Dissertations / Theses on the topic 'Batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Padigi, Sudhaprasanna Kumar. "Multivalent Rechargeable Batteries." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2464.
Full textLu, Xueyi. "Architectural Nanomembranes as Cathode Materials for Li-O2 Batteries." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228120.
Full textToigo, Christina Verena <1986>. "Towards eco-friendly batteries: concepts for lithium and sodium ion batteries." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10067/1/Thesis%20CT_final.pdf.
Full textTroncoso, Abelleira Maria Teresa. "Batteries for marine applications." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22408.
Full textRud, Andrew, and Андрій Андрійович Рудь. "Batteries of the spacecraft." Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50736.
Full textThe study and development of space requires the development and improvement of spacecraft for various purposes. In this case, it is economically feasible to increase the service life of the spacecraft. The high level of reliability and quality of operation of onboard systems and equipment of spacecraft largely depend on the efficiency of their power supply systems. As practice shows, the primary source of energy in the energy supply system is the solar battery. It determines the period of active existence of the spacecraft. Failure of the solar battery leads to the gradual failure of the entire power supply system.
Вивчення та освоєння космосу вимагає розробки та вдосконалення космічних кораблів різного призначення. У цьому випадку економічно доцільно збільшити термін служби космічного корабля. Високий рівень надійності та якості експлуатації бортових систем та обладнання космічних кораблів багато в чому залежать від ефективності їх систем електропостачання. Як показує практика, основним джерелом енергії в системі енергопостачання є сонячна батарея. Він визначає період активного існування космічного корабля. Несправність сонячної батареї призводить до поступового виходу з ладу всієї системи електропостачання.
Fung, Kwok Yuk Anna. "A feasibility study of the used battery collection programme in Hong Kong /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21301876.
Full textTam, Cheuk-wai. "A preliminary study of recycling batteries in Hong Kong /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B17457075.
Full textYang, Luyi. "Batteries beyond Li-ion : an investigation of Li-Air and Li-S batteries." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/384921/.
Full textRohde, Michael [Verfasser], and Ingo [Akademischer Betreuer] Krossing. "New conducting salts for rechargeable lithium-ion batteries = Neue Leitsalze für wiederaufladbare Lithium-Ionen Batterien." Freiburg : Universität, 2014. http://d-nb.info/1123481490/34.
Full textWang, Gang, Faxing Wang, Panpan Zhang, Jian Zhang, Tao Zhang, Klaus Müllen, and Xinliang Feng. "Polarity‐Switchable Symmetric Graphite Batteries with High Energy and High Power Densities." WILEY‐VCH, 2018. https://tud.qucosa.de/id/qucosa%3A34564.
Full textValøen, Lars Ole. "Metal hydrides for rechargeable batteries." Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-2068.
Full textDumancic, Dominik. "Flow batteries : Status and potential." Thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12975.
Full textNya idéer och lösningar är nödvändiga för att möta utmaningarna i elbranschen. Användningen av elektriskt lagringssystem (ESS) kan förbättra kvalitén och stabiliteten av det nuvarande elnätet. ESS kan användas till toppbelastningsutjämning, istället för att installera nya produktions eller kraft överförnings enheter, förnybar energi tidsförskjutning och många andra tjänster. I dagsläget finns det få olika ESS: Mekaniska, elektriska och elektrokemiska lagringssystem. Flödesbatterier tillhör kategorin elektrokemiska lagringssystem som använder sig utav elektrolyt som är lagrad i en tank separerad från battericellen. För att kunna förstå hur flödesbatteriernas funktioner och på vilket sätt som dem lagrar elektriskt energi är det viktigt att kunna elektrokemi. Flödesbatteriernas funktion är baserad på reduktions och oxidations reaktioner i cellen. Nernsts ekvation används för att kunna uppskatta voltantalet i en cell. Nernsts ekvation säger hur halvcell potentialen ändras beroende av ändringen av koncentrationen av ämnet involverat i oxidations eller reduktions reaktionen. Det första flödesbatteriet uppfanns 1880-talet, men blev bortglömt under en lång tid. Vidare utveckling förnyades under 1950 och 1970-talet. Ett flödesbatteri består utav två parallella elektroder som är separerade utav ett jonbytes membran vilket formar två halvceller. Dem elektroaktiva materialen är lagrade externt i elektrolyt och är införs bara i anordningen under användning. Vanadium redox batteriet (VRB) är baserat på dem fyra möjliga oxidations tillstånden av vanadium och har en standard potential på 1.23 V. Fullt joniska ekvationer av VRB inkluderar protoner, svavelsyra och deras motsvarande salter. Kapitalkostnaden av ett VRB är ungefär 426 $/kW och 100 $/kWh. Det finna andra flödesbatterier som är polysulfide-brom, zink-brom, vanadium-brom, järn-krom, uran, neptunium och löslig blysyre redox flödesbatterier. Flödesbatterier har en lång omloppstid samt en snabb svarstid men är komplicerade jämfört med andra batterier.
