Academic literature on the topic 'Battery types'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Battery types.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Battery types"

1

Suský, Stanislav. "Elektrolyty pro sodno – iontové akumulátory s použitím iontových kapalin." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442526.

Full text
Abstract:
The content of this work deals with a theoretical search of sodium-based batteries. The first part of the work contains an introduction to the issue of batteries, contains basic concepts, principles of secondary batteries. In the second part, the basic three divisions of sodium batteries according to the design principles are discussed in more detail. He also deals with the theory of ionic liquids. Their mechanical, thermal and electrical properties and the method used to measure electrolytes are described here. The practical part describes the measurement procedure, displays the recorded measured values and their evaluation.
APA, Harvard, Vancouver, ISO, and other styles
2

Ronning, Margaret Ellen. "Core profile types for the cognitive assessment system and Woodcock-Johnson tests of achievement revised their development and application in describing low performing students /." Columbus, Ohio : Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1080136687.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.<br>Title from first page of PDF file. Document formatted into pages; contains xi, 107 p.; also includes graphics. Includes abstract and vita. Advisor: Antoinette Miranda, College of Education. Includes bibliographical references (p. 94-107).
APA, Harvard, Vancouver, ISO, and other styles
3

Bali-Jenčíková, Kateřina. "Měření radioaktivního záření se záznamem geolokace." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316745.

Full text
Abstract:
This diploma thesis deals with radioactivity research, types of radioactive radiation and radiation detection. There are described types of ionization radiation detectors. The diploma thesis contains the description and principle of the GPS system function. The content is also a proposal with the subsequent realization of a detection device allowing the recording of geolocation. The resulting device is fully mobile with battery status indication. The results are recorded on the SD card.
APA, Harvard, Vancouver, ISO, and other styles
4

Difi, Siham. "Phosphates de type NASICON comme matériaux d'électrode pour batteries sodium-ion à haute densité d'énergie." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT212/document.

Full text
Abstract:
Ce mémoire est consacré à l’étude des composites à base de phosphates de type NASICON comme matériaux d’électrode pour batteries sodium-ion : Na1+xFexTi2-x(PO4)3/C et Na1+xFexSn2-x(PO4)3/C avec 0 ≤ x ≤ 1. Ces composites ont été synthétisés par voie solide suivie d’une pyrolyse avec le saccharose. Ils sont constitués de particules ayant une porosité élevée et enrobées par du carbone conférant à l’électrode une bonne conductivité ionique et électronique. Les mécanismes réactionnels se produisant lors des cycles de charge-décharge ont été analysés en mode operando par diffraction des rayons X, spectroscopies Mössbauer du 57Fe et de 119Sn et spectroscopie d’absorption X. Pour les composites fer-titane, ces mécanismes sont essentiellement basés sur la diffusion des ions Na+ dans les canaux des phases cristallisées avec changements d’état d’oxydation des métaux. Pour les composites fer-étain, les mécanismes sont plus complexes incluant insertion, conversion conduisant à la destruction des phases NASICON, puis formation d’alliages NaxSn. Les meilleures performances électrochimiques ont été obtenues pour Na1,5Fe0,5Ti1,5(PO4)3/C avec un potentiel de fonctionnement de 2,2 V vs Na+/Na0. Même si ces deux familles de matériaux peuvent être utilisées à plus bas potentiel, les performances doivent être améliorées pour envisager leur application comme électrode négative<br>This thesis is devoted to the study of phosphate based composites with NASICON type structure, that are used as electrode materials for sodium-ion batteries: Na1+xFexTi2-x (PO4)3/C et Na1+xFexSn2-x(PO4)3/C with 0 ≤ x ≤ 1. These composites were synthesized by solid state route followed by a pyrolysis reaction with sucrose. They consist of particles having high porosity and coated with carbon giving to the electrode good ionic and electronic conductivity. The reaction mechanisms occurring during charge-discharge cycles were analyzed in operando mode, by X-ray diffraction, 57Fe and 119Sn Mössbauer spectroscopies and X-ray absorption spectroscopy. For the iron-titanium composites, the mechanisms are essentially based on the diffusion of Na+ in the channels of the crystalline phases with changes of transition metal oxidation state. For iron-tin composites, the mechanisms are more complex including insertion, conversion leading to the destruction of the NASICON phases and then reversible formation of NaxSn alloys. The best electrochemical performances were obtained for Na1,5Fe0,5Ti1,5(PO4)3/C with an operating potential of 2.2 V vs. Na+/Na0. Although these two types of materials can be used at lower potential, the performances must be improved to consider their application as the negative electrode
APA, Harvard, Vancouver, ISO, and other styles
5

Cholaraju, Narasaraju Vignesh. "Impact of Extended DRX Cycles on Battery Lifetimes and UE Reachability." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196959.

