Dissertations / Theses on the topic 'Battery storage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Battery storage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kerr, John C. H. "Polymer battery studies." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236224.
Full textRydberg, Lova. "RTDS modelling of battery energy storage system." Thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-155960.
Full textKromlidis, S. "Battery energy storage for power quality improvement." Thesis, University of Manchester, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556320.
Full textMaskey, Anuj. "Battery energy storage system control algorithm design." Thesis, Maskey, Anuj (2019) Battery energy storage system control algorithm design. Honours thesis, Murdoch University, 2019. https://researchrepository.murdoch.edu.au/id/eprint/52653/.
Full textBörjesson, Philip, and Patrik Larsson. "Cost models for battery energy storage systems." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245187.
Full textDenna studie syftar till att identifiera befintliga modeller för att estimera kostnader för batterilagringssystem för både små och storskaliga applikationer samt att från tillgänglig litteratur, analysera och estimera framtida kostnader för batterilagringsystem. Studien presenterar medelvärden på ”levelized cost of storage (LCOS)” baserat på befintliga kostnadsberäkningar och marknadsdata för tre olika batteriteknologier: litiumjon, bly och vanadin-flödesbatteri. Dessa medelvärden kan ses som riktmärken för kostnader av batterilagringssystem idag. Resultaten visar att LCOS för ett litiumjonbatteri är 30 USDc/kWh och att LCOS för ett vanadin-flödesbatteri i storskaliga applikationer är 34 USDc/kWh. För småskaliga applikationer visar resultaten att LCOS för ett litiumjonbatteri är 43 USD/kWh och 41 USD/kWh för ett blybatteri. Studien genomförde även en känslighetsanalys på LCOS för att identifiera vilka parametrar som har störst påverkan på LCOS. Medelvärdena och resultatet från känslighetsanalysen, kombinerat med marknadsdata om framtidens kostnadsutveckling för batterilagring, användes för att estimera LCOS för år 2030. Resultatet från känslighetsanalysen visar att capex, cykler och diskonteringsräntan har störst inverkan på LCOS-formeln. Estimeringen av LCOS för 2030 indikerar att kostnader för batterilagring kommer minska avsevärt. Resultatet visar att för storskaliga applikationer kommer LCOS för ett system med ett litiumjonbatteri minska med 60 % och 68 % för ett med vanadin-flödesbatteri. För småskaliga applikationer minskar LCOS för ett system med litiumjonbatteri med 60 % och 49 % för ett med blybatteri.
Larsson, Patrik, and Philip Börjesson. "Cost models for battery energy storage systems." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235914.
Full textDenna studie syftar till att identifiera befintliga modeller för att estimera kostnader för batterilagringssystem för både små och storskaliga applikationer samt att från tillgänglig litteratur, analysera och estimera framtida kostnader för batterilagringsystem. Studien presenterar medelvärden på ”levelized cost of storage (LCOS)” baserat på befintliga kostnadsberäkningar och marknadsdata för tre olika batteriteknologier: litiumjon, bly och vanadin-flödesbatteri. Dessa medelvärden kan ses som riktmärken för kostnader av batterilagringssystem idag. Resultaten visar att LCOS för ett litiumjonbatteri är 30 USDc/kWh och att LCOS för ett vanadin-flödesbatteri i storskaliga applikationer är 34 USDc/kWh. För småskaliga applikationer visar resultaten att LCOS för ett litiumjonbatteri är 43 USD/kWh och 41 USD/kWh för ett blybatteri. Studien genomförde även en känslighetsanalys på LCOS för att identifiera vilka parametrar som har störst påverkan på LCOS. Medelvärdena och resultatet från känslighetsanalysen, kombinerat med marknadsdata om framtidens kostnadsutveckling för batterilagring, användes för att estimera LCOS för år 2030. Resultatet från känslighetsanalysen visar att capex, cykler och diskonteringsräntan har störst inverkan påLCOS-formeln. Estimeringen av LCOS för 2030 indikerar att kostnader för batterilagring kommer minska avsevärt. Resultatet visar att för storskaliga applikationer kommer LCOS för ett system med ett litiumjonbatteri minska med 60 % och 68 % för ett med vanadinflödesbatteri. För småskaliga applikationer minskar LCOS för ett system med litiumjonbatteri med 60 % och 49 % för ett med blybatteri.
