Academic literature on the topic 'Bayes Algorithm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayes Algorithm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayes Algorithm"
Wu, Qinghua, Bin Wu, Chengyu Hu, and Xuesong Yan. "Evolutionary Multilabel Classification Algorithm Based on Cultural Algorithm." Symmetry 13, no. 2 (February 16, 2021): 322. http://dx.doi.org/10.3390/sym13020322.
Full textZonyfar, Candra. "Student Enrollment: Data Mining Using Naïve Bayes Algorithm." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 1077–83. http://dx.doi.org/10.5373/jardcs/v12sp7/20202205.
Full textM, Harshitha, and Dr B. M. Sagar. "Smart Health Care Implementation Using Naïve Bayes Algorithm." International Journal of Innovative Research in Computer Science & Technology 7, no. 3 (May 2019): 90–93. http://dx.doi.org/10.21276/ijircst.2019.7.3.11.
Full textNoviriandini, Astrid, and Nurajijah Nurajijah. "ANALISIS KINERJA ALGORITMA C4.5 DAN NAÏVE BAYES UNTUK MEMPREDIKSI PRESTASI SISWA SEKOLAH MENENGAH KEJURUAN." JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) 5, no. 1 (August 7, 2019): 23–28. http://dx.doi.org/10.33480/jitk.v5i1.607.
Full textDinesh, T. "Higher Classification of Fake Political News Using Decision Tree Algorithm Over Naive Bayes Algorithm." Revista Gestão Inovação e Tecnologias 11, no. 2 (June 5, 2021): 1084–96. http://dx.doi.org/10.47059/revistageintec.v11i2.1738.
Full textPizzo, Anaïs, Pascal Teyssere, and Long Vu-Hoang. "Boosted Gaussian Bayes Classifier and its application in bank credit scoring." Journal of Advanced Engineering and Computation 2, no. 2 (June 30, 2018): 131. http://dx.doi.org/10.25073/jaec.201822.193.
Full textUtami, Dwi Yuni, Elah Nurlelah, and Noer Hikmah. "Attribute Selection in Naive Bayes Algorithm Using Genetic Algorithms and Bagging for Prediction of Liver Disease." JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 4, no. 1 (July 20, 2020): 76–85. http://dx.doi.org/10.31289/jite.v4i1.3793.
Full textM. V., Ishwarya, and K. Ramesh Kumar. "Selective Colligation and Selective Scrambling for Privacy Preservation in Data Mining." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 2 (May 1, 2018): 778. http://dx.doi.org/10.11591/ijeecs.v10.i2.pp778-785.
Full textLasulika, Mohamad Efendi. "KOMPARASI NAÏVE BAYES, SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBOR UNTUK MENGETAHUI AKURASI TERTINGGI PADA PREDIKSI KELANCARAN PEMBAYARAN TV KABEL." ILKOM Jurnal Ilmiah 11, no. 1 (May 8, 2019): 11–16. http://dx.doi.org/10.33096/ilkom.v11i1.408.11-16.
Full textZHANG, HARRY. "EXPLORING CONDITIONS FOR THE OPTIMALITY OF NAÏVE BAYES." International Journal of Pattern Recognition and Artificial Intelligence 19, no. 02 (March 2005): 183–98. http://dx.doi.org/10.1142/s0218001405003983.
Full textDissertations / Theses on the topic "Bayes Algorithm"
Bissmark, Johan, and Oscar Wärnling. "The Sparse Data Problem Within Classification Algorithms : The Effect of Sparse Data on the Naïve Bayes Algorithm." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209227.