Full text
Abstract:
Several UE energy consumption optimization techniques have been proposed for Machine Type Communication (MTC) devices. Extended Discontinuous Reception (eDRX) in idle mode is one such technique wherein an UE in idle mode wakes up only during its Paging Occasion (PO) to monitor paging messages from eNodeB (eNB). The PO is located within a Paging frame (PF). The PF is a function of System Frame Number (SFN) cycle of eNB. The paging messages may be sent asynchronously from multiple eNBs to a UE. Due to asynchronous operation of eNBs, SFN takes on different values at a given point in time and therefore a paging message is transmitted at different points in time from different eNBs. Due to this SFN misalignment between eNBs, an idle mode UE might receive and respond to the same paging message from different eNBs and/or miss a PO and thus the paging message. Due to this spread in time of SFN and PO, the actual handling of paging message by the UE becomes inefficient leading to increased UE energy consumption and decreased reachability. These issues, resulting from paging handling, will get amplified further if DRX period is extended longer (eDRX). In this study, we investigate the impact of eDRX cycles and mobility related parameters such as UE speed, cell size and size of SFN misalignment between eNBs on UE energy consumption, use of network resources and UE reachability. Receiving and responding to the same paging message results in increased energy consumption for UE and increased signaling between UE and the network. Missing a PO results in delayed paging reception and hence decreases UE reachability. As the DRX cycle lengths are increased from existing maximum of 2.56 seconds to 10.24 seconds and beyond, we see a reduction in UE energy consumption by more than 90%, but the network signaling and the delay to reach the UE increases linearly as a function of the DRX cycle length. We observe that the number of duplicate paging message receptions/missed POs is minuscule for DRX cycle lengths below 10.24 sec. At DRX cycle length of 10.24 seconds, UEs travelling across 500 m cell radius at speeds of 3, 50, 100 km/h the percentage of duplicate paging receptions are 0.07, 0.11, and 0.15 respectively. This duplicate paging message reception increases the UE energy consumption by 2.31, 6.15 and 12 percent of the total energy units respectively. Similarly, UE misses nearly 0.34, 0.39, and 0.405 percent of the total POs respectively. Depending on the number of consecutive PO misses, the UE reachability decreases. But by reducing the size of SFN misalignment between eNBs, we see that it’s possible to increase the reachability for UEs in eDRX. Further we have proposed solutions based on our analytical study to avoid duplicate paging message reception by UE, increase UE reachability and also reduce UE energy consumption using a windowing technique. We conclude that when a UE is configured with eDRX cycles, the tradeoff between battery lifetimes and UE reachability is based on mobility characteristics and service requirements.
APA, Harvard, Vancouver, ISO, and other styles
6

Forouzan, Mohammad Mehdi. "Simulation and Experiments to Understand the Manufacturing Process, Microstructure and Transport Properties of Porous Electrodes." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6791.

Full text
Abstract:
Battery technology is a great candidate for energy storage applications. The need for high-performance and cost-effective batteries has motivated researchers to put much effort into improving battery performance. In this work, we attempt to understand the elements that affect the microstructure and performance of two battery systems. The first part of this work focuses on the investigation of transport and structural properties of porous electrodes in an alkaline electrolyte. A DC polarization method was deployed for tortuosity measurements. An apparatus was designed to flow specified current through and measure the voltage drop over the porous electrodes. Using a modified Ohm's law, effective diffusion coefficient and associated tortuosity were determined. Multiple compositions (different types and amounts of conductive additives) were tested to understand the effects of composition on the transport properties. As a validation and to further understand the tests, a model was developed and used for data analysis. The second part of this dissertation describes simulations of the manufacturing process of a Li-ion electrode. LAMMPS, a particle simulator, was used for this meso-scale particle-based simulation. The interactions between particles were understood by model-experiment comparisons of the macroscopic properties such as viscosity of the slurry and elasticity of the dried film. The microstructure created by this simulation was consistent with the one we observed in SEM/ FIB images. Although the emphasis was the drying process in this part, some preliminary coating and calendering simulations are presented. Finally, the effects of electrode heterogeneity were investigated by a Newman-type model and tomographic images. An electronic conductivity map was initially generated over a Li-ion cathode. Then SEM/FIB images of specified high, middle, and low conductivity regions were taken to confirm heterogeneity. For modeling purposes, three regions of high, middle, and low ionic resistance were considered connected in parallel, representing the real electrode heterogeneity. Multiple cases of heterogeneities such as non-uniform ionic resistance and active material loading at low, middle, and high charge-discharge rates were studied. The results show that higher rates increase non-uniformities of dependent properties such as temperature, current density, positive and negative electrodes states of charge, and charge and discharge capacities especially in charging cases.
APA, Harvard, Vancouver, ISO, and other styles
7

