Academic literature on the topic 'Bayesian framework'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian framework.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian framework"
Dasgupta, Anirban, George Casella, Mohan Delampady, Christian Genest, William E. Strawderman, and Herman Rubin. "Correlation in a Bayesian framework." Canadian Journal of Statistics 28, no. 4 (December 2000): 675–87. http://dx.doi.org/10.2307/3315910.
Full textZhang, Rui, and Ling Guan. "A Bayesian Image Retrieval Framework." International Journal of Digital Library Systems 1, no. 2 (2010): 43–58. http://dx.doi.org/10.4018/jdls.2010040103.
Full textHicks, Tyler, Liliana Rodríguez-Campos, and Jeong Hoon Choi. "Bayesian Posterior Odds Ratios." American Journal of Evaluation 39, no. 2 (May 23, 2017): 278–89. http://dx.doi.org/10.1177/1098214017704302.
Full textCalvetti, Daniela, and Erkki Somersalo. "Hypermodels in the Bayesian imaging framework." Inverse Problems 24, no. 3 (May 23, 2008): 034013. http://dx.doi.org/10.1088/0266-5611/24/3/034013.
Full textModrak, Ryan T., Stephen J. Arrowsmith, and Dale N. Anderson. "A Bayesian framework for infrasound location." Geophysical Journal International 181, no. 1 (April 2010): 399–405. http://dx.doi.org/10.1111/j.1365-246x.2010.04499.x.
Full textGrzywacz, Norberto M., and Rosario M. Balboa. "A Bayesian Framework for Sensory Adaptation." Neural Computation 14, no. 3 (March 1, 2002): 543–59. http://dx.doi.org/10.1162/089976602317250898.
Full textJbabdi, S., M. W. Woolrich, J. L. R. Andersson, and T. E. J. Behrens. "A Bayesian framework for global tractography." NeuroImage 37, no. 1 (August 2007): 116–29. http://dx.doi.org/10.1016/j.neuroimage.2007.04.039.
Full textTurkoz, Mehmet, Sangahn Kim, Young-Seon Jeong, Myong K. (MK) Jeong, Elsayed A. Elsayed, Khalifa N. Al-Khalifa, and Abdel Magid Hamouda. "Bayesian framework for fault variable identification." Journal of Quality Technology 51, no. 4 (October 30, 2018): 375–91. http://dx.doi.org/10.1080/00224065.2018.1507561.
Full textCalvetti, Daniela, Jari P. Kaipio, and Erkki Somersalo. "Inverse problems in the Bayesian framework." Inverse Problems 30, no. 11 (October 29, 2014): 110301. http://dx.doi.org/10.1088/0266-5611/30/11/110301.
Full textDelSole, Timothy. "A Bayesian Framework for Multimodel Regression." Journal of Climate 20, no. 12 (June 15, 2007): 2810–26. http://dx.doi.org/10.1175/jcli4179.1.
Full textDissertations / Theses on the topic "Bayesian framework"
Tenenbaum, Joshua B. (Joshua Brett) 1972. "A Bayesian framework for concept learning." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/16714.
Full textIncludes bibliographical references (p. 297-314).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Human concept learning presents a version of the classic problem of induction, which is made particularly difficult by the combination of two requirements: the need to learn from a rich (i.e. nested and overlapping) vocabulary of possible concepts and the need to be able to generalize concepts reasonably from only a few positive examples. I begin this thesis by considering a simple number concept game as a concrete illustration of this ability. On this task, human learners can with reasonable confidence lock in on one out of a billion billion billion logically possible concepts, after seeing only four positive examples of the concept, and can generalize informatively after seeing just a single example. Neither of the two classic approaches to inductive inference hypothesis testing in a constrained space of possible rules and computing similarity to the observed examples can provide a complete picture of how people generalize concepts in even this simple setting. This thesis proposes a new computational framework for understanding how people learn concepts from examples, based on the principles of Bayesian inference. By imposing the constraints of a probabilistic model of the learning situation, the Bayesian learner can draw out much more information about a concept's extension from a given set of observed examples than either rule-based or similarity-based approaches do, and can use this information in a rational way to infer the probability that any new object is also an instance of the concept. There are three components of the Bayesian framework: a prior probability distribution over a hypothesis space of possible concepts; a likelihood function, which scores each hypothesis according to its probability of generating the observed examples; and the principle of hypothesis averaging, under which the learner computes the probability of generalizing a concept to new objects by averaging the predictions of all hypotheses weighted by their posterior probability (proportional to the product of their priors and likelihoods). The likelihood, under the assumption of randomly sampled positive examples, embodies the size principle for scoring hypotheses: smaller consistent hypotheses are more likely than larger hypotheses, and they become exponentially more likely as the number of observed examples increases. The principle of hypothesis averaging allows the Bayesian framework to accommodate both rule-like and similarity-like generalization behavior, depending on how peaked the posterior probability is. Together, the size principle plus