Svensson, Henrik. "Pre-Study for a Battery Storage for a Kinetic Energy Storage System." Thesis, Uppsala universitet, Elektricitetslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-249173.
Full textMurray-Jones, Peter J. "Aspects of the lead acid battery." Thesis, Loughborough University, 1992. https://dspace.lboro.ac.uk/2134/27055.
Full textGonsalves, Valerie Clare. "Studies on the sodium-sulphur battery." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236343.
Full textProtogeropoulos, Christos I. "Autonomous wind/solar power systems with battery storage." Thesis, Cardiff University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320875.
Full textSmith, Ian C. S. M. (Ian Charles) Massachusetts Institute of Technology. "Benefits of battery-uItracapacitor hybrid energy storage systems." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75685.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 85-88).
This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only counterparts. The metric for quantifying the benefits is charge efficiency - the amount of energy delivered to the load per unit charge supplied by the battery. The efficiency gain is defined as the difference in charge efficiency between the hybrid and the battery-only ESS. A custom experimental apparatus is designed and built to supply the current control for charging and discharging the batteries, as well as the data acquisition for measuring energy and current output. Experiments are performed on both ESSs under four different pulsed load profiles: 1. 436 ms pulse period, 10% duty cycle, 8 A pulse amplitude 2. 436 ms pulse period, 25% duty cycle, 8 A pulse amplitude 3. 436 ms pulse period, 10% duty cycle, 16 A pulse amplitude 4. 436 ms pulse period, 25% duty cycle, 16 A pulse amplitude Circuit models are created to accurately represent the battery and ultracapacitors. These models are used in simulations of the same test cases from the physical experiments, and efficiency gains are compared. The circuit models differed from the experimentation by less than 1%. Both experimental and simulated data demonstrate significantly increased charge efficiencies of hybrid ESSs over battery-only ESSs, with demonstrated gains between 10% and 36%. These benefits were greatest for the 16 A, 10% duty cycle test case because it combined the highest pulse amplitude and the shortest duty cycle. It is concluded that high-amplitude, low duty cycle, and low period pulsedload profiles yield the highest efficiency gains.
by .Ian C. Smith
S.M.
Gautam, Himanshu. "The Impact of Customer Battery Storage on the Smart Grids and how Power Tariffs can increase Battery Storages’ penetration percentage." Thesis, KTH, Elektroteknisk teori och konstruktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217829.
Full textBatterilager kommerattspelaenviktigrolliframtidasmartaeldistributionsnät.Sam-tidigt bördetfinnasmöjlighettillvarierandeeltariffstrukturerförelkonsumenter.Dettaexamensarbete fokuserarpåstudieraveffektenavbatterilagringieldistributionsnätetochhureltarifferkanbidratillattökagenomslagetavbatterilager.Studierharävengjortsföratt bedömaeffektenpåeldistributionsnätetavhembatterierochelfordonmedstudieravhurefterfrågan påelinverkas.Specifiktföreslåsnyaeltarifferförettområdedärelräkningarförelkunder jämförsmedexisterandeochföreslagnanyaeltariffer.Arbetet harutförtsisamarbetemellanEllevio,denlokalaeldistributöreniStockholm,ochKTH. FallstudierharutförtsförbostadsområdetNorraDjurgårdsstaden.Vidarehartvåolikatyper avhembatteriervaltsförstudienvilkaärPowervaultrespektiveTeslaPowerwall2.Förstudie avelfordonharTeslaModelSvaltsmed60kWhbatteristorlek.Resultat frånfallstudiernavisarattengruppom480hushållskundermedhembatteri,kanminska totalaefterfråganpåelvidtopplastmedupptill11%.Resultatenvisarattom50%avpersonbilsparkenisammaområdevarelfordonskulleefterfråganavelvidtopplastökamed merän250%.Studiernavisarhurolikaladdningsmönsterförelbilarinverkarpåtotalabelastningen ielnätet.Därmedgesexempelpådencentralarollenelkonsumentenfåridetframtida eldistributionsnätet.Föreslagnaenergitarrifferförelvisarpåmöjlighetentillekonomiskvinst förelkonsumentervilkaanvänderhembatterier.Arbetet liggertillgrundförframtidastudieravinverkanavbatterieristörreområdenochbatteriersomägsaveldistributören.Ettannatområdeförframtidastudierärhurelkon-sumenternas efterfrågeflexibilitetkanökaserhållasgenomvarierandelösningarförelavtalochenergitariffer.
