Dissertations / Theses on the topic 'Batteries solides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Batteries solides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chable, Johann. "Électrolytes solides fluorés pour batteries tout solide à ions F-." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0276/document.
Full textThis work deals with the synthesis, shaping and characterization of RE1-xMxF3-x (RE = La, Sm, Ce et M = Ba, Ca, Sr) tysonite-type solid solutions. In a first part, onemeticulous approach has been set up for La1-xBaxF3-x solid solution, chosen as a reference.The solid-state synthesis of these materials led to a better knowledge of their chemicalcomposition (Vegard’s laws) and of the structure-ionic mobility correlations. The impact ofthe sintering process on the ionic conductivity is also highlighted. In a second part, the effectsof the nanostructuration conducted by ball-milling of the microcrystalline samples areevaluated. The use of the Design of Experiments methodology led to identify the optimummilling conditions. It appears that the synthesis of electrolytes can be sped- and scaled-up,while keeping high ionic conductivity properties. At last, this approach is applied on othertysonite-type solid solutions, to look for the best electrolyte. The Ce/Sr and Sm/Casubstitutions generate very promising ionic conductors but not really (electro)chemicallystable compounds. A compromise has been found with the choice of the La1-xSrxF3-x solidsolution as the FIB electrolyte for the electrochemical performances tests, regarding its higherchemical stability
Leclercq, Florent. "Étude d'électrolytes hybrides solides destinés aux batteries lithium." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET068.
Full textThis work focuses on the comparison of two processes for the elaboration of a solid hybrid electrolyte made of a mix of two polymers (PEO and PVDF-HFP), a lithium salt (LiTFSI), and of a silica network made in situ via a sol-gel method and functionalized with imidazolium groups. At first, the influence of the different components on the physicochemical and electrochemical properties of electrolytes made by dry casting is studied. Conductivities of 10⁻⁴ S/cm at 80 °C allow us to cycle LiFePO₄/Li batteries at a C/10 rate at the same temperature. A skeleton of hybrid PVDF-HFP/silica (functionalized or not) nanofibers is synthesized by electrospinning and its porosity is filled with a PEO/LiTFSI mix. The particular architecture of this type of electrolyte enables the decoupling of conduction and mechanical properties. Conductivities of 5.10-4 S/cm at 80 °C allow the cycling of LiFePO₄/Li batteries at a C/2 rate at the same temperature. The same electrospun hybrid membranes are evaluated as separators for hybrid water-in-salt electrolytes. Thanks to their excellent wetting and retention properties, LiMn₂O₄/TiO₂ batteries are cycled at a 10C rate with a low quantity of electrolyte
Xu, Yanghai. "Matériaux de cathode et électrolytes solides en sulfures pour batteries au lithium." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S094/document.
Full textLithium-air and Li-S batteries are promising techniques for high power density storage. The main challenges are to develop solid electrolyte with high ionic conductivity and highly efficient catalyzed cathode. In this work, highly conductive carbon aerogels with dual-pore structure have been synthesized by using sol-gel method, and have been used as air cathode in Lithium-air batteries. This dual- pore structure can provide two types of channels for storing discharge products and for gas-liquid diffusion, thus reducing the risk of clogging. Nearly 100 cycles with a capacity of 0.4mAh at a current density of 0.1 mA cm-2 have been obtained. For developing stable and highly conductive solid electrolyte, sulfides, especially Li4SnS4 and its phosphorous derivative Li10SnP2S12 have been particularly investigated. These compounds have been synthesized by using a two-step technique including ball milling and a relatively low temperature heat treatment. The heat treatment has been carefully optimized in order to enhance the ionic conductivity. The best-obtained conductivity is 8.27×10-4 S/cm at 25°C and the electrolytes show high electrochemical stability over a wide working range of 0.5 – 7V. Thin films have also been deposited by using the sputtering technique, with generally improved ionic conductivity. The performance of the Li-S batteries assembled with these bulk electrolytes is still to be improved, particularly by improving the ionic conductivity of the electrolyte
Issa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.
Full textThe problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
Jeanne-Brou, Roselyne. "Propriétés de transport ionique dans les électrolytes polymères solides anisotropes et isotropes." Thesis, Université Grenoble Alpes, 2022. http://www.theses.fr/2022GRALI057.
Full textIonic transport properties in anisotropic and isotropic solid polymer electrolytesSolid Polymer Electrolytes (SPEs) are promising to replace the conventional flammable liquid electrolyte in batteries to move toward an all-solid-state system comprising a lithium (Li) metal negative electrode. Indeed, they can combine high mechanical properties limiting Li dendrite growth and ionic conductivity high enough for the application. Many materials have been investigated mostly based on Poly(ethylene oxide) (PEO), the reference material, complexed with a Li salt (such as LiTFSI) such as composites (PEO mixed with nanoparticles), neutral and functionalized block copolymers, and crosslinked electrolytes. However, their ionic conductivities are generally below that of the PEO homopolymer above its melting temperature (at about 55 – 60 °C). In addition, it has been mainly reported in the literature an anisotropic effect in ionic conductivity for PEO homopolymer electrolyte, i.e. according to the in-plane (//) and through-plane (Ʇ) and under a series of external fields (mechanical stretching, electromagnetic field, etc.). Therefore, in an attempt to optimize SPE for the application, it is necessary to investigate the isotropic and anisotropic ionic transport properties corresponding to the ionic conductivity, the transference number, and the diffusion coefficient depending on the SPE nature (from homopolymer to functionalized block copolymer electrolytes).This thesis work focuses first on the study of ionic transport properties (ionic conductivity, but also transference number, and diffusion) according to the two main directions of space (// vs. Ʇ). Series of physico-chemical and electrochemical characterizations were performed to study those ionic transport parameters. The transference number and the diffusion evolve with the ionic conductivity of the SPEs according to the orientations // vs. Ʇ;. In addition, simulations under COMSOL have permit to model in 2-dimensions (2D) the concentration gradients depending on the cell geometry (// vs. & Ʇ). For the diffusion, a 1D analytical model was developed within the framework of John Newman's methodology to establish the model of the experimental relaxations of the potential as a function of time (//). The impact of the chain conformation via polymer chain elongation of the SPEs on the ionic conductivity was also investigated thanks to a lab-made specific instrumentation enabling the coupling of impedance measurements and mechanical elongation in a controlled inert atmosphere. This instrument was designed and realized by a collaboration between LEPMI and the IUT of Chambéry / Le-Bourget-du-Lac.The second part of the thesis concerns the physico-chemical, materials and electrochemical characterizations of single-ion conducting SPEs based on hybrid crosslinked SPEs synthesized by ICR (Aix-Marseille University). In particular, a methodology based on the subtraction of impedance spectra was developed to determine the main ionic transport contributions and to correlate them with the SPEs’ nanostructuration analyzed by small-angle X-ray scattering (SAXS) carried out by LLB (Gif Sur Yvette). At last, Li metal-based batteries were assembled and cycled as a proof-of-concept to establish the performances with an in-situ LiFePO4 based positive electrode/cathode
Castillo, Adriana. "Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX107/document.
Full textOne of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials
Saha, Sujoy. "Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.
Full textGrowing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
Lacroix-Orio, Laurence. "Phases de Zintl ternaires LixMyM'z(M = Al, Ag, Zn et M' = Al, Ge, Si) : élaboration, analyses structurales et électrochimiques." Montpellier 2, 2006. http://www.theses.fr/2006MON20178.
Full textPoirier, Romain. "Synthèse en solution de sulfures divisés pour les électrolytes de batteries lithium-ion tout solide." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10212.
Full textSolid electrolytes are now considered to be the key to the development of new generations of batteries. Two types of solid electrolyte have mainly been studied, polymers and inorganics, but their performance remains limited. One promising way of obtaining high-performance electrolytes is to use inorganic particles incorporated into a polymer matrix to form a hybrid electrolyte. Among the possible inorganic materials, the sulfide family (Li3PS4, Li6PS5X with X= Cl, Br, I) has very high ionic conductivities. However, these materials are generally obtained by the solid route, leading to aggregated micrometric particles. Furthermore, although solution syntheses have recently been demonstrated, the potential to control their size, morphology and prevent aggregation has not been exploited. The aim of this thesis is to develop a methodology for the synthesis of sulfides that enables the size, morphology and aggregation of particles to be controlled so that they can be incorporated into a polymer phase. Several solution synthesis routes were developed in order to overcome the kinetic limitations of conventional synthesis. These different synthesis methods have produced a wide range of particles with different morphologies and aggregation rates. The impact of particle size and morphology on the electrochemical performance of the electrolytes was studied. The best performing electrolytes were tested in hybrid formulations as well as in complete all-solid state electrochemical cells with a Li/In anode
Basso-Bert, Thomas. "Etude de l'élaboration et des performances électrochimiques de séparateurs électrolytiques composites polymère-céramique pour des batteries au Lithium métal." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI036.