hypothesis averaging predict a convergence from similarity-like generalization (due to a broad posterior distribution) after very few examples are observed to rule-like generalization (due to a sharply peaked posterior distribution) after sufficiently many examples have been observed. The main contributions of this thesis are as follows. First and foremost, I show how it is possible for people to learn and generalize concepts from just one or a few positive examples (Chapter 2). Building on that understanding, I then present a series of case studies of simple concept learning situations where the Bayesian framework yields both qualitative and quantitative insights into the real behavior of human learners (Chapters 3-5). These cases each focus on a different learning domain. Chapter 3 looks at generalization in continuous feature spaces, a typical representation of objects in psychology and machine learning with the virtues of being analytically tractable and empirically accessible, but the downside of being highly abstract and artificial. Chapter 4 moves to the more natural domain of learning words for categories of objects and shows the relevance of the same phenomena and explanatory principles introduced in the more abstract setting of Chapters 1-3 for real-world learning tasks like this one. In each of these domains, both similarity-like and rule-like generalization emerge as special cases of the Bayesian framework in the limits of very few or very many examples, respectively. However, the transition from similarity to rules occurs much faster in the word learning domain than in the continuous feature space domain. I propose a Bayesian explanation of this difference in learning curves that places crucial importance on the density or sparsity of overlapping hypotheses in the learner's hypothesis space. To test this proposal, a third case study (Chapter 5) returns to the domain of number concepts, in which human learners possess a more complex body of prior knowledge that leads to a hypothesis space with both sparse and densely overlapping components. Here, the Bayesian theory predicts and human learners produce either rule-based or similarity-based generalization from a few examples, depending on the precise examples observed. I also discusses how several classic reasoning heuristics may be used to approximate the much more elaborate computations of Bayesian inference that this domain requires. In each of these case studies, I confront some of the classic questions of concept learning and induction: Is the acquisition of concepts driven mainly by pre-existing knowledge or the statistical force of our observations? Is generalization based primarily on abstract rules or similarity to exemplars? I argue that in almost all instances, the only reasonable answer to such questions is, Both. More importantly, I show how the Bayesian framework allows us to answer much more penetrating versions of these questions: How does prior knowledge interact with the observed examples to guide generalization? Why does generalization appear rule-based in some cases and similarity-based in others? Finally, Chapter 6 summarizes the major contributions in more detailed form and discusses how this work ts into the larger picture of contemporary research on human learning, thinking, and reasoning.
by Joshua B. Tenenbaum.
Ph.D.
Denton, Stephen E. "Exploring active learning in a Bayesian framework." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3380073.
Full textTitle from PDF t.p. (viewed on Jul 19, 2010). Source: Dissertation Abstracts International, Volume: 70-12, Section: B, page: 7870. Advisers: John K. Kruschke; Jerome R. Busemeyer.
Scotto, Di Perrotolo Alexandre. "A Theoretical Framework for Bayesian Optimization Convergence." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225129.
Full textBayesiansk optimering är en välkänd klass av globala optimeringsalgoritmer som inte beror av derivator och främst används för optimering av dyra svartlådsfunktioner. Trots sin relativa effektivitet lider de av en brist av stringent konvergenskriterium som gör dem mer benägna att användas som modelleringsverktyg istället för som optimeringsverktyg. Denna rapport är avsedd att föreslå, analysera och testa en ett globalt konvergerande ramverk (på ett sätt som som beskrivs vidare) för Bayesianska optimeringsalgoritmer, som ärver de globala sökegenskaperna för minimum medan de noggrant övervakas för att konvergera.
Zhong, Xionghu. "Bayesian framework for multiple acoustic source tracking." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4752.
Full textKwee, Ivo Widjaja. "Towards a Bayesian framework for optical tomography." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325658.
Full textAnand, Farminder Singh. "Bayesian framework for improved R&D decisions." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39530.
Full textShao, Yuan. "A Bayesian reasoning framework for model-driven vision." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284789.
Full textBrunton, Alan. "A Bayesian framework for panoramic imaging of complex scenes." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27336.
Full textAtrash, Amin. "A Bayesian Framework for Online Parameter Learning in POMDPs." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104587.