Eriksson, Emma. "Hybrid Renewable Energy Systems with Battery and Hydrogen Storage." Thesis, Griffith University, 2017. http://hdl.handle.net/10072/378157.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Leijonmarck, Simon. "Preparation and Characterization of Electrochemical Devices for Energy Storage and Debonding." Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120199.
Full textQC 20130403
LONGONI, GIANLUCA. "Investigation of Sodium-ion Battery Materials." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/153278.
Full textNa-ion battery technology has recently aroused great interest among all the scientific community, as a valid and more environmentally friendly alternative to Li-ion batteries. The PhD research activity has been mostly devoted to the investigation of reliable active materials for sodium ion battery technology. All the investigated materials, either anode or cathode, have been investigated trying to highlight the major limits and difficulties connected to sodium intercalation and conversion reactions. Among these, some are: i)assessment of Na diffusion in an intercalating host structure, ii)products and reversibility of transition metal oxides conversion reactions, iii) effects of materials crystalline properties on electrochemical performances and iv) features influencing the overall stability of a functional material. In order to keep the most broad-based overview of the problem, it has been chosen to systematically start, for each species electrochemically investigated, from its synthesis and thorough chemical-physical characterization. Rather than a pure electrochemical analysis, a continuous parallelism between morphological features, structural characteristics and performances was encouraged, eventually obtaining a detailed overlook of different classes of active materials for sodium batteries. What has been screened all along the three year-long research period has been a comprehensive investigation of new generation electrochemically active materials for energy storage applications. This implied an inter-disciplinary work in which advanced electro-analytical techniques have been widely used to characterize inorganic compounds or ad-hoc synthesized composites keeping in mind precise structure-performance correlations. Among the investigated classes, a role of relevance has been reserved to intercalating cathode species and conversion anode materials. The former, typically layered transition metal oxides, phosphates and pyrophosphates, are capable of sodium cations insertion, with fast kinetics, between layers or inside channels generated from peculiar atoms arrangement. Conversion anode materials on the other hand, carries out the sodium storage via spontaneous chemical reactions with oxide-based material, such as Co3O4 or Fe2O3, a chalcogenide or a halide. Compared to intercalation materials, conversion ones are more challenging to deal with, due to the following difficulties: i)their not negligible volume change during conversion reaction and the correlated induced mechanical stresses leading to electrode fracturing and pulverization, ii)occurrence of irreversible and parasitic reactions and iii)material operating potentials is often too high (around 1.0 V vs. Na/Na+) and thus not suitable for being used as anode materials inside a sodium cell. A positive feature that makes these material worthy to be studied is the high sodium uptake they are able to bare, bestowing them high theoretical specific capacities (>800 mAh∙g-1). All these aspects have been tackled in designing a conversion anode that might constitute a valid solution toward a sodium secondary battery whole-cell assembly. Together with anode materials also a high-performing and low-cost cathode material has been investigated. The exploratory study of pyrophosphate-MWCNT composite intercalation material led to interesting results referred to fast kinetics and material reliability throughout the cycles. To TiO2 nanocrystals synthesis and crystalline appearance-electrochemical properties correlation has beeb dedicated an exhaustive analysis which allowed to achieve significative advancements in defining the sodium uptake mechanism for pseudo-capacitive oxide-based anode material for sodium-ion batteries.
Qian, Hao. "A High-Efficiency Grid-Tie Battery Energy Storage System." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/29008.
Full textPh. D.
Wang, Chengrui. "Application of Nano-Functional Materials in Energy Storage System." Thesis, Griffith University, 2020. http://hdl.handle.net/10072/392036.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Ooi, Chia Ai. "Balancing control for grid-scale battery energy storage systems." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/93020/.
Full textHoward, Matthew. "Lithium ion conductivity in hydrogen storage and battery materials." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6446/.
Full textKojimoto, Nigel (Nigel C. ). "Pneumatic battery : a chemical alternative to pneumatic energy storage." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74269.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 51).