Full textTo boost the energy density of lithium-based accumulators, two levers are commonly studied: the energy density and the potential of electrode materials. The use of Li metal as a negative electrode is undoubtedly an appropriate solution to address these challenges since it has the highest gravimetric capacity (3860mAh/g) and very low reducing potential (-3.04 V vs. Standard Hydrogen Electrode). However, a couple of harmful phenomena prevent from using this ideal negative electrode, such as the dendritic growth during the electrodeposition of Lithium metal when a conventional organic liquid electrolyte is used. As a result, the research has been focusing on the development of numerous solid-state electrolytes (SSE) materials, having high Li+ ionic conductivity, high Li+ transport number, large electrochemical stability window, low cost, recyclable. Despite of breakthroughs for both ceramics or polymers fields (and even composites of both), no room temperature SSE has been developed at industrial scale so far [1].In that context, a new concept [2] of composite polymer/ceramic membrane is studied to be implemented within a Lithium Metal battery. It consists of an electrolytic separator where the Li1.3Al0,3Ti1,7(PO4)3 (LATP) ceramic forms one mono layer of monocrystalline and monodispersed grains bonded with a Poly(ethylene)-based matrix. The LATP grains are the Li+ conducting media allowing the Li+ percolation from one side to another while the Poly(ethylene)-based matrix which is ionically and electronically insulating, and, above all, impermeable to most of conventional Li-ion batteries solvents and Li salts, ensuring both the membrane tightening and very good flexibility (figure 1.a.). Herein, this composite membrane is elaborated via a low cost, solvent free process thanks to extrusion and calendering which can be industrially upscaled unlike the very complex and multistep processes suggested in the literature so far [2,3]. The microstructure of the composite separators was characterized by SEM and X-ray Tomography imaging to better understand the influences of the ceramic, the polymer type, and the elaboration process parameters. The Li+ ionic conductivity of the composite membranes as a function of the ceramic content have been studied by electrochemical impedance spectroscopy (EIS) and a high conductivity of 0.49 mS/cm has been measured at 25°C (50vol% LATP, figure 1.b.). Acting as a chemical barrier, this composite membrane allows the optimization of electrolyte chemistries at both the anode side and the cathode sides. Hence, the ionic charge transfer mechanisms in symmetric electrolyte/membrane/electrolyte systems have been also studied by EIS to determine the driving parameters such as the solvent type, the Li salt type and concentration [4].References:[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)[4] Isaac, J. A., Mangani, L. R., Devaux, D. & Bouchet, R. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Appl. Mater. Interfaces 14, 13158–13168 (2022)
Bernard, Laurent. "Caractérisation multi-échelle de la structure et du transport de cristaux liquides ioniques : vers des électrolytes solides innovants pour batteries lithium." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY002.
Full textOne major issue towards large-scale application of lithium-based batteries concerns their safety which is directly related to the nature of the electrolyte. Solid electrolytes are at present considered as a promising approach to avoid the risks related to the commonly employed liquids. Herein we report the synthesis and the characterization of a promising class of electrolytes: Thermotropic Ionic Liquid Crystals (TILCs). We describe the design and the synthesis of new self-assembled single-ion materials in function of their chemical architecture. We performed a systematic structural and functional properties study, demonstrating the crystal-liquid properties as well as the supramolecular organization into columnar phases. One of the most promising TILC shows a conductivity of 10-4 S.cm-1 at 70°C. The ion dynamics was probed at molecular scale to establish the main features of hopping conduction mechanism. Further polymerization of the TILCs could be applied to develop high performance single-ion polymer electrolytes for Li-ion batteries
Pelletier, Bérengère. "Caractérisation approfondie de copolymères triblocs PS-b-POE-b-PS utilisés en tant qu'Electrolytes Polymères Solides pour les batteries Lithium-Métal-Polymère." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4730/document.
Full textThe research on electrochemical storage of energy is today in a stage of fast and profound evolution owing to the strong development of portable electronics requesting power energy as well as the requirement of greener transport modes. Most commercial batteries use liquid or liquid-based electrolytes, which limits their thermal stability, energy density and safety. These limitations could be considerably offset by the use of solid polymer electrolytes (SPE) and lithium metal polymer technology (LMP). However, the main drawback of the SPE is the decrease of the ionic conductivity with increasing mechanical strength, necessary to avoid the formation of lithium dendrites during the recharge of the battery. In this context, triblock copolymers PS-b-PEO-b-PS with a PEO block as ionic conductor and PS block providing mechanical strength was a promising candidate as SPE. In order to build composition/morphology/performance relationships, the aim of my PhD is to characterize carefully the block copolymer. For that purpose, the PS-b-PEO-b-PS synthesized (NMP) were characterized using Liquid Chromatography under Limiting Conditions of Desorption (LC LCD). Furthermore, analyses of morphologies and nano-structure by Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS) techniques, analyses of thermal (DSC) and mechanical (DSC) properties will be also discussed. Finally, measures of impedance were made via symmetric cells Lithium / Electrolyte / Lithium
Pelletier, Bérengère. "Caractérisation approfondie de copolymères triblocs PS-b-POE-b-PS utilisés en tant qu'Electrolytes Polymères Solides pour les batteries Lithium-Métal-Polymère." Electronic Thesis or Diss., Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4730.
Full textThe research on electrochemical storage of energy is today in a stage of fast and profound evolution owing to the strong development of portable electronics requesting power energy as well as the requirement of greener transport modes. Most commercial batteries use liquid or liquid-based electrolytes, which limits their thermal stability, energy density and safety. These limitations could be considerably offset by the use of solid polymer electrolytes (SPE) and lithium metal polymer technology (LMP). However, the main drawback of the SPE is the decrease of the ionic conductivity with increasing mechanical strength, necessary to avoid the formation of lithium dendrites during the recharge of the battery. In this context, triblock copolymers PS-b-PEO-b-PS with a PEO block as ionic conductor and PS block providing mechanical strength was a promising candidate as SPE. In order to build composition/morphology/performance relationships, the aim of my PhD is to characterize carefully the block copolymer. For that purpose, the PS-b-PEO-b-PS synthesized (NMP) were characterized using Liquid Chromatography under Limiting Conditions of Desorption (LC LCD). Furthermore, analyses of morphologies and nano-structure by Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS) techniques, analyses of thermal (DSC) and mechanical (DSC) properties will be also discussed. Finally, measures of impedance were made via symmetric cells Lithium / Electrolyte / Lithium
Naboulsi, Agathe. "Composite organic-inorganic membrane as new electrolyte in all solid-state battery." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS451.
Full textThe development of all-solid-state batteries is essential if we are to make a success of the ecological transition and the deployment of all-electric vehicles. One way of developing this sector is to produce an all-solid electrolyte (SE). Poly(ethylene glycol)-based polymer SEs have the advantage of being adaptable to current Li-ion battery manufacturing processes. Unfortunately, their conductivity remains limited (10-6 - 10-9 S.cm-1) at ambient temperature. Interestingly, inorganic SEs, such as Li7La3Zr2O12, are good ionic conductors (10-3 S.cm-1), but they require costly and energy-intensive shaping processes. This thesis aimed to develop composite SEs that combine the advantages of these two materials. The work focused on the design of a high-performance composite SE and the study of transport mechanisms at the interface of these two materials. An in-depth study of a polymer SE was carried out in order to optimize its synthesis from liquid and commercial monomers. Taking advantage of this synthesis design, various composite SE shaping processes (low-temperature sintering, electro-assisted extrusion, evaporation casting) were explored in order to control the mixing of the two materials and their interface. Electrochemical impedance spectroscopy has been widely used to understand transport phenomena in composite SEs
Gle, David. "Synthèse de copolymères à architectures complexes à base de POE utilisés en tant qu'électrolytes polymères solides pour une application dans les batteries lithium métal-polymère." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4761/document.
Full textIn the context of sustainable development, electric vehicles appear to be a major solution for the future. Among the lastest technologies, the Lithium Metal Polymer battery has presented very interesting performances in terms of energy density. The main drawback of this system is the formation of lithium dendrites during the refill of the battery that could cause short circuits leading to the explosion of the battery. The aim of my PhD is to develop a Solid Polymer Electrolyte showing a high ionic conductivity (2.10-4 S.cm-1 at 40°C) and a high mechanical strength (30 MPa) to prevent dendritic growth. For that purpose, Nitroxide Mediated Polymerization is used to synthesize block copolymers with a PEO moiety for ionic conduction –CH2-CH2-O- and polystyrene for mechanical strength. Different kind of architectures have been synthesized : block copolymer with linear PEO moiety or with grafted PEO moiety
Gle, David. "Synthèse de copolymères à architectures complexes à base de POE utilisés en tant qu'électrolytes polymères solides pour une application dans les batteries lithium métal-polymère." Electronic Thesis or Diss., Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4761.