Paul, Gary William. "Absenteeism management at Willard Batteries." Thesis, Nelson Mandela Metropolitan University, 2008. http://hdl.handle.net/10948/896.
Full textHerstedt, Marie. "Towards Safer Lithium-Ion Batteries." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3542.
Full textLagerbäck, Findus. "Charging Switch for two batteries." Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93588.
Full textHopkins, Brandon J. (Brandon James). "Mechanical design of flow batteries." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/87922.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 72-73).
The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing static and moving electrode architectures that identifies which architecture is most appropriate for which materials and how to modify those materials to decrease cost and increase efficiency. The cost model and mechanical designs presented will help researchers (i) identify how to modify existing materials, (ii) find new desirable materials, and (iii) use those materials in novel flow battery structures to create next-generation batteries.
by Brandon J. Hopkins.
S.M.
Tangirala, Ravichandra. "Developments in redox flow batteries." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/361961/.
Full textXu, Chao. "All silicon lithium-ion batteries." Licentiate thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261626.
Full textFACCHINETTI, IRENE. "Thermally Regenerable Redox-Flow Batteries." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/308694.
Full textLow-Temperature Heat (LTH), below of 100°C, has elicited great interest among the scientific community, as a source of energy since it does not see any form of utilization as it is currently simply released into the environment. Its conversion would open the doors to the exploitation of a huge amount of energy as well, such as geothermal, solar, and industrial waste heat. The conversion efficiencies of LTH are low because of the limitations imposed by Carnot law, as well as the existence of technological limits which further reduce the efficiency of the conversion of LTH. In order to be suitable for extensive industrial production, LTH converters should show high power densities, scalable and efficient whilst being cost-effective; to this point, the devices proposed for this afore mentioned application all failed to achieve suitable efficiencies and power density, making the LTH conversion unfeasible. This PhD project was focused on the design of a device called Thermally Regenerable Redox-Flow Battery (TRB) consisting of a redox-flow battery that can be recharged by a thermal process. The device is based upon a two-stages technology composed by a “power production” stage and a “thermal” stage: power production happens in an electrochemical cell which release electricity at the expenses of the mixing free energy of two water solutions of the same salt at different concentrations, referred to as a concentration cell. When the two solutions reach the same concentration, the exhausted fluid is sent to the second stage, the thermal process, which regenerates the initial mixing free energy, by exploiting LTH sources, through vacuum distillation. The efficiency of the technology is the product between the efficiencies of the units in the device where both stages happen: the electrochemical cell, engineered for power production, and a distillation unit, designed to be responsible for thermal conversion. NaI/I2 and LiBr/Br2 water solutions will be the most discussed redox couple in this thesis, as result of thermodynamic analysis that have shown the importance related to the solvent and salt choice to ensure high energy conversion efficiencies. The achieved results, as well as the main research activities, are briefly reported here: starting from the determination of the activity coefficients, mixing free energy of the initial solutions, and the open circuit voltage of the electrochemical are calculated. Electrochemical cells are specifically designed for both systems while electrochemical tests are performed to evaluate the main performances of the devices, such as power density and electrochemical efficiency. Modeling of the operational conditions of the thermal stage allows to determine the distillation efficiency for both the solutions. The initial experiments prove an unprecedented heat-to-electricity efficiency for both the systems: 3% for TRB-NaI and 4-5% for TRB based on LiBr, depending on the thickness of the membrane with a power density output of almost 10 W m-2 for both technologies, which opens various possibilities to implement further improvements into this new class of energy storage/converter devices.
Jouhara, Alia. "De la conception de matériaux d'électrode organiques innovants à leur intégration en batteries "tout organique"." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT4026/document.