Full textComme le nombre d'agents autonomes et semi-autonomes dansnotre société ne cesse de croître, les prises de décisions sous incertitude constituent désormais un problème critique. Malgré l'incertitude et l'ambiguité inhérentes à leurs environnements, ces agents doivent demeurer robustes dans l'exécution de leurs tâches. Les processus de décision markoviens partiellement observables (POMDP) offrent un cadre mathématique permettant la modélisation des agents et de leurs environnements. Ces modèles sont capables de capturer l'incertitude due aux perturbations dans les capteurs ainsi qu'aux actionneurs imprécis. Ils permettent conséquemment une prise de décision tenant compte des connaissances imparfaites des agents. À ce jour, les POMDP ont été utilisés avec succès dans un éventail de domaines, allant de la robotique à la gestion de dialogue, en passant par la médecine. Plusieurs travaux de recherche se sont penchés sur des méthodes visant à optimiser les POMDP. Cependant, ces méthodes requièrent habituellement un modèle environnemental préalablement connu. Dans ce mémoire, une méthode bayésienne d'apprentissage par renforcement est présentée, avec laquelle il est possible d'apprendre les paramètres du modèle POMDP pendant l'éxécution. Cette méthode tire avantage d'une coopération avec un opérateur capable de guider l'apprentissage en divulguant certaines données optimales. Avec l'aide du renforcement bayésien, l'agent peut apprendre pendant l'éxécution, incorporer immédiatement les données nouvelles et profiter des connaissances précédentes, pour finalement pouvoir adapter sa politique de décision à celle de l'opérateur. La méthodologie décrite est validée à l'aide de données produites par le gestionnaire d'interactions d'une chaise roulante autonome. Ce gestionnaire prend la forme d'une interface intelligente entre le robot et l'usager, permettant à celui-ci de stipuler des commandes de haut niveau de façon naturelle, par exemple en parlant à voix haute. Les fonctions du gestionnaire sont accomplies à l'aide d'un POMDP et constituent un scénario d'apprentissage idéal, dans lequel l'agent doit s'ajuster progressivement aux besoins de l'usager.
Sullivan, Josephine Jean. "A Bayesian framework for object localisation in visual images." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365337.
Full textBooks on the topic "Bayesian framework"
Stübler, Sabine. Modelling Proteasome Dynamics in a Bayesian Framework. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20167-8.
Full textBazaldua, Diego A. Luna. Exploring Skill Condensation Rules for Cognitive Diagnostic Models in a Bayesian Framework. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textChung, Meng-ta. Estimating the Q-matrix for Cognitive Diagnosis Models in a Bayesian Framework. [New York, N.Y.?]: [publisher not identified], 2014.
Find full textStübler, Sabine. Modelling Proteasome Dynamics in a Bayesian Framework. Springer Spektrum, 2017.
Find full textTitelbaum, Michael G. Quitting Certainties: A Bayesian Framework Modeling Degrees of Belief. Oxford University Press, 2014.
Find full textQuitting Certainties A Bayesian Framework Modeling Degrees Of Belief. Oxford University Press, USA, 2013.
Find full textTitelbaum, Michael G. Quitting Certainties: A Bayesian Framework Modeling Degrees of Belief. Oxford University Press, Incorporated, 2012.
Find full textKorrapati, Raghu B. A Bayesian Model Framework to Determine Patient Compliance in Glaucoma Cases. iUniverse, Inc., 2005.
Find full textYu, Angela J. Bayesian Models of Attention. Edited by Anna C. (Kia) Nobre and Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.025.
Full textPearl, Lisa, and Sharon Goldwater. Statistical Learning, Inductive Bias, and Bayesian Inference in Language Acquisition. Edited by Jeffrey L. Lidz, William Snyder, and Joe Pater. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199601264.013.28.
Full textBook chapters on the topic "Bayesian framework"
Pole, Andy, Mike West, and Jeff Harrison. "Methodological Framework." In Applied Bayesian Forecasting and Time Series Analysis, 13–27. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-3432-1_2.
Full textAlmond, Russell G., Robert J. Mislevy, Linda S. Steinberg, Duanli Yan, and David M. Williamson. "The Conceptual Assessment Framework." In Bayesian Networks in Educational Assessment, 411–65. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2125-6_12.
Full textSitara, K., and S. Remya. "Image Deblurring Using Bayesian Framework." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 515–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27317-9_52.
Full textDemoment, Guy, and Yves Goussard. "Inversion within the Probabilistic Framework." In Bayesian Approach to Inverse Problems, 59–78. London, UK: ISTE, 2010. http://dx.doi.org/10.1002/9780470611197.ch3.
Full textAlais, David, and David Burr. "Cue Combination Within a Bayesian Framework." In Multisensory Processes, 9–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10461-0_2.
Full textHancock, Edwin R., and Marcello Pelillo. "A Bayesian Framework for Associative Memories." In Neural Nets WIRN VIETRI-96, 125–31. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0951-8_10.
Full textCao, Zijun, Yu Wang, and Dianqing Li. "Bayesian Framework for Geotechnical Site Characterization." In Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis, 53–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52914-0_3.