Full textIn the context of sustainable development, electric vehicles appear to be a major solution for the future. Among the lastest technologies, the Lithium Metal Polymer battery has presented very interesting performances in terms of energy density. The main drawback of this system is the formation of lithium dendrites during the refill of the battery that could cause short circuits leading to the explosion of the battery. The aim of my PhD is to develop a Solid Polymer Electrolyte showing a high ionic conductivity (2.10-4 S.cm-1 at 40°C) and a high mechanical strength (30 MPa) to prevent dendritic growth. For that purpose, Nitroxide Mediated Polymerization is used to synthesize block copolymers with a PEO moiety for ionic conduction –CH2-CH2-O- and polystyrene for mechanical strength. Different kind of architectures have been synthesized : block copolymer with linear PEO moiety or with grafted PEO moiety
Ati, Mohamed. "Synthèse, structures et propriétés des composés LiMSO4F (M = métal 3d) en tant que matériaux d'électrode positive pour batteries à ions Li." Amiens, 2013. http://www.theses.fr/2013AMIE0118.
Full textThis thesis has focused on the synthesis and characterization of new fluorosulfates compounds, namely LiMSO4F (M = 3d metals) as a new electrode materials for LIBs through different sustainable synthetic approaches. Among them, LiFeSO4F appears as a serious candidate for positive electrodes. Therefore, we tried, first, to obtain it using different synthesis methods (ionothermal, solvothermale, and solid-state process). Our structural and electrochemical investigations show its nice stability over cycling with attractive performances (3. 6 V vs. Li; Qth = 151 mAh/g). Afterward, our investigations of the other members of this family using other 3d metals (Co, Ni, Mn and Zn) revealed that both LiMnSO4F and LiZnSO4F crystallize in two differents structures namely triplite and sillimanite, respectively. Hence our motivation to study the solid solutions of LiMyFe1-ySO4F based on Mn and Zn. Surprisingly, the LiMyFe1-ySO4F (M = Mn, Zn) triplite type structure show a higher redox potential compare to the two others polymorphs (tavorite and sillimanite) in the range of 3. 9 V vs. Li. To our knowledge, this is the highest redox potential reported for Fe3+/Fe2+, so far. Moreover, these solid solutions powders show a nice stability over cycling with nominal capacities close to the theoretical ones. Thereafter, we prepared LiFeSO4F in the triplite type structure without adding Mn or Zn. The latter shows good electrochemical performances with nice structural stability during cycling. At last, we investigated a non lithied hydoryfluorosulfate compound (FeSO4F1-yOHy) as a new positive electrode material for lithium metal polymer batteries. This material was prepared using a solid-state process at 290°C and the electrochemical measurements show that it has nice performances with a redox potential located between 3. 2 and 3. 58 V vs. Li, as function of the amount of OH in the structure
Pradon, Alexandre. "Le rôle du manganèse dans les oxydes lamellaires surlithiés lors de leur utilisation comme électrode d’accumulateurs au lithium." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=0522776d-cc16-4ef8-afb0-76f307c26b0c.
Full textLi-rich lamellar oxides Li1+xM1-xO2 have higher specific capacity than stoichiometric lamellar compounds. These materials are described as a nano-composite Li2MnO3-LiMO2. During the first charge, the material has an activation step at high potential with an electrochemical “plateau”. However, the cycling performance are not satisfying with for instance a capacity loss and a voltage decay. The electrochemical “plateau” was identified as the activation of the Li2MnO3. The material keeps a lamellar structure as observed by XRD. Manganese and oxygen are involved in the redox process during this step and also during the discharge, as demonstrated by XAS and EELS. Moreover, two DFT models, one corresponding to the migration of manganese in the transition metals layer (2D) and the other one in the lithium layer (3D), were used to validate observations done by HRTEM and XAS. The decrease of performance is linked to these manganese migrations, more important with cycling, especially in the lithium layer. Even if the use of a higher temperature has a positive impact on the first cycle, performance in cycling are less interesting. A material with a microstructure well organized and a coating get better performance in cycling but do not prevent from the voltage decay. Modification of the material intrinsic properties can reduce this phenomenon
Aït, Hamouda Sonia. "Algorithmes avancés d'enregistrement d'images pour les problèmes dynamiques." Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3050.
Full textIn this thesis, we have explored some of the challenges related to the energy transition, with a particular focus on electricity storage in solid-state batteries. Although the introduction of this technology and the improvements in performance and safety over the traditional liquid electrolytes are considered revolutionary, recent research has revealed that thermal runaway could still occur. X-ray tomography enables to observe this phenomenon in three dimensions and over time. However, if we want to compare images at two different instants in time, before and after a certain number of charge and discharge cycles, conventional image registration methods do not provide a detailed understanding of the underlying physical phenomena. Within the scope of the current doctoral research project, we have developed an innovative solution to this problem. It involves transforming the image from one state to another based on a digital twin. To ensure that the digital twin is identical to its physical homologue, it is important to identity the dominant physical phenomena (in this case, thermo-elasticity) and describe them with mathematical expressions, then solve them by means of finite elements on the initial geometry obtained by X-ray tomography. This model is then completed with the physical properties of the materials, the initial conditions and the in-situ conditions surrounding the object under study. Furthermore, the model contains parameters that are a challenging to quantify in advance. In the case of battery cycling, it is necessary to find the quantity of heat generated by the electrochemical processes at an instant t that causes the same deformations as those observed in the real cell. This comparison is carried out by means of a Dense Optical Flow algorithm, where at each image resolution, an inverse problem is solved, yielding the sought heat source or sink. Once this digital twin had been developed, we evaluated its numerical capabilities. First, the algorithm was employed to analyze a sequence of synthetic images of cells deformed under the effect of a known heat source. Through various sensitivity studies, the robustness of the algorithm was demonstrated: the algorithm is capable to provide highly accurate results even for images of small size, low resolution and high levels of noise. Next, experimental validation of the method was carried out using a bimetal consisting of two materials with different thermal conductivities. This sample is immersed in a vessel whose temperature is controlled by means of a thermostatic bath. The vessel is set up inside a tomograph, enabling to acquire a sequence of X-ray images over time, effectively demonstrating the impact of temperature variations on the bimetal. Convincing findings showed that the digital twin of the bimetal generated images that were matching the real ones. Furthermore, the temperature field obtained was closely similar to the one recorded with the thermocouple. These results constitute an experimental validation of this physics-based image registration model. Digital twins have a higher computational cost than conventional registration algorithms. To address this problem, a non-uniform, adaptive mesh was implemented. The results obtained were highly satisfactory, effectively combining both accuracy and computation time savings. This development then enabled the algorithm to be applied to real three-dimensional images of the battery cell. Overall, the development of this algorithm offers a broad spectrum of promising applications, in particular the prediction of early indications of deformation in solid-state batteries.Keywords: Image registration, Solid-state batteries, X-ray imaging, Digital twin
Masmoudi, Moez. "Modélisation multi-échelle du comportement multi-physique des batteries lithium ion : application au gonflement des cellules." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY006.
Full textLithium ion battery is the most popular energy storage technology in the automotive industry. Ensuring high efficiency, power, capacity, safety and endurance is a challenge for many researchers and manufacturers. Indeed, a battery is a complex system containing several components and subject to various risks of chemical, mechanical and electrical damage, manifesting even under normal operating conditions. However, the battery should perform its functions for a large number of charge and discharge cycles and continue to serve without these risks influencing its overall performance. One of the main and inevitable damage is its swelling, which induces an electrical discontinuity and a loss of its capacity.Indeed, swelling is a multi-physics phenomenon that involves electrochemistry, mechanics and heat. On the one hand, a lithium-ion battery is based on the reversible exchange of the lithium ion between a positive electrode and a negative electrode. The process of inserting the ion into the particles of the electrode results in a significant reversible volume change of the battery for each charge / discharge cycle. This variation in volume leads to the formation of stresses when the battery is held in a rigid pack preventing or limiting its deformation. On the other hand, the formation of a layer at the particle-electrolyte interface (SEI) following parasitic reactions occurring at the electrode scale is a major cause of irreversible additional swelling and aging of the drums.Thus, the swelling must be taken into account during the mechanical sizing phase of the battery. It is therefore essential to have a reliable numerical tool able to predict this mechanical behavior during all phases of battery operation and to allow designers to improve its structure.This work is part of a collaboration between ENSTA ParisTech and the car manufacturer Renault following an industrial need to understand and control the swelling of batteries used in electric and hybrid vehicles. To meet this need, a multi-physics and multi-scale model based on the theory of the thermodynamics of irreversible processes, mechanical damage theory and the homogenization theory is developed. It allows to describe and predict the deformation of a lithium ion battery during its operation. The model takes into account the mechanical, electrochemical and thermal phenomena that occur at the local scale of the electrodes in order to calculate the mechanical deformation at the macroscopic level of the battery
Masmoudi, Moez. "Modélisation multi-échelle du comportement multi-physique des batteries lithium ion : application au gonflement des cellules." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY006.