Full textMeeting the ever-growing demand for electrical storage devices, without depleting natural resources, requires both superior and “greener” battery technologies. Developing organic batteries could well provide part of the solution since the richness of organic chemistry affords us a multitude of avenues for uncovering innovative electrode materials based on abundant, low-cost chemical elements. Nearly 40 years after the discovery of conductive polymers, long cycling stability in Li-organic batteries has now been achieved. However, the synthesis of high-voltage lithiated organic cathode materials and the synthesis of low-voltage p type organic anode materials is still rather challenging, so very few examples of all-organic cells currently exist. Herein, we first present an innovative approach consisting in the substitution of spectator cations and leading to a significant increase of the redox potential of lithiated organic electrode materials thanks to an inductive effect. These results enable developing an all-organic Li-ion battery able to deliver an output voltage above 2.5 V for more than 300 cycles. We then design two p type organic electrode materials able of being charged at low potentials for developing all-organic Anion-ion batteries able to deliver an output voltage at least 1.5 V. Finally, we present a preliminary study of a new family of potentially bipolar compounds
Leandersson, Regina. "Optimal usage of EV batteries – V2X and second life of batteries : From a circular economy perspective." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281779.
Full textDet ökande antalet elbilar kommer att resultera i ökad efterfrågan av elektricitet och då även överskrida tillgängligheten på elnätet. För att hantera utveckling som denna är nya innovationer och kraftfulla policys vitalt. Elbilar förväntas att kunna användas som dynamisk energilagring och leda till energibesparingar och intäkter. Genom innovationer som vehicle-to-grid (V2G) och vehicle-to-building (V2B) finns det potential för elbilar att ladda upp batteriet när elpriserna är låga och sedan ladda ur batteriet när priserna är höga. Den urladdade energin kan då exempelvis säljas till elnätet (V2G) eller levereras till en byggnad (V2B) och således leda till intäkter eller reducerade elkostnader. Trots fördelarna med att tillämpa elbilsbatterier för urladdning, tillkommer följder av ökad degradering av batteriet på grund av upp- och urladdning. Då batteriet inte är lämpligt för användning i elbilar när det degraderat till 80 procent av den initiala kapaciteten, finns det även en problematik. Detta skulle kunna hanteras genom att återanvända batteriet i lagringslösningar och öka lönsamheten i att använda dynamisk energilagring, förlänga livslängden men även bidra till den cirkulära ekonomin. Den här studien syftar till att optimera potentialen, besparingar och intäkter av elbilsbatterier i ett cirkulärt perspektiv genom V2B och V2G och därefter återanvända elbilsbatteriet för energilagring med solceller i ett bostadshus. För detta, användes linjär programmering. Vidare integrerades en fallstudie med verkliga data från ett bostadshus i Schweiz med solceller. Resultaten visar att batteriets livslängd reduceras till 3,11 år genom att använda V2G/V2B, men är starkt påverkat av inmatningsdata, degraderings modellen och försäljningspriset av elektricitet. Under batteriets livstid kunde elbilsbatteriet undvika 26% av elkostnaderna jämfört med att inte implementera V2B/V2G. Sammantaget leder sådan användning av elbilsbatterier till energi- och ekonomiska besparingar, men på grund av den signifikanta reduceringen i livslängd och höga investeringskostnader, räcker det inte för att motivera implementerandet av sådana tekniker som det ser ut idag. Det finns därmed ett behov av subventionering av elbilsbatterier för att använda V2B/V2G. Vidare, när batteriet återanvänds, visar resultaten signifikant besparingspotential som kan bidra till resurseffektivitet och cirkulär ekonomi. I den här studien, varierar livslängden på det återanvända batteriet mellan 2,4 och 9,45 år som ett resultat av försäljningspriset av elektricitet. Således kan batteriets livslängd beroende på applikation förlängas avsevärt genom återanvändning.
Purushothaman, Bushan K. "DEVELOPMENT OF BATTERIES FOR IMPLANTABLE APPLICATIONS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1151609663.
Full textPoli, Federico. "Design of novel redox flow batteries." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textAndersson, Anna. "Surface Phenomena in Li-Ion Batteries." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5120-9/.
Full textKawai, Hiroo. "Cathode materials for 5V lithium batteries." Thesis, University of Aberdeen, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287603.
Full textAl-Mahmoud, Saddam Mohammad. "Lithium/sulphur batteries : an electrochemical study." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/382901/.