Full textI dagens samhälle är maskininlärningsbaserade applikationer och mjukvara, tillsammans med förutsägelser, högst aktuellt. Maskininlärning har gett oss möjligheten att förutsäga troliga utfall baserat på tidigare insamlad data och därigenom spara tid och resurser. Ett vanligt förekommande problem inom maskininlärning är gles data, eftersom det påverkar prestationen hos algoritmer för maskininlärning och deras förmåga att kunna beräkna precisa förutsägelser. Data anses vara gles när vissa förväntade värden i ett dataset saknas, vilket generellt är vanligt förekommande i storskaliga dataset. I den här rapporten ligger fokus huvudsakligen på klassificeringsalgoritmen Naïve Bayes och hur den påverkas av gles data jämfört med andra frekvent använda klassifikationsalgoritmer. Omfattningen av prestationssänkningen som resultat av gles data studeras och analyseras för att mäta hur stor effekt gles data har på förmågan att kunna beräkna precisa förutsägelser. Avslutningsvis lägger resultaten i den här rapporten grund för slutsatsen att algoritmen Naïve Bayes påverkas mindre av gles data jämfört med andra vanligt förekommande klassificeringsalgoritmer. Den här rapportens slutsats stöds även av vad tidigare forskning har visat.
Volfson, Alexander. "Exploring the optimal Transformation for Volatility." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/472.
Full textNguyen, Huu Du. "System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information." Thesis, Lorient, 2019. http://www.theses.fr/2019LORIS530.
Full textThe effective operation of an entire industrial system is sometimes strongly dependent on the reliability of its components. A failure of one of these components can lead to the failure of the system with consequences that can be catastrophic, especially in the nuclear industry or in the aeronautics industry. To reduce this risk of catastrophic failures, a redundancy policy, consisting in duplicating the sensitive components in the system, is often applied. When one of these components fails, another will take over and the normal operation of the system can be maintained. However, some situations that lead to simultaneous failures of components in the system could be observed. They are called common cause failure (CCF). Analyzing, modeling, and predicting this type of failure event are therefore an important issue and are the subject of the work presented in this thesis. We investigate several methods to deal with the statistical analysis of CCF events. Different algorithms to estimate the parameters of the models and to make predictive inference based on various type of missing data are proposed. We treat confounded data using a BFR (Binomial Failure Rare) model. An EM algorithm is developed to obtain the maximum likelihood estimates (MLE) for the parameters of the model. We introduce the modified-Beta distribution to develop a Bayesian approach. The alpha-factors model is considered to analyze uncertainties in CCF. We suggest a new formalism to describe uncertainty and consider Dirichlet distributions (nested, grouped) to make a Bayesian analysis. Recording of CCF cause data leads to incomplete contingency table. For a Bayesian analysis of this type of tables, we propose an algorithm relying on inverse Bayes formula (IBF) and Metropolis-Hasting algorithm. We compare our results with those obtained with the alpha- decomposition method, a recent method proposed in the literature. Prediction of catastrophic event is addressed and mapping strategies are described to suggest upper bounds of prediction intervals with pivotal method and Bayesian techniques. Recent events have highlighted the importance of reliability redundant systems and we hope that our work will contribute to a better understanding and prediction of the risks of major CCF events
Agarwal, Akrita. "Exploring the Noise Resilience of Combined Sturges Algorithm." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1447070335.
Full textSchmidt, Samuel. "A Massively Parallel Algorithm for Cell Classification Using CUDA." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1448873851.
Full textChao, Yang, and Peng Zhang. "One General Approach For Analysing Compositional Structure Of Terms In Biomedical Field." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH. Forskningsmiljö Informationsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-20913.
Full textHarrington, Edward, and edwardharrington@homemail com au. "Aspects of Online Learning." The Australian National University. Research School of Information Sciences and Engineering, 2004. http://thesis.anu.edu.au./public/adt-ANU20060328.160810.
Full textSandberg, Sebastian. "Identifying Hateful Text on Social Media with Machine Learning Classifiers and Normalization Methods - Using Support Vector Machines and Naive Bayes Algorithm." Thesis, Umeå universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155353.
Full textRamos, Gustavo da Mota. "Seleção entre estratégias de geração automática de dados de teste por meio de métricas estáticas de softwares orientados a objetos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-05122018-202315/.