Pneumatic power is traditionally provided by compressed air contained in a pressurized vessel. This method of energy storage is analogous to an electrical capacitor. This study sought to create an alternative pneumatic device, the pneumatic battery, that would be analogous to an electrical battery. A pneumatic battery allows energy to be stored chemically in a Hydrogen Peroxide (H2O2) solution and released when the solution decomposes, producing oxygen gas. This decomposition is sped up with the aid of a platinum catalyst. A mechanical negative feedback system regulates the exposure of the catalyst, allowing the battery to generate a user specified pressure at its outlet. The prototype produced was observed to generate an outlet pressure of up to 470 kPa (68 psi) and is theoretically capable of generating up to 689 kPa (100 psi) with a volumetric energy density greater than that of conventional compressed air tanks.
by Nigel Kojimoto.
S.B.
He, Yiou. "The assessment of battery-ultracapacitor hybrid energy storage systems." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91088.
Full text55
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 154-157).
Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage system. In this thesis, an assessment of the benefits of the hybrid ESS relative to its battery-only counterpart in pulse-load applications is investigated for both Nickel-Metal Hydride (NiMH) batteries and Lithium-ion (Li-ion) batteries, and under different load profiles. Specifically, the hybrid ESS in this assessment is of the simplest type - paralleling the ultracapacitors across the batteries without any power electronics interface between them. To quantify this assessment, Discharge Capacity(0) is defined as the amount of energy one can draw out of an ESS per unit charge supplied by this ESS. The metric for quantifying the benefits is energy efficiency gain, defined as the percentage increase in the discharge capability of the hybrid ESS over its battery-only counterpart. The investigation proves that the hybrid system is more beneficial over the battery-only system in terms of how much energy it can output at a specific state-of-charge level. Among the test cases covered by this thesis, the increase in the output energy of Li-ion battery systems by incorporating ultracapacitors can reach to 17% and that of Ni-MH battery systems can reach to 33%. This thesis also shows that the benefits of paralleling ultracapactors across batteries depended upon the discharge profile of the load, the battery type and the capacitance. The benefits increase quadratically with the pulse amplitude, decreases linearly with the duty cycle and inverse with the pulse period. Moreover, capacitors with higher capacitance and lower ESR yield to larger benefits. And for batteries with a higher ESR, the ultracapacitors will show more benefits than for batteries with low ESR.
by Yiou He.
S.M.
Rajasekaram, Nirushan, and Vera Costa. "Solar PV in multi-family houses with battery storage." Thesis, KTH, Energiteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178795.
Full textKopiez, Marius Lasse, and Låås Kristofer Eidner. "Strategic Battery Storage Integration into the Swedish Power Market." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245035.
Full textBattery storage is most certainly going to play a key role in a future Swedish power mix with high shares of renewable sources. To incorporate this new form of storage into comprehensive power market models it is vital to understand their operating strategy in different use cases today and in the future. Three of the most promising cases were investigated: energy arbitrage, wind battery, and residential PV-BESS. The optimal operating strategies were determined using linear programming, real-world data for the past and SWECO’s projections for the year 2040. The results were interpreted for each case separately before they were finally consolidated to evaluate their interplay. It was found that batteries are used to perform on average one full cycle per day and never more than two cycles per day. Characteristic patterns were found for each case on both a daily and seasonal resolution. By 2040 charging is going to be shifted from early morning to midday and discharging from midday to evening. The three cases were found not to exhibit common operating patterns as of today, but to develop more similar patterns in the future scenario. It was hence concluded that it will not be possible to include battery storage systems on a highly aggregated level in power market models. Instead, batteries will have to be integrated as separate units with regards to their respective operating sites and applications. For future studies, it is recommended to extend the model to include probabilistic forecasts as well as the ability to offer different services in different markets.
Moeini, Ali. "Application of battery energy storage in the Québec interconnection." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/26903.