Full textLithium ion battery is the most popular energy storage technology in the automotive industry. Ensuring high efficiency, power, capacity, safety and endurance is a challenge for many researchers and manufacturers. Indeed, a battery is a complex system containing several components and subject to various risks of chemical, mechanical and electrical damage, manifesting even under normal operating conditions. However, the battery should perform its functions for a large number of charge and discharge cycles and continue to serve without these risks influencing its overall performance. One of the main and inevitable damage is its swelling, which induces an electrical discontinuity and a loss of its capacity.Indeed, swelling is a multi-physics phenomenon that involves electrochemistry, mechanics and heat. On the one hand, a lithium-ion battery is based on the reversible exchange of the lithium ion between a positive electrode and a negative electrode. The process of inserting the ion into the particles of the electrode results in a significant reversible volume change of the battery for each charge / discharge cycle. This variation in volume leads to the formation of stresses when the battery is held in a rigid pack preventing or limiting its deformation. On the other hand, the formation of a layer at the particle-electrolyte interface (SEI) following parasitic reactions occurring at the electrode scale is a major cause of irreversible additional swelling and aging of the drums.Thus, the swelling must be taken into account during the mechanical sizing phase of the battery. It is therefore essential to have a reliable numerical tool able to predict this mechanical behavior during all phases of battery operation and to allow designers to improve its structure.This work is part of a collaboration between ENSTA ParisTech and the car manufacturer Renault following an industrial need to understand and control the swelling of batteries used in electric and hybrid vehicles. To meet this need, a multi-physics and multi-scale model based on the theory of the thermodynamics of irreversible processes, mechanical damage theory and the homogenization theory is developed. It allows to describe and predict the deformation of a lithium ion battery during its operation. The model takes into account the mechanical, electrochemical and thermal phenomena that occur at the local scale of the electrodes in order to calculate the mechanical deformation at the macroscopic level of the battery
Rabab, Houssam. "Modeling of sodium-ion batteries for on-board diagnosis of their states of charge and health." Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2809.
Full textThe thesis presents a physics-based model for sodium-ion cells of the NVPF/HC type. The model takes into account the complexities involved in modeling these cells, notably due to their nonlinearities in current, temperature and state of charge (SoC). The model structure is an equivalent circuit enhanced by concepts used in single particle models (SPM) to form an ECM-SPe structure, suitable for diagnosis of the SoC and the state nof health (SoH) of the cell. The ECM-SPe structure separates the effects of solid-phase and liquid-phase diffusion. It is shown that classical modeling of solid-phase diffusion effects by impedance leads to numerous difficulties. As a replacement, an innovative approach is proposed using shifts in SoC of the open circuit voltage (OCV). These shifts are directly related to electrochemical phenomena, enabling the implementation of physical nonlinearity models. The ECM-SPe structure characterizes various electrochemical phenomena as voltage contributions: ohmic or static overvoltage (Vs), surface overvoltage (Vsurf) which includes charge transfers and the solid electrolyte interphase (SEI) overvoltages, liquid phase diffusion overvoltage (Vld) and the surface equilibrium voltage (SEV). Analytical models for current, temperature and SoC nonlinearities are proposed for each voltage contribution. These nonlinearity models are based on physical and empirical equations to characterize the model parameters without the use of lookup tables. The NVPF/HC model consists of the ECM-SPe structure with the nonlinearity models for the voltage contributions. The PhD details experimental protocols for parameter determination, which include constant current tests, pulse tests, and impedance spectroscopies, performed under various currents, temperatures and SoC. The performance of the model is validated by comparisons with experimental data, demonstrating promising results. In addition, the NVPF/HC model can be used as a diagnostic tool for charge transfers and SEI by separating their nonlinearities in current, temperature and SoC. The NVPF/HC model shows its reliability for estimating the cell voltage in variablecurrent applications, with good performance at currents up to ±5C and temperatures above 5 ◦C. The study also highlights the need to develop distinct characterization tests for solid and liquid diffusion contributions
Osenciat, Nicolas. "Propriétés de transport dans les oxydes à haute entropie." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF005.
Full textThe aim of this thesis is to assess the potential of a new material for solid-state electrolyte applications in all-solid-state batteries and/or micro-batteries. This new compound, which exhibits remarkable Li+ and Na+ ionic conductivity, belongs to a new class of oxides, recently discovered by Rost et al. (Nature Communication, 2015). This new family is formed through configuration entropy stabilisation, at high temperature, into a simple single phase, from a complex mixture of binary oxides (in our case NaCl-Rocksalt structure). We have studied the charge compensation mechanisms involved in the synthesis of the (MgCoNiCuZn)1−xLixO series and the influence of their composition on their ionic conductivity properties. We have attempted to densify these compounds at low temperature using the original Cold Sintering Process, without succeeding in obtaining defect-free ceramics. Finally, we have also developed and described the crystallographic structure and the electrochemical behaviour of a new anode material (possibly compatible with these entropy-stabilised oxides), the Li2(Mg,Co,Ni,Cu,Zn)Ti3O8 multicationic lithium titanate
Bayzou, Racha. "Caractérisation par RMN de la structure à l'échelle atomique des couches minces de LiPON utilisées comme électrolyte dans les microbatteries." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR056.
Full textAll-solid-state microbatteries are promising devices for a wide range of applications pertaining to communication, consumer electronics, products and people identification, traceability, security as well as the internet of things. Nevertheless, low ionic conductivity of the solid electrolytes remains a major limitation of these devices. In particular, lithium phosphorus oxynitride (LiPON), which is currently the commercial standard electrolyte for all-solid-state microbatteries, has a three-fold lower conductivity than liquid electrolytes used Li-ion batteries. The rational improvement of the conductivity of LiPON and its derivatives requires a better understanding of their atomic-scale structure and dynamics. In this thesis, we explored how solid-state NMR spectroscopy can be used to characterize the structure and atomic-scale dynamics of LiPON thin films. The NMR data were compared to those of electrochemical impedance spectroscopy to better understand the conduction mechanisms. In particular, we have shown that the ionic conductivity increases with the nitrogen content of LiPONs. This is due to the formation of bridging nitrogens, which less interact with Li+ ions than the apical nitrogens. This study was then extended to LiSiPON thin films in order to study the effect of the incorporation of silicon atoms on the structure and dynamics of LiPON. This thesis also focused on the development of new pulse sequences for the indirect detection of nuclei subject to large anisotropic interactions via other isotopes subject to small anisotropic interactions. The objective was notably to detect the 14N nuclei (with spin I = 1 and subject to quadrupole interactions of a few megahertz), via the 31P or 6,7Li nuclei. For that purpose, we have demonstrated the possibility to detect with low t1 noise the double-quantum coherences between the mI = +1 and −1 energy levels of 14N nuclei via protons in organic molecules, such as L-histidine-HCl, thanks to the HMQC sequence using a TRAPDOR recoupling. We have also demonstrated that T-HMQC experiment allows the indirect detection of spin-1/2 nuclei subject to large chemical shift anisotropy (CSA) via protons. Nevertheless, due to time constraints, we were not able to apply the T-HMQC sequence to the study of LiPON during this thesis
Decker, Isabelle. "Etudes électrochimiques de dérivés du tétrathiafulvalène en milieu polyoxyéthylène." Grenoble INPG, 1999. http://www.theses.fr/1999INPG0092.
Full textQuemin, Elisa. "Exploring solid-solid interfaces in Li6PS5Cl-based cathode composites for all solid state batteries." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS501.