Full textSoftware products with different complexity are created daily through analysis of complex and varied demands together with tight deadlines. While these arise, high levels of quality are expected for such, as products become more complex, the quality level may not be acceptable while the timing for testing does not keep up with complexity. In this way, software testing and automatic generation of test data arise in order to deliver products containing high levels of quality through low cost and rapid test activities. However, in this context, software developers depend on the strategies of automatic generation of tests and especially on the selection of the most adequate technique to obtain greater code coverage possible, this is an important factor given that each technique of data generation of test have peculiarities and problems that make its use better in certain types of software. From this scenario, the present work proposes the selection of the appropriate technique for each class of software based on its characteristics, expressed through object oriented software metrics from the naive bayes classification algorithm. Initially, a literature review of the two generation algorithms was carried out, random search algorithm and genetic search algorithm, thus understanding its advantages and disadvantages in both implementation and execution. The CK metrics have also been studied in order to understand how they can better describe the characteristics of a class. The acquired knowledge allowed to collect the generation data of tests of each class as code coverage and generation time from each technique and also the CK metrics, thus allowing the analysis of these data together and finally execution of the classification algorithm. The results of this analysis demonstrated that a reduced and selected set of metrics is more efficient and better describes the characteristics of a class besides demonstrating that the CK metrics have little or no influence on the generation time of the test data and on the random search algorithm . However, the CK metrics showed a medium correlation and influence in the selection of the genetic algorithm, thus participating in its selection by the algorithm naive bayes
Lee, Jun won. "Relationships Among Learning Algorithms and Tasks." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2478.
Full textBooks on the topic "Bayes Algorithm"
Klin, Mikhail, Gareth A. Jones, Aleksandar Jurišić, Mikhail Muzychuk, and Ilia Ponomarenko, eds. Algorithmic Algebraic Combinatorics and Gröbner Bases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01960-9.
Full textLi, Huishi. Noncommutative Gr bner Bases and Filtered-Graded Transfer. Berlin: Springer-Verlag Berlin/Heidelberg, 2002.
Find full textDiophantine equations and power integral bases: New computational methods. Boston: Birkhäuser, 2002.
Find full textVarlamov, Oleg. 18 examples of mivar expert systems. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1248446.
Full textKravchenko, Igor', Maksim Glinskiy, Sergey Karcev, Viktor Korneev, and Diana Abdumuminova. Resource-saving plasma technology in the repair of processing equipment. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1083289.
Full textVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Full textMcGlothin, Charles C. Ambient sound in the ocean induced by heavy precipitation and the subsequent predictability of rainfall rate. Monterey, California: Naval Postgraduate School, 1991.
Find full textInternational Phoenix Conference on Computers and Communications (13th 1994 Phoenix, Ariz.). 1994 IEEE 13th Annual International Phoenix Conference on Computers and Communications: April 12-15, 1994, Phoenix, Arizona. Piscataway, N.J: IEEE, 1994.
Find full textEfficient structures for geometric data management. Berlin: Springer-Verlag, 1988.
Find full textBook chapters on the topic "Bayes Algorithm"
Xu, WanShan, JianBiao Zhang, and YaHao Zhang. "A Trusted Connection Authentication Reinforced by Bayes Algorithm." In Advances in Brain Inspired Cognitive Systems, 727–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00563-4_71.
Full textYu, Fei, Yue Shen, Huang Huang, Cheng Xu, and Xia-peng Dai. "An Information Audit System Based on Bayes Algorithm." In Lecture Notes in Computer Science, 869–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11610496_120.
Full textZhang, Huajie, and Charles X. Ling. "An Improved Learning Algorithm for Augmented Naive Bayes." In Advances in Knowledge Discovery and Data Mining, 581–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45357-1_62.
Full textJosephine Theresa, S., and D. J. Evangeline. "Classification of Diabetes Milletus Using Naive Bayes Algorithm." In Intelligence in Big Data Technologies—Beyond the Hype, 401–12. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5285-4_40.
Full textRodríguez, Jorge Enrique Rodríguez, Víctor Hugo Medina García, and Nelson Pérez Castillo. "Webpages Classification with Phishing Content Using Naive Bayes Algorithm." In Communications in Computer and Information Science, 249–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21451-7_21.
Full textCui, Jianming. "Pattern Recognition of Handwritten Text Based on Bayes Algorithm." In Communications in Computer and Information Science, 442–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22456-0_63.
Full textMasrani, Manav, and Poornalatha G. "Twitter Sentiment Analysis Using a Modified Naïve Bayes Algorithm." In Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017, 171–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67220-5_16.