Full textThe Battery Energy Storage (BES) offers significant potential benefits at generation, transmission, distribution, and consumption levels of power systems. More specifically, this technology is considered by various operators around the globe, as a component of incorporating high amounts of renewable energy and as a key tool for large-scale power networks. In addition, other highly valued benefits can be captured by deploying BES technologies in smart grid such as facilitating power management, reducing green house gas emissions, reducing marginal losses, providing emergency power source for some users, and increasing energy efficiency in networks. This thesis comprises three phases: phase 1) application of BES for loss reduction, phase 2) application of BES as spinning reserve for vulnerability mitigation, phase 3) introducing a new method for improving frequency oscillation using reactive power modulation and application of BES for primary frequency reserve. The phase 1, application of BES for loss reduction is divided itself in two steps: step one: optimal allocation and step two: optimal utilization. In step one, Non-dominated Sorting Genetic Algorithm II (NSGA-II) has been coded on Centre de CAlcul Scientifique de l'IREQ (CASIR), the supercomputer of IREQ, as multi-objective evolutionary algorithm that extracts a set of optimal solution for optimal sizing and siting of multiple BESs while minimization of power losses and the total installed capacity of the BES units are simultaneous objective functions. For the sake of step two, a number of solutions are chosen and developed over one year taking into account the hour/rate/efficiency/power factor of the charge and discharge modes while marginal loss reduction or energy efficiency improvement are set as main goals. Phase 1 provides a complete answer for BES allocation and scheduling problem on Québec interconnection. Concerning the phase 2, a new vulnerability index has been introduced, formulated and studied which is suitable for modern power systems that comprise BESs. The NSGA-II is re-executed while minimization of proposed vulnerability index and total installed capacity are main goals. The results reveal that application of BES may prevent major blackouts in some cases. The phase 3 presents a novel idea for adding virtual inertia to power systems using reactive power modulations. The phase 3 also presents a primary study on application of BESs for primary frequency reserve. Generic battery model is introduced to simple Quebec interconnection model in MATLAB. Simulation results confirm the applicability of both active and reactive powers of BES architecture for frequency regulation.
Kasetsuwan, Rit. "Eco battery exchange system /." Online version of thesis, 1992. http://hdl.handle.net/1850/11223.
Full textRen, Xiaodi Ren. "Rechargeable Potassium-Oxygen Battery for Low-Cost High-Efficiency Energy Storage." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1468857236.
Full textChan, Siu-wo. "Design, control and application of battery-ultracapacitor hybrid systems." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38816660.
Full textBao, Jianli. "The rechargeable lithium/air battery and the application of mesoporous Fe₂O₃ in conventional lithium battery." Thesis, St Andrews, 2009. http://hdl.handle.net/10023/897.
Full textXie, Jin. "Synthesis and characterization of inorganic nanostructured materials for advanced energy storage." Thesis, Boston College, 2015. http://hdl.handle.net/2345/bc-ir:104493.
Full textThe performance of advanced energy storage devices is intimately connected to the designs of electrodes. To enable significant developments in this research field, we need detailed information and knowledge about how the functions and performances of the electrodes depend on their chemical compositions, dimensions, morphologies, and surface properties. This thesis presents my successes in synthesizing and characterizing electrode materials for advanced electrochemical energy storage devices, with much attention given to understanding the operation and fading mechanism of battery electrodes, as well as methods to improve their performances and stabilities. This dissertation is presented within the framework of two energy storage technologies: lithium ion batteries and lithium oxygen batteries. The energy density of lithium ion batteries is determined by the density of electrode materials and their lithium storage capabilities. To improve the overall energy densities of lithium ion batteries, silicon has been proposed to replace lithium intercalation compounds in the battery anodes. However, with a ~400% volume expansion upon fully lithiation, silicon-based anodes face serious capacity degradation in battery operation. To overcome this challenge, heteronanostructure-based Si/TiSi2 were designed and synthesized as anode materials for lithium ion batteries with long cycling life. The performance and morphology relationship was also carefully studied through comparing one-dimensional and two-dimensional heteronanostructure-based silicon anodes. Lithium oxygen batteries, on the other hand, are devices based on lithium conversion chemistries and they offer higher energy densities compared to lithium ion batteries. However, existing carbon based electrodes in lithium oxygen batteries only allow for battery operation with limited capacity, poor stability and low round-trip efficiency. The degradation of electrolytes and carbon electrodes have been found to both contribute to the challenges. The understanding of the synergistic effect between electrolyte decomposition and electrode decomposition, nevertheless, is conspicuously lacking. To better understand the reaction chemistries in lithium oxygen batteries, I designed, synthesized, and studied heteronanostructure-based carbon-free inorganic electrodes, as well as carbon electrodes whose surfaces protected by metal oxide thin films. The new types of electrodes prove to be highly effective in minimizing parasitic reactions, reducing operation overpotentials and boosting battery lifetimes. The improved stability and well-defined electrode morphology also enabled detailed studies on the formation and decomposition of Li2O2. To summarize, this dissertation presented the synthesis and characterization of inorganic nanostructured materials for advanced energy storage. On a practical level, the new types of materials allow for the immediate advancement of the energy storage technology. On a fundamental level, it helped to better understand reaction chemistries and fading mechanisms of battery electrodes
Thesis (PhD) — Boston College, 2015
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Liu, Lollo. "Life Cycle Assessment of a Lithium-Ion Battery pack for Energy storage Systems : - the environmental impact of a grid-connected battery energy storage system." Thesis, Uppsala University, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428627.