Full textWhile Lithium-ion batteries dominate portable devices, growing safety and energy density demands in electric vehicle batteries have led to the exploration of "beyond Li-ion" technology. All-Solid-State Batteries (ASSBs) have emerged as a promising alternative to Li-ion batteries. Thus, this doctoral research focuses on overcoming challenges hindering the practical implementation of ASSBs, with a specific emphasis on cathode composites. The investigation revolves around a common composite comprising Li6PS5Cl solid electrolyte (SE) and NMC active material (AM). The research unveils the degradation mechanisms within ASSBs, governed by SE/Carbon additive and SE/AM interfaces. It is observed that capacity deterioration, occurring below 3.6 V vs. Li-In/In, is primarily attributed to SE/Carbon interfaces. Conversely, elevating the voltage to 3.9 V shifts the primary degradation source to SE/AM interfaces. Then, the adverse effects of carbon additives on the ionic conduction of composites are demonstrated, particularly when exceeding 2 wt. % VGCF. Moreover, the study delves into the electronic conductivity of carbon-free composites using innovative in situ monitoring. This reveals Li-induced alterations hindering electronic conductivity, especially at high charge levels, notably in high Ni-content NMC. Furthermore, the influence of particle size and morphology on electronic percolation is extensively examined, advocating for minimal VGCF to enhance kinetics and stability. Strategies for effectively incorporating carbon additives while mitigating long-term capacity loss are explored, encompassing assembly pressure, loading, formation cycles, temperature, and carbonate coating. By mixing these optimal conditions, an enhanced cathode composite is introduced, holding promising potential for the progression of All-Solid-State Battery technology
Levasseur, Stéphane. "Contribution à l'étude des phases Lix(Co,M)O2 en tant que matériaux d'électrode positive des batteries Li-ion : Effets combinés de la surstoechiométrie en lithium et de la substitution (M=Ni,Mg)." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2001. http://tel.archives-ouvertes.fr/tel-00003507.
Full textRondeau, Benjamin. "Ingénierie des interfaces dans une batterie tout solide." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF071.
Full textA new generation of batteries, known as all-solid-state batteries, is emerging and represents a major challenge in the development of higher- performance, safer devices. Nevertheless, all-solid- state batteries face many challenges, such as finding a solid electrolyte with ideal properties (high ionic conductivity, free of critical materials, stable and inexpensive), but also the need to develop a shaping process that does not alter the materials. A new type of material called high-entropy oxide (HEOx), highlighted in 2015 with the compound (Mg,Co,Ni,Cu,Zn)O, has demonstrated very interesting ionic conductivities when doped with lithium. This material looks promising as a solid-state electrolyte, but it contains cobalt. The work in this manuscript has two main focuses. Firstly, the research and characterization of new high-entropy solid electrolytes without critical materials. Secondly, the optimization of various all- solid-state battery manufacturing processes. For example, we have successfully replaced the cobalt in HEOx batteries. It was possible to substitute it with two different chemical elements: manganese and iron. Next, we worked on two methods for manufacturing all-solid batteries: pastillage and double coating. These methods were used to integrate three different HEOx as solid electrolyte in a complete all-solid state battery, and to identify optimization parameters
Cluzeau, Benoît. "Développement de batteries lithium-ion « Tout solide » pour véhicules électriques." Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3071.
Full textImprovements in the performances of Li-ion batteries in the past two decades, has enabled the introduction of many electric cars on the market. However, demands regarding the safety, autonomy, and fast charging require the development of new and more efficient technologies.It was in this context that the RAISE 2024 project, in which this thesis is part of, was founded. This collaboration between ARKEMA, SAFT and the University of Pau and Adour Countries aims to develop a lithium ion battery with a solid electrolyte. The development of such a system has a double objective: the reinforcement of safety during operation, and the use of new electrode materials with higher capacity such as metallic lithium.To achieve this objective, two electrolytes were studied in this thesis. The first consists of a gelled electrolyte obtained by crosslinking of a polymer matrix. It provides good performance in terms of ionic conductivity at room temperature (10-3 S/cm). More than 700 cycles were achieved with this electrolyte in a battery cell before reaching 80% of initial capacity. The impact of polymer matrix on performance was studied through a series of electrochemical tests and surface analysis (XPS). Finally, safety tests (nail penetration) carried out on cells filled with this electrolyte show a significant reduction of energy released.Finally, a second ionic conductor was studied. It comes in the form of a polymer membrane, plasticized with an ionic liquid and a solvent. This membrane exhibits ionic conductivity above 10-4 S/cm at room temperature. Coupled with a gel electrolyte in electrodes to improve interfacial contact, the membrane shows a high resistance to lithium dendrites. A cell using this electrolyte and composed of NMC 811 as positive electrode and lithium metal as negative electrode performed 200 cycles at a rate of C/5, D/2 before losing 20% of its initial capacity
Koç, Tuncay. "In search of the best solid electrolyte-layered oxide pair in all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS535.
Full textAll-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could theoretically enable achieving nearly 70 and 40 % increase in volumetric (Wh/l) and gravimetric (Wh/kg) energy densities, respectively, as well as enhanced safety compared to lithium-ion battery technology. To this end, the last decade has witnessed the development of ASSBs mainly through sulfide-based SEs pertaining to their favorable intrinsic properties. However, such advancements were not straightforward to unlock high-performing practical ASSBs because of complex interfacial decomposition reactions taking place at both negative and positive electrodes, leading to a worsening cycling life. Focusing on the positive electrode, this calls for a better understanding of electrochemical/chemical compatibility of SEs that is sorely needed for real-world applications.This work aims to provide answers regarding the best SE-layered oxide pair in composite cathode for ASSBs. By conducting a systematic study on the effect of nature of SEs in battery performances, we show that Li6PS5Cl performances rival that of Li3InCl6, both outperforming β-Li3PS4 and this, independently of the synthesis route. This is preserved when assembling solid-state cells since Li6PS5Cl pairing with layered oxide cathode shows the best retention upon cycling. This study also unravels that halides react with sulfides in hetero-structured cell design, hence resulting in a rapid capacity decay upon cycling stemming from interfacial decomposition reactions. To eliminate such interfacial degradation process, we suggest a surface engineering strategy that helps to alleviate the surface deterioration, unlocking highly performing ASSBs. Eventually, combined electrochemical, structural and spectroscopic analysis demonstrate that Li3InCl6 cannot withstand at higher oxidation potentials, resulting in decomposition products in contrast to what the theoretical calculations predicted
Tesfaye, Alexander Teklit. "Study and improve the electrochemical behaviour of new negative electrodes for li-ion batteries." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0346/document.
Full textCurrently, commercial lithium ion batteries (LIBs) use carbon based materials as negative electrode; however the technology is reaching its limit because of the low theoretical specific capacity. The objective of this thesis is to study the electrochemical behaviour of three different new high capacity anodes (SnSb alloy, anodized Ti3SiC2, and Si nanotubes) as alternative to graphite, identify the main parameters responsible for the capacity fading, and propose a versatile solution to improve their electrochemical performance. These electrode materials exhibit good electrochemical performance which makes them promising candidates to replace carbon as a negative electrode for LIBs. However, their limitation due to capacity fading and the large initial irreversible capacity loss must be resolved before commercialization. The observed limitations are attributed to many factors, and particularly, to the formation and growth of SEI layer which is the common factor for all the three electrode materials. Because of the strong capacity fade and lack of many detailed studies on the Sn-based materials, specifically SnSb, we focus our study to investigate the formation and growth of SEI layer on SnSb electrode. The evolution of the electrical, compositional, and morphological properties have been investigated in detail to understand the electrochemical behavior of micron-sized SnSb. To limit the capacity fade, we propose the use of a protective film on the electrode surface. The electrochemical performance of micron-sized SnSb electrode coated with thermoplastic elastomer protective film, namely poly(styrene-b-2-hydroxyethyl acrylate) PS-b-PHEA has been achieved
Var, Kethsovann. "Mesures des propriétés mécaniques d'un électrolyte tout solide et de la dégradation électro-mechano-chimique dans une batterie tout solide." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS611.
Full textMobility is a key issue, and the electric vehicle (EV) is advancing in response to environmental challenges. Currently relying on Li-Ion batteries, the EV faces certain limitations, such as the use of flammable solvents and low energy density, which reduces its range. A technological breakthrough is therefore necessary, and the all-solid-state battery is emerging as a promising solution. By replacing the liquid electrolyte with a solid electrolyte, it becomes possible to use metallic lithium, thereby increasing the energy density from 372 to 3862 mAh.g⁻¹. However, challenges remain, notably the volumetric changes in the electrodes, which cause mechanical degradation at the interfaces. Our study explores the relationships between the electrochemical and mechanical properties of all-solid-state batteries. We selected Li6PS5Cl argyrodite for its advantages, including its cold-pressing capability and high ionic conductivity (10⁻³ S.cm⁻¹). DFT simulations show that its Young's modulus is relatively low (22 GPa), making it more flexible than other solid materials. Our strategy to adjust its mechanical properties is based on three approaches: 1) modifying the particle size to influence defects, 2) adjusting the stoichiometry with Li6PS5X variants (X = Cl, Br, I, F) to modify chemical bonds, and 3) incorporating polymers to form a composite, thereby fine-tuning the overall mechanical properties. We investigated the impact of two synthesis routes, solution-based and dry, but neither method allowed effective control of particle size. Thanks to an innovative cryo-milling process, the particle size was reduced post-synthesis to as small as 2 µm. To address issues of air and moisture reactivity, we developed a setup to measure the Young's modulus of argyrodite. The method involves creating an argyrodite pellet in a steel mold under an inert atmosphere, applying mineral oil to ensure sealing, thus enabling nano-indentation analysis in ambient conditions. This method allows us to measure several material properties, such as Young's modulus (E), hardness (H), and viscoelasticity. The average E values, based on 400 indents, are around 20 GPa. The results reveal a limited elastic domain and a viscous behavior. Regarding Li6PS5X (X = Cl, Br, I, F), our experiments did not show significant changes in mechanical properties. However, the addition of PVDF polymer, at mass ratios of 20% and 50%, reduces the Young's modulus. We also studied the impact of solid electrolyte particle size (2 µm vs. 20 µm) on cycling performance in a full battery, as well as the effect of adding PVDF in the composite positive electrode. Several cells showed good cyclability over more than 200 cycles, with capacity retention above 85%. It appears that cell-forming processes influence performance more than particle size. At a 20% PVDF ratio, the cells exhibit similar performance to those without polymer addition. However, at higher ratios, PVDF hinders ionic conductivity, thus increasing cell polarization. The beneficial or detrimental effect of PVDF depending on the mass ratio is discussed in detail in the manuscript
Auvergniot, Jérémie. "Étude des mécanismes aux interfaces électrode/électrolyte d’accumulateurs « bulk tout-solide »." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3044/document.
