zhao, Yingxue Teng, and Yu Wang. "A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid." RSC Advances 11, no. 44 (2021): 27689–700. http://dx.doi.org/10.1039/d1ra04979h.
Full textCui, Junya, Zhenhua Li, Jianbo Li, Sai Li, Jun Liu, Mingfei Shao, and Min Wei. "An atomic-confined-space separator for high performance lithium–sulfur batteries." Journal of Materials Chemistry A 8, no. 4 (2020): 1896–903. http://dx.doi.org/10.1039/c9ta11250b.
Full textWANG, X. L., J. P. TU, J. Y. XIANG, and X. H. HUANG. "NANOSTRUCTURED Si/ZrO2 MESOPOROUS COMPOSITE FILM ANODES FOR LITHIUM ION BATTERIES." Functional Materials Letters 02, no. 01 (March 2009): 23–26. http://dx.doi.org/10.1142/s1793604709000491.
Full textLee, Hun, Meltem Yanilmaz, Ozan Toprakci, Kun Fu, and Xiangwu Zhang. "A review of recent developments in membrane separators for rechargeable lithium-ion batteries." Energy Environ. Sci. 7, no. 12 (2014): 3857–86. http://dx.doi.org/10.1039/c4ee01432d.
Full textHu, Pu, Jingchao Chai, Yulong Duan, Zhihong Liu, Guanglei Cui, and Liquan Chen. "Progress in nitrile-based polymer electrolytes for high performance lithium batteries." Journal of Materials Chemistry A 4, no. 26 (2016): 10070–83. http://dx.doi.org/10.1039/c6ta02907h.
Full textKwon, C. W., S. J. Hwang, M. H. Delville, C. Labrugère, A. Vadivel Murugan, B. B. Kale, K. Vijayamohanan, and G. Campet. "Electrochemistry of Inorganic Nanocrystalline Electrode Materials for Lithium Batteries." Active and Passive Electronic Components 26, no. 1 (2003): 23–29. http://dx.doi.org/10.1155/apec.26.23.
Full textWen, Yucheng, Xianshu Wang, Yan Yang, Mingzhu Liu, Wenqiang Tu, Mengqing Xu, Gengzhi Sun, Seigou Kawaguchi, Guozhong Cao, and Weishan Li. "Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries." Journal of Materials Chemistry A 7, no. 46 (2019): 26540–48. http://dx.doi.org/10.1039/c9ta09570e.
Full textKim, Tae-Hee, Eun Kyung Jeon, Younghoon Ko, Bo Yun Jang, Byeong-Su Kim, and Hyun-Kon Song. "Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast." J. Mater. Chem. A 2, no. 20 (2014): 7600–7605. http://dx.doi.org/10.1039/c3ta15360f.
Full textRohan, Rupesh, Yubao Sun, Weiwei Cai, Kapil Pareek, Yunfeng Zhang, Guodong Xu, and Hansong Cheng. "Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries." J. Mater. Chem. A 2, no. 9 (2014): 2960–67. http://dx.doi.org/10.1039/c3ta13765a.
Full textZhong, Hai, Chunhua Wang, Zhibin Xu, Fei Ding, and Xingjiang Liu. "Functionalized Carbonaceous Materials as Cathode for Lithium-Ion Batteries." MRS Advances 1, no. 45 (2016): 3037–42. http://dx.doi.org/10.1557/adv.2016.440.
Full textChen, Jingjing, Xiaoyu Lu, Jing Sun, and Fangfang Xu. "Si@C nanosponges application for lithium ions batteries synthesized by templated magnesiothermic route." Materials Letters 152 (August 2015): 256–59. http://dx.doi.org/10.1016/j.matlet.2015.03.135.
Full text