Full textZhang, Rui, Kui Wu, Kim-Hui Yap, and Ling Guan. "A Collaborative Bayesian Image Annotation Framework." In Advances in Multimedia Information Processing - PCM 2008, 348–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89796-5_36.
Full textFriedman, Avner. "A Bayesian framework for computer vision." In Mathematics in Industrial Problems, 193–201. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4615-7405-7_18.
Full textStübler, Sabine. "Introduction." In Modelling Proteasome Dynamics in a Bayesian Framework, 17–32. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20167-8_1.
Full textConference papers on the topic "Bayesian framework"
Fu, Shuai, and Nizar Bouguila. "A Bayesian Intrusion Detection Framework." In 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). IEEE, 2018. http://dx.doi.org/10.1109/cybersecpods.2018.8560681.
Full textMyers, K. J., and R. F. Wagner. "Bayesian framework for calculating observer performance." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fcc1.
Full textZhenbo Cheng, Wenfeng Chen, Tian Ran, Zhidong Deng, and Xiaolan Fu. "A Bayesian framework for crowding effect." In 2010 Chinese Control and Decision Conference (CCDC). IEEE, 2010. http://dx.doi.org/10.1109/ccdc.2010.5499009.
Full textRui Zhang and Ling Guan. "A collaborative Bayesian image retrieval framework." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959993.
Full textLebeltel, O. "A Bayesian framework for robotic programming." In The twentieth international workshop on bayesian inference and maximum entropy methods in science and engineering. AIP, 2001. http://dx.doi.org/10.1063/1.1381923.
Full textFredlund, Richard, Richard M. Everson, and Jonathan E. Fieldsend. "A Bayesian framework for active learning." In 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596917.
Full textHuang, Shih-Shinh, Li-Chen Fu, and Pei-Yung Hsiao. "A Bayesian Framework for Foreground Segmentation." In 2006 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icsmc.2006.385021.
Full textTesfamicael, Solomon, and Faraz Barzideh. "Clustered Compressed Sensing via Bayesian Framework." In 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim). IEEE, 2015. http://dx.doi.org/10.1109/uksim.2015.21.
Full textDalton, Lori A., and Edward R. Dougherty. "Optimal classifiers within a Bayesian framework." In 2012 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2012. http://dx.doi.org/10.1109/ssp.2012.6319760.
Full textWEBB-ROBERTSON, B. M., S. L. HAVRE, and D. A. PAYNE. "A BAYESIAN FRAMEWORK FOR SNP IDENTIFICATION." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702456_0040.
Full textReports on the topic "Bayesian framework"
Brown, Jesse, Goran Arbanas, Dorothea Wiarda, and Andrew Holcomb. Bayesian Optimization Framework for Imperfect Data or Models. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1874643.
Full textChiang, A., and S. Ford. BayesMT: A Probabilistic Bayesian Framework for the Seismic Moment Tensor. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1890801.
Full textYe, Ming. Computational Bayesian Framework for Quantification and Reduction of Predictive Uncertainty in Subsurface Environmental Modeling. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1491235.
Full textGlimm, James, Yunha Lee, Kenny Q. Ye, and David H. Sharp. Prediction Using Numerical Simulations, A Bayesian Framework for Uncertainty Quantification and its Statistical Challenge. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada417842.
Full textHossain, Niamat Ullah Ibne, Raed Jaradat, Seyedmohsen Hosseini, Mohammad Marufuzzaman, and Randy Buchanan. A framework for modeling and assessing system resilience using a Bayesian network : a case study of an interdependent electrical infrastructure systems. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40299.
Full textJohannesson, Gardar, Vera Bulaevskaya, Abe Ramirez, Sean Ford, and Artie Rodgers. A Bayesian inversion framework for yield and height-of-burst/depth-of-burial for near-surface explosions. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1226968.
Full textMaupin, Kathryn, Anh Tran, William Lewis, Patrick Knapp, V. Joseph, Michael Glinsky, and Sonata Valaitis. Towards Z-Next: The Integration of Theory, Experiments, and Computational Simulation in a Bayesian Data Assimilation Framework. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1891191.
Full textJohannesson, G., and S. Myers. A Bayesian Framework for Locating Seismic Events Using Absolute Arrival Time Data along with Back Azimuth and Slowness Observations. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1165775.
Full textTong, C., J. Morgan, A. Chinen, C. Anderson-Cook, J. Carroll, C. Saha, B. Omell, et al. Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1871778.
Full textBaltagi, Badi H., Georges Bresson, Anoop Chaturvedi, and Guy Lacroix. Robust dynamic space-time panel data models using ε-contamination: An application to crop yields and climate change. CIRANO, January 2023. http://dx.doi.org/10.54932/ufyn4045.
Full text