Full textA simple quantitative one-dimensional model of the initial self-discharge has been developed in terms of diffusion of a polysulfide shuttle species. Despite the simplicity of the model, it reproduces very well the decrease in the open circuit potential of the cells under a range of experimental conditions (varying the number of separators between the electrodes, the amount of AB in the sulfur electrode and the pre-saturation of the electrolyte with sulfur). The model provides a detailed understanding of the mechanism of self-discharge, quantifying the two main causes of sulfur loss from the positive electrode: dissolution followed by diffusion down a concentration gradient and direct reaction with polysulfides arriving from the lithium electrode.
Galvanostatic Intermittent Transient Technique (GITT) measurements were conducted to study the diffusion behaviour in Li/S cells. Analysis of the transient voltage change during and after current pulses was performed at different states of discharge/charge. The relaxation time was optimised to avoid errors due to poor equilibration at short times and self-discharge during longer periods.
Finally, the effect of the shuttle reaction on the electrochemical performance of Li/S cells was investigated using a lithium ion conducting glass ceramic (LICGC) separator in an effort to eliminate the self-discharge. This resulted in a higher discharge capacity and more accurate GITT results, showing that better controlled diffusion conditions can be achieved in a Li/S cell containing LICGC separator.
Harrison, Harry. "Practical magnetic tomography for lead batteries." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/21428/.
Full textBurch, Damian. "Intercalation dynamics in lithium-ion batteries." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54233.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 153-160).
A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to reaction rate laws as boundary conditions to handle the transfer of ions between the crystal and the electrolyte. In this thesis, I carefully derive a second set of boundary conditions--necessary to close the original PDE system--via a variational analysis of the free energy functional; I include a thermodynamically-consistent treatment of the reaction rates; I develop a semi-discrete finite volume method for numerical simulations; and I include a careful asymptotic treatment of the dynamical regimes found in different limits of the governing equations. Further, I will present several new findings relevant to batteries: Defect Interactions: When applied to strongly phase-separating, highly anisotropic materials such as LiFePO4, this model predicts phase-transformation waves between the lithiated and unlithiated portions of a crystal. This work extends the analysis of the wave dynamics, and describes a new mechanism for current capacity fade through the interactions of these waves with defects in the particle. Size-Dependent Spinodal and Miscibility Gaps: This work demonstrates that the model is powerful enough to predict that the spinodal and miscibility gaps shrink as the particle size decreases. It is also shown that boundary reactions are another general mechanism for the suppression of phase separation.
(cont.) Multi-Particle Interactions: This work presents the results of parallel simulations of several nearby crystals linked together via common parameters in the boundary conditions. The results demonstrate the so-called "mosaic effect": the particles tend to fill one at a time, so much so that the particle being filled actually draws lithium out of the other ones. Moreover, it is shown that the smaller particles tend to phase separate first, a phenomenon seen in experiments but difficult to explain with any other theoretical model.
by Damian Burch.
Ph.D.
Chang, Michael Tse-Gene. "Performance targets for electric vehicle batteries." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97943.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 79-88).
Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emissions in 2012 [95]. An important strategy for reducing CO₂ emissions emitted by light-duty vehicles is to reduce per-mile CO₂ emissions. While one approach is to improve vehicle efficiency, greater reductions in emissions can be achieved by switching from gasoline vehicles to electric vehicles, if the electric vehicles run on electricity from clean energy sources. Batteries affect the consumer adoption of electric vehicles by influencing two important vehicle characteristics: cost and driving range on a single charge. The cost of the battery is a significant fraction of total vehicle cost, and the battery's energy capacity determines driving range. To lower battery costs and improve battery energy capacity, further research is needed. To guide such research, several organizations have created performance targets for batteries, including the Advanced Research Projects Agency-Energy (ARPA-E) and the US Advanced Battery Consortium (USABC). The goal of this thesis is to assess these performance targets based on real-world vehicle performance. A method is developed for estimating the energy requirements of personal vehicle travel, which improves upon previous methods by accounting for per-trip variation of vehicle energy consumption and analyzing data with wider geographic scope. The method consists of a model of battery-to-wheel vehicle energy consumption and a conditional bootstrap procedure for combining GPS travel data with large-scale data from the US National Household Travel Survey. The research finds that the distribution of energy requirements for US vehicle-trips and vehicle-days (the sum of all trips taken in a day) has a heavy tail, namely that a small proportion of long trips accounts for a disproportionately large amount of energy consumption. Current electric vehicle batteries (2011 Nissan Leaf) can satisfy 83% of vehicle-days, which account for 53% of all energy consumed in personal vehicle travel, while batteries that meet the performance targets can satisfy 98 to 99% of vehicle-days, which account for 90 to 96% of energy. These results allow for a quantification of the benefits of meeting performance targets for battery energy capacity, which can help assess technology readiness and guide allocation of research funding.
by Michael Tse-Gene Chang.