Full textStienecker, Adam W. "An ultracapacitor - battery energy storage system for hybhrid electric vehicles /." See Full Text at OhioLINK ETD Center (Requires Adobe Acrobat Reader for viewing), 2005. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=toledo1121976890.
Full textTypescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Engineering." Bibliography: leaves 61-63.
Abdalla, Abdallah Hussin. "Iron-based rechargeable batteries for large-scale battery energy storage." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19953/.
Full textStienecker, Adam W. "An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles." University of Toledo / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1121976890.
Full textXiao, Neng. "Probing Potassium–Oxygen Battery Chemistry for Efficient Electrochemical Energy Storage." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu155507996336995.
Full textGeerdts, Philip Clifford. "Computer simulation of stand-alone photovoltaic systems with battery storage." Master's thesis, University of Cape Town, 1991. http://hdl.handle.net/11427/22177.
Full textThis report describes a computer program which has been developed to simulate accurately the performance of stand alone photovoltaic systems with battery storage on an hourly basis for one simulated year. The program incorporates models of the POA irradiance, the photovoltaic cell · temperature and the battery temperature to simulate the environmental conditions of the system. These require hourly weather data as input. Typical meteorological years, which constitute a suitable form of input weather data, have been generated for those weather stations in Southern Africa which contain sufficient data. The energy flows within the system are simulated using models of the following parameters: photovoltaic module current, regulator efficiency and voltage, battery current and voltage, inverter efficiency, load shed voltage and load current. These models incorporate versatility in the level of modelling complexity (determined typically by the availability of the data used to characterise the components). The various models are encapsulated in modular units to facilitate alteration and updating at a later stage. The program is designed to simulate photovoltaic systems without maximum power point trackers, necessitating the use of interactive curve solving to compute the system operating point at any time. A robust and comprehensive algorithm has been implemented to execute this function. Improved battery modelling has been effected using data and experience acquired from a parallel research project. The program facilitates, with the judicious selection of input weather data, the economical sizing of systems in that it incorporates loss of power probability analysis and offers a high level of modelling precision. The simulation performance of the program compared favourably with that of PVFORM. The system performance estimated by PVFORM was marginally better, which is expected because PVFORM assumes that the system operates with a maximum power point tracker. In the development of the program there has been a focus on creating an effective user interface. This is designed to simplify and speed up program operation, and to present output in a form which is useful and illustrative.
Akeyo, Oluwaseun M. "ANALYSIS AND SIMULATION OF PHOTOVOLTAIC SYSTEMS INCORPORATING BATTERY ENERGY STORAGE." UKnowledge, 2017. http://uknowledge.uky.edu/ece_etds/107.
Full textSingh, Yuvraj. "Wind-solar energy integration including battery storage at Murdoch University." Thesis, Singh, Yuvraj (2017) Wind-solar energy integration including battery storage at Murdoch University. Honours thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/40479/.
Full textJabal, Ameli Nasim. "Rooftop PV with battery storage for constant output power production." Thesis, Curtin University, 2013. http://hdl.handle.net/20.500.11937/579.
Full textSyed, Moiz Masood. "Shared Solar Generation and Battery Storage Systems in Residential Microgrids." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/86206.
Full textRahman, Md Mustafizur. "Microgrid frequency control using multiple battery energy storage system (BESSs)." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/90856/1/MD%20Mustafizur_Rahman_Thesis.pdf.
Full textHung, Duong Quoc. "Smart integration of distributed renewable generation and battery energy storage." Thesis, The University of Queensland, 2014. https://espace.library.uq.edu.au/view/UQ:342027.