Full textThe last two decades have shown a tremendous spreading of portable electronics, changing our society. This change was made possible by the invention of Li-ion batteries, which provide a high energy density for a low weight and volume. More recently the development of new applications, such as electric vehicles or renewable energies, has led to new needs in terms of electrochemical storage. For some applications, user safety will be as important as cost and energy density. On the other hand, research around Na-ion batteries focuses an increased interest, because they do not depend on lithium cost. Replacing organic liquid electrolytes with inorganic solid electrolytes is an interesting solution to improve the safety of batteries, because inorganic ionic conductors are nonflammable, stable at high temperature, and supposed to be chemically and electrochemically more stable. Using those materials in all-solid-state batteries has however several limiting factors, such as loss of contact between particle at the interfaces during cycling, and also chemical/electrochemical compatibility issues between materials. Another issue with this type of batteries is the interdiffusion of species at interfaces leading to an impedance increase during cycling. Several solutions exist to mitigate those issues, such coating the active material particles with a less reactive inorganic material. However there is a lack of knowledge on the species forming at those interfaces, knowledge which is needed to improve the performances of such systems. Studying those interfacial interactions and characterizing the species formed as those interfaces was the main topic of this Ph.D thesis.This work has been done in collaboration between two laboratories : IPREM (University of Pau - CNRS, France) and LRCS (University of Amiens - CNRS, France). Two solid electrolytes have been studied: the argyrodite Li6PS5Cl and the NaSICON Na3Zr2Si2PO12. Those materials have been synthetized, then integrated in bulk all-solid-state batteries and their interfaces were characterized by X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Those two techniques provide us very complementary information, the first allowing identification and quantification of surface species, the second one giving access to the spatial repartition of elements at a nanometric level.The analysis of bulk all-solid-state batteries based on the electrolyte Na3Zr2Si2PO12 using the active material Na3V2(PO4)3 showed micromorphologic changes during cycling, as well as interdiffusion phenomena between particles. AES analysis also allowed us to describe self-discharge issues.The study of Li6PS5Cl-based batteries highlighted that this solid electrolyte is stable towards the negative electrode active material LTO. It however has interfacial reactivity towards positive electrode active materials such as LCO, NMC, LMO, LFP and LiV3O8. This reactivity leads to the formation of several species such as LiCl, P2Sx , Li2Sn , S0 and phosphates at the interface with Li6PS5Cl. In spite of the encountered interfacial reactivity issues, we managed to build all-solid-state batteries based on Li6PS5Cl showing a good capacity retention over 300 cycles when cycled between 2.8 and 3.4V
Jouan, Gauthier. "Le frittage flash (SPS) : de la réactivité à l'assemblage de batteries "tout solide"." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1724/.
Full textThe Spark Plasma Sintering technique has known a significant growth since 2004 at a national level. Characterized by very short heat treatment duration, it has recently shown interesting possibilities as a new synthesis route and one-step realizations of assembled devices, such as "all inorganic solid state batteries". The aim of this thesis is to determine the "machine" and "materials" parameters that govern interfaces phenomena during the densification and their influence on the behavior of obtained objects. The study of the behavior of different powder mixtures of Cu/V2O5 confirms the significant increase in the reaction kinetics by using the SPS. This effect is related to the application of a constant pressure during treatment ; the rapid rise in temperature mode by current pulses does not appear significant. In contrast, the study of less reactive mixtures indicates that the rapid thermal processing allows the production of dense composites and opens the door to the one-step assembly of "all inorganic solid state batteries". Such accumulators allow significant improvements in safety, operation at high temperatures and the use of high potential electrode materials (limited to 4. 5 V in liquid). The study of the making of various components of "all inorganic solid state batteries", enables to extract the generals criteria guaranteeing an optimum assembly by Spark Plasma Sintering, was perform on a model system (copper), known to have a solid electrolyte with high conductivity at room temperature. The powders microstructure and sintering parameters have a crucial role on the quality of electrode/electrolyte interfaces and therefore on the electrochemical performances. These interfaces were controlled in Cu-metal and Cu-ion batteries configurations. While in the first case, the growth of dendrites at the negative electrode generates important and irreversible losses of contact at Cu/electrolyte interface, the Cu-ion batteries show good reversibility on thirty cycles confirming the low degradation of electrode/electrolyte interfaces. Extending these results to the potentially more interesting Li-ion system highlights the existence of inherent materials limitations in terms of ionic conduction. The shaping optimization, by reducing the thickness of the electrolyte layer, has overcome these limitations permitting the assembly of Li-ion "all inorganic solid state batteries" and allowing the use of materials with high potential (LiCoPO4), paving the way for the realization of more efficient new electrochemical generators
Huynh, Le Thanh Nguyen. "Les accumulateurs au sodium et sodium-ion, une nouvelle génération d’accumulateurs électrochimiques : synthèse et électrochimie de nouveaux matériaux d’électrodes performants." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1123/document.
Full textSince commercialization, Li-ion batteries have been playing an important role as power source for portable electronic devices because of high gravimetric, volumetric capacity and high voltage. Furthermore, the lithium-ion technology is best suited for large-scale application, such as electric vehicles, which poses a resource problem and ultimately cost. On the contrary, sodium is a most abundant element, inexpensive and similarly properties as lithium. In order to solve the problem of lithium raw resource, sodium is proposed as a solution for next generation power source storage. This work investigates the potential derivative vanadium pentoxide materials as sodium intercalation compounds: the V2O5 reference compound, the promizing potassium bronze K0,5V2O5, ε'-V2O5, as well as a lamellar manganese oxide: the sol-gel birnessite and its doped cobalt form. The structure-electrochemistry relationships are clarified through a study combining electrochemical properties, X-ray diffraction and Raman spectroscopy of materials at different insertion rate, end of the reaction and after galvanostatic cycling. New phases are highlighted and specific capacities between 100 and 160 mAh / g in the field of 4V-1V potential can be obtained with sometimes remarkably stable as in the case of NaV2O5 and ε'-V2O5
Mir, Caroline. "Nouveaux sulfures complexes pour application aux batteries au lithium." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEC037.
Full textSynthesis of new oxysulfides materials for lithium ion batteries. Exploratory work on solid state synthesis, research of new phases, and study of the electrochimical properties of these new materials. Transition metals wich will be tested : Mn, Fe, Ti ... cheap and non toxic. An electronic and ionic transport study about these new materials will be done
Navallon, Guillaume. "Caractérisation d'électrolytes composites pour batteries tout-solide par diffusion de neutrons et rayonnement synchrotron." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALY087.