S.M. in Technology and Policy
Olivetti, Elsa A. "Composite cathodes for lithium rechargeable batteries." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39554.
Full textIncludes bibliographical references.
The utility of incorporating continuous, nanoscale vanadium oxide phases within preferred domains of self-organizing copolymers was investigated towards the fabrication of composite, nanoarchitectured electrode materials for solid-state rechargeable batteries. In situ growth of cathodic phases within ion-conducting copolymer domains was explored as a means to control morphology and to increase the surface-area-to-volume ratio, thereby increasing the specific electrode area for faradaic reactions and decreasing ion diffusion distances within the electrode-active material. Copolymers of microphase-separating rubbery block and graft copolymers, previously developed as solid electrolytes, provide a matrix for directing the synthesis of an inorganic battery-active phase. The copolymers include poly[(oxyethylene)9 methacrylate]-block-poly(butyl methacrylate) (POEM-b-PBMA) with a domain periodicity of -35 nm made by atom transfer radical polymerization, and poly[(oxyethylene)9 methacrylate]-graft-poly(dimethyl siloxane) (POEM-g-PDMS) with a domain periodicity of-17 nm made by free radical polymerization. The resulting microphase-separated polymer is a structure of alternating hydrophilic (Li-ion conducting) and hydrophobic regions.
(cont.) Sol-gel chemistry involving a vanadium alkoxide precursor enabled the in situ growth of cathode-active vanadium oxide within the continuous ion-conducting POEM domains of the microphase-separated copolymers. Resulting films, termed POEM-b-PBMA/VOx and POEM-g-PDMS/VOx, were freestanding and mechanically flexible. Small angle x-ray scattering and transmission electron microscopy revealed the nanoscale morphology of the composite and confirmed the spatially-selective incorporation of up to 34 wt% VO, in POEM-b-PBMA and 31 wt% in POEM-g-PDMS. Electronically conductive components, necessary for wiring of the lithium-active vanadium oxide domains to the external circuit, were added through a variety of methods. Dispersions of acid-treated and cryo-ground carbon black within POEM-b-PBMA/VOx enabled the cycling of this material as a cathode. Reversible capacities of-~ 40 mAh/g were measured for batteries fitted with a polymer electrolyte doped with LiCF3SO3 and a lithium foil anode. Electrolyte thickness studies indicated battery performance was limited by the ionic conductivity of the solid electrolyte.
(cont.) Using liquid electrolyte resulted in improved capacity (at higher currents) over conventional composite cathodes made from sol-gel derived vanadium oxide without the polymer matrix. The vanadium oxide nanoarchitecture was preserved upon removal of the polymer by heat treatment. The resulting templated vanadium oxide, when repotted with carbon black and binder, exhibited improved capacity at high current over non-templated vanadium oxide cathodes.
by Elsa A. Olivetti.
Ph.D.
Ariel, Nava. "Integrated thin film batteries on silicon." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33612.
Full textIncludes bibliographical references (p. 147-158).
Monolithic integration has been implemented successfully in complementary metal oxide semiconductor (CMOS) technology and led to improved device performance, increased reliability, and overall cost reduction. The next element to be incorporated on the silicon chip is the power unit; possibly as part of the back end process of the very large scale integrated (VLSI) circuits' production. This thesis describes the work done in developing and studying thin film integrated lithium ion batteries compatible with microelectronics with respect to the material system employed, the cells' fabrication methods, and performance. The project consisted of three stages; first, a material system new to the battery application field was explored and power cells were fabricated and characterized. In the second stage, the fabrication process of the first material system cells was optimized thereby improving their performance. The third stage dealt with a more conventional battery material system, utilizing thin film technology to fabricate and explore power cells.