Full textSUN, C. "Electrical energy storage by electrochemical vanadium redox flow battery methods." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3424975.
Full textLe batterie Redox a Flusso (RFB) sono celle elettrochimiche capaci di convertire reversibilmente l'energia chimica immagazzinata in coppie redox in energia elettrica. Le batterie a flusso al vanadio (VRFB) sfruttano coppie redox entrambe basate su specie di vanadio. Per far sì che la tecnologia VRFB sia commercialmente valida, occorre superare barriere tecniche ed economiche che includono elevati costi di capitale ed un rapido decadimento della capacità. L'obiettivo principale di questa tesi è di ottenere VRFB ad alte prestazioni e di lunga durata, principalmente riducendo la permeabilità del vanadio attraverso la membrana. Al giorno d'oggi nelle VRFB vengono utilizzate membrane a base di acido perfluorosolfonico, come il Nafion. Il Nafion ha un'elevata stabilità chimica e meccanica, e presenta una buona conducibilità protonica. La VRFB con membrana al Nafion hanno un rapido decadimento della capacità a causa dell'alto crossover del vanadio. Per superare i limiti del Nafion, questa tesi riporta la sintesi e la caratterizzazione di membrane ibride inorganico-organiche conduttrici di protoni alternative agli ionomeri perfluorurati. Due famiglie di membrane ibride sono state ottenute: 1) membrana di Nafion drogata con nanofiller WO3, per ridurre il crossover del vanadio mantenendo un’elevata conducibilità protonica; 2) sintesi di una membrana a base di poli(etere-etere-chetone) solfonato (SPEEK), con grado di solfonazione ottimizzato. Anche la membrana a base di SPEEK viene poi drogata con WO3 per ridurre il crossover del vanadio. Nelle membrane ibride preparate mediante una procedura di solvent-casting, l'introduzione di nanoparticelle di WO3 non altera in modo significativo gli eventi di degradazione termica della matrice polimerica, mantenendo così una buona stabilità termica. Misure MDSC rivelano che nelle membrane ibride gli eventi termici sono leggermente spostati a causa della formazione di "crosslink dinamici" tra le nanoparticelle di WO3 e la matrice polimerica, che stabilizzano la membrana. La dimensione dei domini idrofili e l’assorbimento d’acqua della mambrana si riducono all’aumentare del contenuto di WO3. Di conseguenza, i percorsi di migrazione di carica diventano più tortuosi. Questa maggiore tortuosità alla migrazione di carica corrisponde ad una permeabilità inferiore delle specie vanadio. Al contrario del vanadio, la tortuosità ha probabilmente un effetto inferiore per i protoni, poiché gli ioni di vanadio attraversano solo i domini massivi di acqua, mentre i protoni vengono scambiati anche alle interfacce polimero-nanofiller. Così, la permeabilità al vanadio delle membrane ibride diminuisce significativamente e la selettività degli ioni è molto migliorata rispetto al Nafion. Le migliori membrane ibride sono scelte per il test in cella VRFB. Esse esibiscono una maggiore efficienza coulombica rispetto al riferimento Nafion 212. La ridotta permeazione delle specie di vanadio è rivelata anche dal minore decadimento della capacità di scarica e dai tempi di autoscarica più lunghi per le membrane ibride. Pertanto, la nuova famiglia di membrane ibride è un promettente candidato per l'applicazione in VRFB. Il capitolo finale descrive lo studio, attraverso la spettroscopia Raman, delle specie presenti nella soluzione positiva (catolita) di una VRFB in funzione dello stato di carica (SOC). Gli equilibri dovuti alla presenza di complessi di coordinazione del vanadio, che interagiscono fortemente con i leganti HSO4- e SO42-, vengono evidenziati. In particolare, viene dimostrato come il catolita includa specie addizionali oltre a VO2+ e VO2+, quali HV2O5- e H3V2O7-. La presenza di tali specie deve essere considerata per comprendere in dettaglio i processi di scarica e carica che avvengono agli elettrodi di una VRFB. Infatti, su queste basi, ci si aspetta il coinvolgimento di un'ampia distribuzione di specie V(IV) e V(V), che potrebbero influenzare le caratteristiche macroscopiche significativamente cruciali di una VRFB.