Full textMarikani, T., and K. Shyamala. "Modified Multinomial Naïve Bayes Algorithm for Heart Disease Prediction." In Intelligent Communication Technologies and Virtual Mobile Networks, 294–300. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28364-3_27.
Full textLiu, Xiaoming, Jianwei Yin, Jinxiang Dong, and Memon Abdul Ghafoor. "An Improved FloatBoost Algorithm for Naïve Bayes Text Classification." In Advances in Web-Age Information Management, 162–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11563952_15.
Full textKim, Han-joon, and Jae-young Chang. "Improving Naïve Bayes Text Classifier with Modified EM Algorithm." In Lecture Notes in Computer Science, 326–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39592-8_45.
Full textConference papers on the topic "Bayes Algorithm"
Jia, Shaocheng, Yun Yue, Zi Yang, Xin Pei, and Yashen Wang. "Travelling Modes Recognition via Bayes Neural Network with Bayes by Backprop Algorithm." In 20th COTA International Conference of Transportation Professionals. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482933.343.
Full textKamel, Hajer, Dhahir Abdulah, and Jamal M. Al-Tuwaijari. "Cancer Classification Using Gaussian Naive Bayes Algorithm." In 2019 International Engineering Conference (IEC). IEEE, 2019. http://dx.doi.org/10.1109/iec47844.2019.8950650.
Full textYi-jun, Li, Zou Peng, and Ye Qiang. "Customer Sample Difference-oriented Bayes Segmentation Algorithm." In 2006 International Conference on Management Science and Engineering. IEEE, 2006. http://dx.doi.org/10.1109/icmse.2006.313914.
Full textMa, Xiaolong, Gang Liu, Bing He, Kaijie Zhang, Xianyang Zhang, and Xin Zhao. "Trajectory Prediction Algorithm Based on Variational Bayes." In 2018 IEEE CSAA Guidance, Navigation and Control Conference (GNCC). IEEE, 2018. http://dx.doi.org/10.1109/gncc42960.2018.9018897.
Full textGuodong Li and Liangjun Wen. "Intellectual information circle based on bayes algorithm." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622946.
Full textSharmila, B. S., and Rohini Nagapadma. "Intrusion Detection System using Naive Bayes algorithm." In 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2019. http://dx.doi.org/10.1109/wiecon-ece48653.2019.9019921.
Full textGai, Yulian, and Yaping Wang. "Data Fusion and Bayes Estimation Algorithm Research." In 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/isccca.2013.79.
Full textKalcheva, Neli, Maya Todorova, and Ginka Marinova. "NAIVE BAYES CLASSIFIER, DECISION TREE AND ADABOOST ENSEMBLE ALGORITHM – ADVANTAGES AND DISADVANTAGES." In 6th International Scientific Conference ERAZ - Knowledge Based Sustainable Development. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2020. http://dx.doi.org/10.31410/eraz.2020.153.
Full textFalaka, Bimo, Randy Erfa Saputra, Casi Setianingsih, and Muhammad Ary Murti. "Sea Wave Detection System Using Web-Based Naive Bayes Algorithm." In 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA). IEEE, 2021. http://dx.doi.org/10.1109/icera53111.2021.9538697.
Full textHartatik, Kusrini Kusrini, and Agung Budi Prasetio. "Prediction of Student Graduation with Naive Bayes Algorithm." In 2020 Fifth International Conference on Informatics and Computing (ICIC). IEEE, 2020. http://dx.doi.org/10.1109/icic50835.2020.9288625.
Full textReports on the topic "Bayes Algorithm"
Lindell, Suzanne. Keyword Cluster Algorithm for Expert System Rule Bases. Fort Belvoir, VA: Defense Technical Information Center, June 1987. http://dx.doi.org/10.21236/ada183064.
Full textDilworth, S. J., N. J. Kalton, D. Kutzarova, and V. N. Temlyakov. The Thresholding Greedy Algorithm, Greedy Bases and Duality. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada640677.
Full textMaschal, Jr, Young Robert A., Reynolds S. S., Krapels Joe, Fanning Keith, Corbin Jonathan, and Ted. Review of Bayer Pattern Color Filter Array (CFA) Demosaicing with New Quality Assessment Algorithms. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada513752.
Full text