(cont.) All the cells fabricated in this work were created using microelectronic technology and were characterized by thin film analysis techniques and by measurement equipment commonly used for microelectronic device testing. The cells were fabricated in four sizes of active areas: 5x5 mm², 2x2 mm², lxl mm², and 0.5x0.5 mm². The first material system consisted of a novel lithium-free electrolyte in the form of an ultra-thin SiO₂ layer, thermally grown from sacrificial polysilicon layer on a doped polysilicon anode. The concept of SiO₂ as an electrolyte is innovative since common solid state lithium and lithium ion batteries consist of 1-2 ptm thick lithium-containing electrolytes. The controlled transport of lithium through SiO₂, 9-40 nm thick, was studied for electrolyte application. The fabricated LiCoO₂/SiO₂/polysilicon cells were successfully charged and discharged. This stage of the project demonstrated the concept of an ultra-thin lithium free electrolyte layer and introduces SiO₂ as an interesting candidate material. The second stage of the project focused on improving the LiCoO₂/SiO₂/polysilicon cell's performance and optimizing its fabrication process.
(cont.) Chemical mechanical polishing (CMP), a typical planarization method in microelectronics, new to the battery application field, was introduced in order to enhance the cell's properties and performance. LiCoO₂/SiO₂/polysilicon cells consisting of Si0₂ layers 7-40 nm thick were studied. Cells with the planarized polysilicon anode were characterized and the planarization effect was evaluated. This stage demonstrates the importance of interfacial quality in thin film batteries and the advantages incorporation of CMP as a planarization step in the fabrication process. Finally, the third stage of the project focused on applying the thin film technology knowledge and expertise to a more commonly used material system V₂0₅/LiPON/LiCoO₂. With the aim of reducing interfacial roughness, a surface morphology study of V₂0₅ was performed, tailoring different deposition conditions and surface morphology. Implementing the optimized conditions obtained from this analysis, a V₂0₅/LiPON/LiCoO₂ rocking-chair battery was studied next. The cells consisted of approximately 100 or 350 nm thick lithium phosphorus oxynitride (LiPON) electrolyte.
(cont.) This stage demonstrated the advantage of thin film technology in reducing film thickness and the performance enhancement achieved. The work described in this thesis approached the thin film battery subject from the microelectronic perspective, in order to "bring the battery into the clean room".
by Nava Ariel.
Ph.D.
Chizarie, Anders. "Driving Implantable Circuits Without Internal Batteries." Thesis, Linköpings universitet, Elektroniksystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-132595.
Full textHuang, Haitao. "Manganese spinels for rechargeable lithium batteries." Thesis, University of St Andrews, 1997. http://hdl.handle.net/10023/13603.
Full textRanom, Rahifa. "Mathematical modelling of lithium ion batteries." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/375538/.
Full textZheng, Jingfeng. "Designing Ionic Polymers for Potassium Batteries." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu155508012993124.
Full textAlam, Tariq Rizvi. "Modeling and Design of Betavoltaic Batteries." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/89648.
Full textPHD
Nazari, Ashkan. "HEAT GENERATION IN LITHIUM-ION BATTERIES." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1469445487.
Full textNwafornso, Tochukwu. "Bismuth anode for sodium-ion batteries." Thesis, Uppsala universitet, Strukturkemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449075.
Full textMcTurk, Euan. "Degradation and processes in lithium batteries." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1cd07380-ac39-4ca2-856d-4903f2a5757a.
Full textBarrett, Lawrence Kent. "Silicon Carbon Nanotube Lithium Ion Batteries." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/6172.
Full textZhu, Juner. "Mechanical failure of lithium-ion batteries." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122143.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 223-244).
The commercialization of lithium-ion batteries has accelerated the electrification process of vehicles. In the past decade, one could see great advances in the life span, cost, performance, specific energy, and specific power of batteries. At the same time, the safety of batteries has not been adequately addressed by most stakeholders in the Electric Vehicle market. The present thesis systematically investigates the deformation mechanisms of the multi-layered structure of lithium-ion battery cells subjected to various loading conditions with particular emphasis on predicting the onset of the electrical short circuit. It starts with a comprehensive testing and modeling study of all the components of the cell, including the current collectors, the separator, the pouch/shell casing, and particularly, the coatings of electrodes.
A detailed computational model for quasi-static loading is subsequently established in Abaqus/explicit, which is very effective to predict the load-displacement response, peak load, displacement to fracture and short circuit, as well as the shear fracture phenomenon. The computational model is then extended to cover the effect of strain rate dependence by introducing the poro-mechanical theory. Darcy's law is used to describe the flow of the electrolyte inside the granular structure of the coating, and the Kozeny-Carman equation is adapted to calculate the permeability of the porous media of the battery cell. The model is shown to accurately predict the strengthening effect of the battery cell under low-speed dynamic loading, observed in experiments. The effect of mechanical deformations of a battery cell on its electrochemical performance is investigated next through a series of control tests on the coin-cell type batteries made of deformed electrodes.