McCulloch, William David. "Electrochemical Energy Conversion and Storage through Solar Redox Flow and Superoxide Batteries." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524054086338847.
Full textLi, Jianwei. "Design and assessment of the superconducting magnetic energy storage and the battery hybrid energy storage system." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760945.
Full textKhanaki, Razieh. "Integration of non-isolated converters in battery storage systems: Topology development, evaluation and optimisation." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208259/1/Razieh_Khanaki_Thesis.pdf.
Full textLtaief, Mohamed Ali Ben. "Development of a bipolar nickel-iron battery prototype for energy storage." University of Western Cape, 2021. http://hdl.handle.net/11394/8227.
Full textEnergy storage systems represent a viable option to integrate renewable energy sources into the grid network. Multiple energy storage technologies are available such as mechanical, electrical, thermal, and electrochemical storage technologies. Battery Energy Storage Systems are considered as an accepted solution for energy storage with advantages such as, sustained power delivery, geographical independence and, fast response capability. This thesis describes the development of rechargeable bipolar Nickel-Iron batteries as potential candidates for cost effective energy storage solutions. The first objective of this work was to design a bipolar electrode comprising an Iron (Fe)-based anode, a Nickel (Ni)-based cathode and a flexible bipolar plate and to optimise its production process in order to attain high performance in terms of capacity and efficiency. Research questions to be answered included;
Yuan, Sandy (Sandy Roan-Jane). "Battery storage system sizing evaluation for utility distribution asset investment deferral." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111527.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2017.
"June 2017." Cataloged from PDF version of thesis.
Includes bibliographical references (pages 61-62).
A need exists for systematic evaluation methods of battery storage sizing as an electric utility asset investment. Atlantic Electric, like many US utilities, has begun to consider battery energy storage systems for multiple applications, and will likely continue to evaluate potential investments in energy storage in the future. This thesis develops and evaluates three sizing methodologies for battery energy storage systems for a reliability application at an electric distribution substation. The methods are applied to three substation locations using real historical load data to understand the required supplemental capacity provided by on-site battery storage energy systems in situations of peak demand coinciding with N-1 contingency. The study also includes analysis of business processes for asset planning and recommendations. The results of the analysis indicate that deterministic conservative sizing methods, when compared to a probabilistic historical risk-based method, yield battery size that is significantly larger. The most conservative battery size, which would cover the most extreme capacity needs, is approximately twice the size of the risk-based battery size, which would cover approximately 80% of capacity need events. Going forward, the methodologies from this thesis can be developed further for evaluating battery storage systems for reliability applications among diverse conditions and use cases. Furthermore, integrating multiple use cases and potential value streams for battery storage systems in utility operations will involve cross-functional and comprehensive processes for evaluation in the future.
by Sandy Yuan.
M.B.A.
S.M.
Braff, William Allan. "Membraneless hydrogen bromine laminar flow battery for large-scale energy storage." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87966.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 147-163).
Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required and the rate at which energy must be charged and discharged. One such application aids the integration of renewable energy technologies onto the electrical grid by shifting the output from renewable energy resources to periods of high demand, relaxing transmission and distribution requirements and reducing the need for fossil fuel burning plants. Although the market need for such solutions is well known, existing technologies are still too expensive to compete with conventional combustion-based solutions. In this thesis, the hydrogen bromine laminar flow battery (HBLFB) is proposed and examined for its potential to provide low cost energy storage using the rapid reaction kinetics of hydrogen-bromine reaction pairs and a membrane-less laminar flow battery architecture. In this architecture, fluid reactants and electrolyte flow through a small channel at sufficiently low Reynolds number that laminar flow is maintained and the liquid electrolyte acts as a separator between the reactants. Experimental results from a proof of concept cell are presented, and compared with numerical and analytical modeling results to better understand discharging and recharging behavior. General theoretical principles for the design and optimization of laminar flow batteries are also developed. These results indicate that the HBLFB can efficiently store and discharge energy at very high power densities compared to existing battery technologies using low cost reactants and stack materials at room temperature and atmospheric pressure.
by William Allan Braff.
Ph. D.
Boström, Christoffer. "Optimization of a Household Battery Storage : The Value of Load Shift." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298417.
Full text"Stacked-Value of Battery Storage: Effect of Battery Storage Penetration on Power Dispatch." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.57017.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2020