Full textState-of-the-art lithium–ion technology is reaching its limits regarding applications as energy storage devices for electric mobility. In fact, both high energy density and safety standards requested by the market are hardly attainable with the actual materials and components. In theory, the current limitations could be overcome by the use of metallic lithium as the negative electrode, which would increase the energy density of the cell but would also require a mean to prevent lithium dendritic growth. In this context, polymer electrolytes are promising materials as their solid state could hinder the dendritic growth. Nevertheless, in practice, they still lack sufficient ionic conductivity. It has been reported that, in some conditions, the fabrication of composite material by adding fillers inside a polymer electrolyte can enhance the ionic conductivity. Some studies attributed this effect to beneficial interactions occurring at the interface between fillers and the polymer-lithium salt system. Other studies, on a larger scale, highlighted modifications of the polymer mobility in presence of filler. Together, these results suggest that fillers create faster conduction pathways surrounding them, which on a macroscopic scale could enhance the electrolyte conductivity.This thesis work aims at understanding the contribution of these effects on the transport properties, in order to clarify the role of fillers added inside a polymer electrolyte. The system under investigation is an electrolyte based on poly(trimethylene carbonate) (PTMC) and LiTFSI, inside which we mixed different proportion of alumina particles. We selected three kind of particles with different morphologies and crystalline phases. In order to study the impact of fillers at multiple scales, we combined characterizations in lab and at large-scale facilities. The ionic transport properties were studied by electrochemical techniques. The composite microstructure was probed by phase contrast X-ray imaging and small angle scattering - X-rays and neutrons. Several relevant microstructural parameters were identified, quantified, and then correlated with the properties of ion transport of the electrolyte. We showed that the density of hydroxyls on the surface of particles for a given volume of electrolyte could be increased two-fold depending on the filler type, and that this parameter is linked to the state of agglomeration of fillers and the homogeneity of their dispersion. This structural study is supplemented by a study on the dynamics of PTMC at the molecular scale by quasi-elastic neutron scattering (QENS). Our results show that the presence of lithium salt hinders the intrinsic mobility of PTMC, while in presence of alumina, the PTMC polymer backbone recovers a local mobility. At typical timescales of hundreds of picoseconds, relaxation times are divided by a factor two in presence of fillers.All the characterization conducted shed light on the impact of inert filler on the transport properties of polymer electrolyte. Inside a composite electrolyte, the presence of filler induce multiple effects that combine and the complex outcome depend on multiple factors. We showed that the extent of interactions at the interface between particles and polymer as well as variations in the local mobility of polymer correlate with changes in the ionic transport properties of the electrolyte. The understanding of these mechanisms establish an important step toward the optimization of composite formulation for the production of better performing composite electrolytes
Meunier, Valentin. "Unraveling Degradation Patterns in Li-ion Batteries through Electrochemical Analysis Procedures." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS354.
Full textFor the past twenty years, the chemistry of positive electrodes in Li-ion batteries has predominantly focused on a group of layered oxides composed of nickel, manganese, and cobalt, commonly referred to as NMC phases. The primary goal of research has been to enhance the energy density of these materials by increasing their nickel content and operating voltage. However, once the nickel content surpasses 80% and the voltage reaches 4.2 V, the NMC phases become susceptible to a range of physicochemical degradations involving both the material itself and its interaction with the electrolyte. Structural degradation, electrolyte oxidation, and the dissolution of transition metals exemplify the various mechanisms at play. Furthermore, these deteriorations can trigger additional ones, ultimately affecting the entire battery cell and causing a sudden decline in battery capacity referred to as “rollover”. The unpredictable and abrupt nature of rollover poses challenges for conventional performance indicators like discharge capacity (QD) or coulombic efficiency in explaining them. The objective of this thesis is to develop analysis protocols that combine electrochemical techniques to comprehensively elucidate the chemistry underlying these deteriorations. This includes understanding the nature of the deterioration, its localization within the battery, and most importantly, quantifying its impact. These techniques primarily rely on observing the capacity slippages, as well as analyzing the derivatives dV/dQ and dQ/dV. To implement these techniques, the initial step involved ensuring the accuracy of the electrochemical measurements by standardizing the assembly and testing methods. Once reliable and high-quality data were obtained, the protocols facilitated the examination of the effects of nickel dissolution on the graphite electrode, revealing unforeseen deteriorations that occurred when using a highly concentrated electrolyte, despite its recognized high stability. Consequently, adjustments to the electrolyte compositions could be made to mitigate deteriorations and extend the battery's lifespan. In summary, these protocols significantly contribute to our understanding of deteriorations and enable the optimization of operating conditions for Li-ion batteries. This advancement allows for stabilizing interfaces and materials, as well as fostering the development of novel chemical approaches in battery technology
Tarhouchi, Ilyas. "Etude des phases Li10MP2S12 (M=Sn, Si) comme électrolyte pour batteries tout-solide massives." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0220/document.
Full textBy replacing the liquid electrolyte by a solid one, solid state batteries are oftenconsidered as a solution to safety issues in current Li-ion batteries. The recentdiscovery of Li10GeP2S12 with so-called LGPS structure, which exhibits an ionicconductivity equivalent to that of liquid electrolytes, has boosted related researchactivities.In this perspective, we studied the Li10MP2S12 (M=Sn, Si) materials with LGPSstructure, using various methods to characterize the structure (XRD, 31P NMR,Mössbauer spectroscopy …), the ionic mobility/conductivity (7Li NMR, Impedancespectroscopy), and the electrochemical properties (cycling voltammetry,galvanostatic cycling) of the material.Commercially available Li10SnP2S12 batches contain impurities and there remains anambiguity in the actual composition of the LGPS type phase. Modelling of the 31PNMR shifts reveals the effect of lithium in neighboring octahedral sites. Impedencemeasurements suggest reactivity with Li metal, and cyclic voltammetry confirms thatthe material is highly unstable at low potential, which excludes its use as a simpleelectrolyte in solid state batteries. We propose that it might be used both as anelectrolyte and as a negative electrode.The preliminary study on silicon based materials highlights difficulties in obtaining apure LGPS-type compound and questions the real nature of the so-calledthio-LiSICON structural model. Besides, it also shows the instability of thesematerials versus lithium metal
Castro, Alexandre. "Développement de batteries tout solide sodium ion à base d’électrolyte en verre de chalcogénures." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S126/document.
Full textThe evolution of energy consumption in recent decades has led to major changes in the design of autonomous electrical systems dedicated to either electrical or electronic applications. The present demand to build generators capable of delivering sufficient energy, with a guarantee of maximum safety, requires to explore new storage routes. The current lithium battery routes tend to show their limits, both strategic and environmental. In this context, the construction of new electrochemical systems implementing sodium opens the way of the lithium-free accumulators production. The need for ever more efficient batteries requires innovative designs, giving up the liquid path in favor of stronger solid systems. In addition, the miniaturization of electronics leads to a review of the size of the batteries, to micro-type batteries, for which the interest of a solid stack is no longer to demonstrate. Today, sulfur chalcogenide glasses allow access to ionic conductivities that suggest the possibility of a realization of all solid batteries, both in the form of micro batteries or massive batteries. A research effort has been made to formulate these chalcogenide glasses in order to obtain a maximum of ionic conductivity and properties allowing their use as electrolytes. The composition of these glasses highlights the interest of the different elements for such properties. The study of the electrolyte shaping by thin-film deposition (obtained by Radio Frequency Magnetron Sputering, RFMS) proves the feasibility of these all-solid sodium micro-batteries. Subsequently, the realization of massive all solid batteries required the synthesis of two cathode materials (NaCrO2 and Na [Ni0.25Fe0.5Mn0.25]O2) and two anode materials (Na15Sn4 and Na) thus allowing the implementation of four electrochemical stacks, all characterized as accumulators. Finally, the improvement of the interfaces thanks to a gel-polymer made it possible to improve the properties of the assemblies with notably an increase of the speeds of charge / discharge and an enhanced mobilization of the cathode active materials
Kubanska, Agnieszka. "Toward the development of high energy lithium-ion solid state batteries." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4775.
Full textAll-solid batteries with inorganic solid electrolytes are attractive candidates in electrochemical energy storage since they offer high safety, reliability and energy density. Aiming to increase the surface capacity strong efforts have been made to increase the thickness of the electrode. However, the thicker electrode, the more stress is generated at the solid/solid interfaces because of the volume change of the active material during lithium insertion/desinsertion upon cycling, which leads to formation of micro-cracks between the components and finally a bad cycling life. The possible answer to this issue is to build in place of a dense phase pure electrode, a composite electrode which is a multifunctional material. This composite electrode should contain a lot of electrochemically active material, the reservoir of energy; together with electronic and ionic conductor additives, to ensure efficient and homogeneous transfer of electrons and ions in the electrode volume.The main scope of this thesis was to develop all-solid-state batteries prepared by SPS method for applications at elevated temperatures. These batteries consist of a two composite electrodes separated by the NASICON-type solid electrolyte Li1.5Al0.5Ge1.5(PO4)3. The main objective was to find relationships, for given materials, between the initial powder granulometry (grain size, size distribution, agglomeration), the microstructure of ceramics obtained by SPS sintering, and the electrochemical performances of the final batteries. By creating electrodes with novel materials and better composition, the trade-off of power density and energy density can be minimized
Hajndl, Ognjen. "Batterie tout solide pour application automobile : processus de mise en forme et étude des interfaces." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI026/document.