The batteries are tested with ten cycles of charge-discharge, and a clear capacity fade in the damaged cells compared with the undamaged ones is observed. Electrochemical impedance spectroscopy tests are then performed, and the possible mechanism of the capacity fade is proposed. In the last part of the thesis, two applications of the developed computational modeling strategy are exhibited. One is the axial deformation of the 18650 cylindrical cells, and the other is the protective structural design of EV battery pack subjected to a "ground impact".
by Juner Zhu.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
Johansen, Jonathan Frederick. "Mathematical modelling of primary alkaline batteries." Thesis, Queensland University of Technology, 2007. https://eprints.qut.edu.au/16412/1/Jonathan_Johansen_Thesis.pdf.
Full textJohansen, Jonathan Frederick. "Mathematical modelling of primary alkaline batteries." Queensland University of Technology, 2007. http://eprints.qut.edu.au/16412/.
Full textINSINGA, Maria Grazia. "LEAD-ACID BATTERIES WITH NANOSTRUCTURED ELECTRODES." Doctoral thesis, Università degli Studi di Palermo, 2020. http://hdl.handle.net/10447/395216.
Full textXu, Feng. "Propriétés thermo-mécaniques des micro-batteries." Paris 6, 2012. http://www.theses.fr/2012PA066549.
Full textThe miniaturization of electronic devices brings a strong demand for miniaturized power sources. Micro-batteries fit well with this demand. The micro-battery that we studied with the active multilayer system: Ti / a-Si / LiPON / TiOS (lithiated) / Ti has been fabricated by CEA-LITEN. My work is part of the STRESSBAT research project, supported by the French National Research Agency. This project is devoted to the improvement of the electrochemical and thermo-mechanical performances of this type of micro-battery. As the global thermo-mechanical properties of micro-batteries depend on the characteristics of their individual components, my thesis is dedicated primarily to the characterization of mechanical and thermal properties of each of them. We use two techniques both based on "pump-probe" method: picosecond ultrasonics and thermo-reflectance microscopy. Specifically, picosecond ultrasonics allows us to measure the velocities of longitudinal and Rayleigh waves, and if possible, the density of the studied material. These data will help us to deduce some elastic parameters like Young’s modulus and Poisson’s ratio. Thermo-reflectance microscopy allows us to extract the thermal conductivity and diffusivity with the help of the theoretical analysis of lateral heat diffusion. The Ti current collector, LiPON electrolyte, TiOS and a-Si electrodes are studied successively by these two techniques
Shen, Weixiang. "Advanced battery capacity estimation approaches for electric vehicles /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B24872751.
Full textDudezert, Christophe. "Fatigue des batteries Li-ion dans le cadre d'une utilisation véhicule électrique : impact des conditions d'utilisation sur le vieillissement." Paris 11, 2009. http://www.theses.fr/2009PA112350.
Full textThe development of Li-ion, in recent decades has contributed to the establishment of standards in terms of mobility. The demand for miniaturization and performance then favored the develpment of secure storage systems and high autonomy, rather than sustainable. The use of these batteries, as part of an automotive appliaction, for which cycle life are defined for periods of 6 to 15 years, pushes the standards. For this application, aging has become a leading criterion in choosing a technology. From this observation arises the need to develop theorical and experimental tools able to assess and ensure a long service life of the battery. Given the diversity of uses in automotive domain, the need for rapid characterization and complexity inherent in the Li-ion systems, the aging problem of a "vehicle powertrain" has been addressed by an elctrochemical "fatigue" approach inspired from mechanical fatigue studies
Siniard, Kevin Choe Song-Yul. "Thermal electrochemical dynamic modeling of sealed lead acid batteries." Auburn, Ala, 2009. http://hdl.handle.net/10415/1879.
Full textBjörkman, Carl Johan. "Detection of lithium plating in lithium-ion batteries." Thesis, KTH, Kemiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266369.