Azari, Amin. "Energy Efficient Machine-Type Communications over Cellular Networks : A Battery Lifetime-Aware Cellular Network Design Framework." Licentiate thesis, KTH, Kommunikationssystem, CoS, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194416.

Full text
Abstract:
Internet of Things (IoT) refers to the interconnection of uniquely identifiable smart devices which enables them to participate more actively in everyday life. Among large-scale applications, machine-type communications (MTC) supported by cellular networks will be one of the most important enablers for the success of IoT. The existing cellular infrastructure has been optimized for serving a small number of long-lived human-oriented communications (HoC) sessions, originated from smartphones whose batteries are charged in a daily basis. As a consequence, serving a massive number of non-rechargeable machine-type devices demanding a long battery lifetime is a big challenge for cellular networks. The present work is devoted to energy consumption modeling, battery lifetime analysis, and lifetime-aware network design for massive MTC services over cellular networks. At first, we present a realistic model for energy consumption of machine devices in cellular connectivity, which is employed subsequently in deriving the key performance indicator, i.e. network battery lifetime. Then, we develop an efficient mathematical foundation and algorithmic framework for lifetime-aware clustering design for serving a massive number of machine devices. Also, by extending the developed framework to non-clustered MTC, lifetime-aware uplink scheduling and power control solutions are derived. Finally, by investigating the delay, energy consumption, spectral efficiency, and battery lifetime tradeoffs in serving coexistence of HoC and MTC traffic, we explore the ways in which energy saving for the access network and quality of service for HoC traffic can be traded to prolong battery lifetime for machine devices. The numerical and simulation results show that the proposed solutions can provide substantial network lifetime improvement and network maintenance cost reduction in comparison with the existing approaches.<br><p>QC 20161103</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Lulu. "Catalytic Performance and Characterization of Zn-doped Cryptomelane-type Manganese Dioxide For Ethanol Oxidation." Miami University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=miami1352827354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

He, Mingfu. "Towards Efficient Solar Energy Conversion and Storage Devices—the p-type Dye-sensitized Solar Cell and Sodium-Oxygen Battery." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480521221820685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mancuso, Martin. "Grid-connected micro-grid operational strategy evaluation : Investigation of how microgrid load configurations, battery energy storage system type and control can support system specification." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40019.

Full text
Abstract:
Operational performance of grid-connected microgrid with integrated solar photovoltaic (PV) electricity production and battery energy storage (BES) is investigated.  These distributed energy resources (DERs) have the potential to reduce conventionally produced electrical power and contribute to reduction of greenhouse gas emissions.  This investigation is based upon the DER’s techno-economic specifications and theoretical performance, consumer load data and electrical utility retail and distribution data.  Available literature provides the basis for DER specification and performance.  Actual consumer load profile data is available for residential and commercial consumer sector customers.  The electrical utility data is obtained from Mälarenergi, AB.  The aim is to investigate how to use simulations to specify a grid connected microgrid with DERs (PV production and a BES system) for two consumer sectors considering a range of objectives.  An open-source, MATLAB-based simulation tool called Opti-CE has successfully been utilized.  This package employs a genetic algorithm for multi-objective optimization.  To support attainment of one of the objectives, peak shaving of the consumer load, a battery operational strategy algorithm has been developed for the simulation.  With respect to balancing peak shaving and self-consumption one of the simulations supports specification of a commercial sector application with 117 kWp PV power rating paired with a lithium ion battery with 41.1 kWh capacity.  The simulation of this system predicts the possibility to shave the customer load profile peaks for the month of April by 20%.  The corresponding self-consumption ratio is 88%.  Differences in the relationship between the load profiles and the system performance have been qualitatively noted.  Furthermore, simulation results for lead-acid, lithium-ion and vanadium-redox flow battery systems are compared to reveal that lithium ion delivers the best balance between total annualized cost and peak shaving performance for both residential and commercial applications.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!