Full textNext generation batteries expectations for electric vehicle are significant, whether in terms of autonomy, environmental impact, charging speed and cost. The all solid-state batteries with a non-flammable solid electrolyte, rather than the conventional liquid one, could meet those criteria.Garnet-type ceramic Li7La3Zr2O12 (LLZO) is a promising solid electrolyte given its good Li-ion conductivity, chemical and electrochemical stability. The major constraint is the need to densify the ceramic at high temperature in order to make it conductive. No standard method exists to build a dense all-solid cell with low interfacial resistance.In this context, the PhD work managed to optimize the solid-state synthesis protocol of the LLZO oxide and his densification by the hot-pressing technique. The conditions of symmetrical Li/LLZO/Li cell assembly allowed to study the Li-metal/LLZO interface and its impact on lithium plating/striping behavior. Feasibility of densifying a “half-cell” (composite cathode/LLZO) in one single step was also studied by adjusting the hot-pressing temperature and pressure parameters
Bains, Jessica Johanna. "Optimisation de matériaux lamellaires d’électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 via une modification de surface ou une substitution cationique." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13771/document.
Full textTwo approaches were considered for the optimization of Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 positive electrode materials for lithium-ion batteries : the surface modification (coating) and partial substitution. First, we showed that fluorine substitution for oxygen is not effective, on the contrary to the hypotheses proposed in literature by others authors: in fact a thin LiF layer is formed at the surface of these materials irrespective of the synthesis route. These "coated" materials show a better cyclability. Their structural and physicochemical properties were characterized mainly by X-ray diffraction, 7Li and 19F MAS NMR spectroscopy and Auger electron spectroscopy. Secondly, we studied the effect of aluminum (electrochemically inert) substitution for cobalt within these layered materials rich in nickel and manganese. The synthesis conditions were optimized and an interesting material was thus proposed. The structure and cationic distribution were determined by chemical analyses, X-ray diffraction, magnetic measurements: aluminum substitution leads to a lower overlithiation, to a larger exchange Li+ / Ni2+ ratio and thus to a decreasing bidimensional character for the structure. These materials show a good cyclability even at high rates and an improved thermal stability in the deintercalated state
Johnson, D. R. "The microstructure of all-solid-state batteries." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375262.
Full textMeabe, Iturbe Leire. "Innovative polycarbonates for lithium conducting polymer electrolytes." Thesis, Pau, 2019. http://www.theses.fr/2019PAUU3042.
Full textThe 21st century must address new challenges. The highly qualified life, demanded by modern society, requires constant developments. Energy is the essential ingredient for the economic and social development. The technological revolution that we are now suffering has as a principle the energy produced by coal, oil, and gas. However, the consumption of these energy sources are limited and additionally, during the last decades have been strongly criticized due to the high CO2 emissions released. Besides, the energy produced by renewable energies are promising alternative supplies to limited non-renewable resources. Little by little, the use of fuel-based energy sources will be reduced and renewable solar energy, wind power, hydropower, geothermal energy and bioenergy will be settled in our life. Nevertheless, due to the intermittent availability of these type of resources, good energy storage systems have to be designed. Among the all systems, electrochemical energy storage systems (EESS)s seem to be the best alternative for the use of portable electronics, electric vehicles and smart grid facilities.Generally, a battery contains a liquid electrolyte on it, which is based on a salt dissolved in a liquid organic solvent. This solvent is known to be toxic and highly flammable. Great efforts have been devoted to design safe electrolytes. Thus, polymer electrolytes have been proposed as safe materials. Nevertheless, the ionic conductivity, lithium transference number and electrochemical stability window should be addressed in order to be used in different applications. In this direction, in this thesis different polycarbonates have been proposed as promising host materials and they have been evaluated in as safe electrolytes
Maouacine, Koceila. "Matériaux hybrides poreux silice/polymère comme électrolytes pour batterie lithium-ion tout solide." Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0024.
Full textThe design of lithium-ion batteries using a solid electrolyte is currently one of the most studied ways to overcome safety problem of these devices. In this thesis work, we propose a new approach to develop a porous silica/polymer hybrid electrolyte, containing a higher weight fraction of mesoporous silica than polymer. Two morphologies of silica hybrid materials were studied: as compressed powders (pellets) and as thin films. In the first part of the work, a hybrid silica powder was synthesized and then calcined to liberate the porosity. The mesoporous silica was then functionalized with different polymers of PEG of low molecular weight then by a simple solution impregnation. The hybrid powders were shaped as pellets, presenting inter- and intra-particle porosity. It was shown that the hybrid pellets present promising ionic conductivity properties when the inter- and intraparticle porosities are filled with the PEG-LiTFSI complex for PEG of low molar mass (300-600 g/mol). In the second part, mesoporous silica films were deposited on a glassy carbon electrode using a rotating disc electrode (RDE). After the characterization of these films from a textural properties and a microstructure point of view, they were functionalized by the PEG-LiTFSI complex via an impregnation process and the preliminary study of their ionic conductivity was performed
Marchandier, Thomas. "Synthesis, characterization and study of the properties of new exotic lithium ion intercalation compounds." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS276.
Full textGlobal warming is one of the major challenges of the 21st century. In order to curb it, a change in our energy mix is necessary. However, most renewable energy sources are intermittent and efficient storage devices must be developed. Li-ion technology is among the most interesting solutions. However, the demand for ever greater energy density requires improvement of these systems. One of the most limiting elements is the positive electrode, which has led to a frantic research in this field over the last 40 years. However, most of the lithium intercalation materials listed in the databases have been explored and ideas are running out. The aim of this thesis is then to explore different ways to synthesize new lithium insertion compounds.Thus, in a first step we are interested in low temperature synthesis routes to obtain original materials. Indeed, most of the traditional syntheses are done at high temperature and lead only to the most stable compounds leaving metastable ones inaccessible. Thus, we have studied a hydrothermal synthesis process of ruthenium oxides which allowed us to obtain several new compounds, some of which present interesting electrochemical and/or magnetic properties. Then we have re-explored the chemistry of lithium sulfides left fallow for many years. We have shown that there are still unexplored compositions in this family that can help to understand complex electrochemical mechanisms observed in oxides. Finally, we have studied in turn the electrochemical properties of oxysulfides and halide compounds. This confirms that great discoveries are still to be made and reminds us of the potential of this insertion chemistry beyond energy storage
Lancel, Gilles. "Synthèse et caractérisation de membranes hybrides pour la conduction des ions lithium, et application dans les batteries lithium-air à électrolyte aqueux." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066011/document.
Full textAqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic conductivity is provided by a nanostructured solid electrolyte ceramic: both Li1,4Al0,4Ti1,6(PO4)3 (LATP) and Li0,33La0,57TiO3 (LLTO) were studied. The water tightness is ensured by a fluorinated polymer. Different powders synthesis methods are reported and compared in terms of purity, microstructure, specific surface area and electrochemical properties. Especially, the LATP microwave-assisted synthesis is reported for the first time. Sub-micrometric LATP particles were obtained in times as short as 2 min. The fabrication of hybrid membranes from suspension is then reported. In a second approach, the coupling between sol-gel chemistry and electrospinning made possible the fabrication of a self-standing lithium-conducting network, made of interconnected crystalline nanofibers. After an impregnation step, a flexible, lithium-conducting and watertight hybrid membrane is obtained. A mechanical reinforcement is observed, which is attributed to the inorganic nanofibers. This approach is exposed for both LATP and LLTO solid electrolytes. This work opens new prospects in lithium-air, lithium-sulfur and lithium-ion batteries
Hallot, Maxime. "Micro-batteries tout solide en technologie Li-ion sur substrats Silicium planaires et tridimensionnels pour objets connectés." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I115.
Full textMiniaturized sensors for Internet of Things (IoT) application is in expansion since the last 10 years. All solid-state lithium-ion battery is a promising candidate. Nevertheless, in spite of high technological readiness level, planar micro-batteries suffer from a lack of energy density meaning that it is necessary to develop new architectures to fullfill the performances requirements. 3D structures is needed for such application and this work is focused on the synthesis of positives electrodes with high storage capacity and high operating voltage by Atomic layer deposition (ALD). In the frame of this work,we will rely structurals and electrochemicals properties by differents characterisations techniques for batteries materials
Grenier, Antonin. "Development of solid-state Fluoride-ion Batteries : cell design, electrolyte characterization and electrochemical mechanisms." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066128/document.
Full textSolid-state fluoride-ion batteries rely on the reversible exchange of the F- ion between a metal and a metal fluoride through a solid electrolyte. These electrochemical devices can theoretically reach energy densities superior to conventional Li-ion commercial batteries. Consequently, fluoride-ion batteries can be seen as a new promising chemistry generating a growing interest. In this context, a part of our work has been dedicated to the development of a cell allowing the evaluation of their electrochemical performance. Moreover, particular attention was given to the electrochemical properties of the solid electrolyte, BaF2-doped LaF3, La1-xBaxF3-x. Finally, the structural changes taking place at the electrodes upon charge/discharge were studied in order to gain insight into the electrochemical mechanisms involved in these devices