Full textMed en ökande efterfråga på hållbara transportlösningar så finns det ett behov av elektrifierade fordon. Ett sätt att lagra energi ombord ett elektrifierat fordon är att använda et litium-jon-batteri. Denna batteriteknologi har många fördelar: t.ex. är dessa batterier återladdningsbara, och de kan leverera höga uteffekter samtidigt som de kan ha ett stort energiinnehåll. för att säkerställa en säker drift av litium-jon-batterier måste batteriets styrsystem vara designat med hänsyn till den elektrokemiska dynamiken inuti batteriet. Dock åldras batteriet med tiden, vilket innebär att denna dynamik ändras med tiden, vilket innebär att styrningen av batteriet måste anpassa sig till denna föråldring. Det är möjligt att förutspå åldring av batterier, men vissa åldringsmekanismer kan ske slumpartat, t.ex. via slumpmässiga förändringar i tillverkningsprocessen av batteriet, eller variationer i användningen av batteriet. Genom att därmed bevaka dessa åldringsmekanismer in situ så kan styrsystemets algoritm anpassa sig utmed batteriåldringen, trots dessa slumpartade effekter. En åldringmekanism hos litium-jon-batterier är s.k. litiumplätering. Denna mekanism innebär att litium-joner elektrokemiskt pläteras i form av metalliskt litium på ytan av litium-jon-batteriets negativa elektrod. Mekanismen kan också inducera andra åldringsmekanismer, t.ex. gasutveckling eller elektrolytreduktion. Detta projekt har undersökt en metod för att detektera litiumplätering in situ efter att plätering har skett, genom att både analysera öppencellspänningens (OCV) förändring med tiden direkt efter uppladdning samt analysera de svällande krafterna som uppstår under uppladdning av batteriet. Resultaten visar på en korrelation mellan en hög sannolikhet för litiumplätering och observationen av en topp i svällningskraft och en platå i OCV-kurvan. resultaten visar också en möjlig korrelation mellan påbörjandet av litium-plätering och påbörjandet av toppen i svällningskraft. Vidare visar även resultaten ett troligt samband mellan signalernas magnitud och mängden pläterat litium. Slutligen visar resultaten också ett möjligt samband mellan irreversibelt pläterat litium och ett svällningstryck som ackumuleras med varje uppladdningscykel. Dock krävs det en validering med mer avancerade analysmetoder för att säkerställa användningsbarheten av dessa två signaler, vilket ej var möjligt inom detta projekt.
Cheng, Qingmei. "Materials Design toward High Performance Electrodes for Advanced Energy Storage Applications." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108116.
Full textRechargeable batteries, especially lithium ion batteries, have greatly transformed mobile electronic devices nowadays. Due to the ever-depletion of fossil fuel and the need to reduce CO2 emissions, the development of batteries needs to extend the success in small electronic devices to other fields such as electric vehicles and large-scale renewable energy storage. Li-ion batteries, however, even when fully developed, may not meet the requirements for future electric vehicles and grid-scale energy storage due to the inherent limitations related with intercalation chemistry. As such, alternative battery systems should be developed in order to meet these important future applications. This dissertation presents our successes in improving Li-O2 battery performance for electric vehicle application and integrating a redox flow battery into a photoelectrochemical cell for direct solar energy storage application. Li-O2 batteries have attracted much attention in recent years for electric vehicle application since it offers much higher gravimetric energy density than Li-ion ones. However, the development of this technology has been greatly hindered by the poor cycling performance. The key reason is the instability of carbon cathode under operation conditions. Our strategy is to protect the carbon cathode from reactive intermediates by a thin uniform layer grown by atomic layer depostion. The protected electrode significantly minimized parasitic reactions and enhanced cycling performance. Furthermore, the well-defined pore structures in our carbon electrode also enabled the fundamental studies of cathode reactions. Redox flow batteries (RFB), on the other hand, are well-suited for large-scale stationary energy storage in general, and for intermittent, renewable energy storage in particular. The efficient capture, storage and dispatch of renewable solar energy are major challenges to expand solar energy utilization. Solar rechargeable redox flow batteries (SRFBs) offer a highly promising solution by directly converting and storing solar energy in a RFB with the integration of a photoelectrochemical cell. One major challenge in this field is the low cell open-circuit potential, mainly due to the insufficient photovoltages of the photoelectrode systems. By combining two highly efficient photoelectrodes, Ta3N5 and Si (coated with GaN), we show that a high-voltage SRFB could be unassistedly photocharged and discharged with a high solar-to-chemical efficiency
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry