Dissertations / Theses on the topic 'Bayesian framework'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Bayesian framework.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tenenbaum, Joshua B. (Joshua Brett) 1972. "A Bayesian framework for concept learning." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/16714.
Full textIncludes bibliographical references (p. 297-314).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Human concept learning presents a version of the classic problem of induction, which is made particularly difficult by the combination of two requirements: the need to learn from a rich (i.e. nested and overlapping) vocabulary of possible concepts and the need to be able to generalize concepts reasonably from only a few positive examples. I begin this thesis by considering a simple number concept game as a concrete illustration of this ability. On this task, human learners can with reasonable confidence lock in on one out of a billion billion billion logically possible concepts, after seeing only four positive examples of the concept, and can generalize informatively after seeing just a single example. Neither of the two classic approaches to inductive inference hypothesis testing in a constrained space of possible rules and computing similarity to the observed examples can provide a complete picture of how people generalize concepts in even this simple setting. This thesis proposes a new computational framework for understanding how people learn concepts from examples, based on the principles of Bayesian inference. By imposing the constraints of a probabilistic model of the learning situation, the Bayesian learner can draw out much more information about a concept's extension from a given set of observed examples than either rule-based or similarity-based approaches do, and can use this information in a rational way to infer the probability that any new object is also an instance of the concept. There are three components of the Bayesian framework: a prior probability distribution over a hypothesis space of possible concepts; a likelihood function, which scores each hypothesis according to its probability of generating the observed examples; and the principle of hypothesis averaging, under which the learner computes the probability of generalizing a concept to new objects by averaging the predictions of all hypotheses weighted by their posterior probability (proportional to the product of their priors and likelihoods). The likelihood, under the assumption of randomly sampled positive examples, embodies the size principle for scoring hypotheses: smaller consistent hypotheses are more likely than larger hypotheses, and they become exponentially more likely as the number of observed examples increases. The principle of hypothesis averaging allows the Bayesian framework to accommodate both rule-like and similarity-like generalization behavior, depending on how peaked the posterior probability is. Together, the size principle plus hypothesis averaging predict a convergence from similarity-like generalization (due to a broad posterior distribution) after very few examples are observed to rule-like generalization (due to a sharply peaked posterior distribution) after sufficiently many examples have been observed. The main contributions of this thesis are as follows. First and foremost, I show how it is possible for people to learn and generalize concepts from just one or a few positive examples (Chapter 2). Building on that understanding, I then present a series of case studies of simple concept learning situations where the Bayesian framework yields both qualitative and quantitative insights into the real behavior of human learners (Chapters 3-5). These cases each focus on a different learning domain. Chapter 3 looks at generalization in continuous feature spaces, a typical representation of objects in psychology and machine learning with the virtues of being analytically tractable and empirically accessible, but the downside of being highly abstract and artificial. Chapter 4 moves to the more natural domain of learning words for categories of objects and shows the relevance of the same phenomena and explanatory principles introduced in the more abstract setting of Chapters 1-3 for real-world learning tasks like this one. In each of these domains, both similarity-like and rule-like generalization emerge as special cases of the Bayesian framework in the limits of very few or very many examples, respectively. However, the transition from similarity to rules occurs much faster in the word learning domain than in the continuous feature space domain. I propose a Bayesian explanation of this difference in learning curves that places crucial importance on the density or sparsity of overlapping hypotheses in the learner's hypothesis space. To test this proposal, a third case study (Chapter 5) returns to the domain of number concepts, in which human learners possess a more complex body of prior knowledge that leads to a hypothesis space with both sparse and densely overlapping components. Here, the Bayesian theory predicts and human learners produce either rule-based or similarity-based generalization from a few examples, depending on the precise examples observed. I also discusses how several classic reasoning heuristics may be used to approximate the much more elaborate computations of Bayesian inference that this domain requires. In each of these case studies, I confront some of the classic questions of concept learning and induction: Is the acquisition of concepts driven mainly by pre-existing knowledge or the statistical force of our observations? Is generalization based primarily on abstract rules or similarity to exemplars? I argue that in almost all instances, the only reasonable answer to such questions is, Both. More importantly, I show how the Bayesian framework allows us to answer much more penetrating versions of these questions: How does prior knowledge interact with the observed examples to guide generalization? Why does generalization appear rule-based in some cases and similarity-based in others? Finally, Chapter 6 summarizes the major contributions in more detailed form and discusses how this work ts into the larger picture of contemporary research on human learning, thinking, and reasoning.
by Joshua B. Tenenbaum.
Ph.D.
Denton, Stephen E. "Exploring active learning in a Bayesian framework." [Bloomington, Ind.] : Indiana University, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3380073.
Full textTitle from PDF t.p. (viewed on Jul 19, 2010). Source: Dissertation Abstracts International, Volume: 70-12, Section: B, page: 7870. Advisers: John K. Kruschke; Jerome R. Busemeyer.
Scotto, Di Perrotolo Alexandre. "A Theoretical Framework for Bayesian Optimization Convergence." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225129.
Full textBayesiansk optimering är en välkänd klass av globala optimeringsalgoritmer som inte beror av derivator och främst används för optimering av dyra svartlådsfunktioner. Trots sin relativa effektivitet lider de av en brist av stringent konvergenskriterium som gör dem mer benägna att användas som modelleringsverktyg istället för som optimeringsverktyg. Denna rapport är avsedd att föreslå, analysera och testa en ett globalt konvergerande ramverk (på ett sätt som som beskrivs vidare) för Bayesianska optimeringsalgoritmer, som ärver de globala sökegenskaperna för minimum medan de noggrant övervakas för att konvergera.
Zhong, Xionghu. "Bayesian framework for multiple acoustic source tracking." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4752.
Full textKwee, Ivo Widjaja. "Towards a Bayesian framework for optical tomography." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325658.
Full textAnand, Farminder Singh. "Bayesian framework for improved R&D decisions." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39530.
Full textShao, Yuan. "A Bayesian reasoning framework for model-driven vision." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284789.
Full textBrunton, Alan. "A Bayesian framework for panoramic imaging of complex scenes." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27336.
Full textAtrash, Amin. "A Bayesian Framework for Online Parameter Learning in POMDPs." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104587.
Full textComme le nombre d'agents autonomes et semi-autonomes dansnotre société ne cesse de croître, les prises de décisions sous incertitude constituent désormais un problème critique. Malgré l'incertitude et l'ambiguité inhérentes à leurs environnements, ces agents doivent demeurer robustes dans l'exécution de leurs tâches. Les processus de décision markoviens partiellement observables (POMDP) offrent un cadre mathématique permettant la modélisation des agents et de leurs environnements. Ces modèles sont capables de capturer l'incertitude due aux perturbations dans les capteurs ainsi qu'aux actionneurs imprécis. Ils permettent conséquemment une prise de décision tenant compte des connaissances imparfaites des agents. À ce jour, les POMDP ont été utilisés avec succès dans un éventail de domaines, allant de la robotique à la gestion de dialogue, en passant par la médecine. Plusieurs travaux de recherche se sont penchés sur des méthodes visant à optimiser les POMDP. Cependant, ces méthodes requièrent habituellement un modèle environnemental préalablement connu. Dans ce mémoire, une méthode bayésienne d'apprentissage par renforcement est présentée, avec laquelle il est possible d'apprendre les paramètres du modèle POMDP pendant l'éxécution. Cette méthode tire avantage d'une coopération avec un opérateur capable de guider l'apprentissage en divulguant certaines données optimales. Avec l'aide du renforcement bayésien, l'agent peut apprendre pendant l'éxécution, incorporer immédiatement les données nouvelles et profiter des connaissances précédentes, pour finalement pouvoir adapter sa politique de décision à celle de l'opérateur. La méthodologie décrite est validée à l'aide de données produites par le gestionnaire d'interactions d'une chaise roulante autonome. Ce gestionnaire prend la forme d'une interface intelligente entre le robot et l'usager, permettant à celui-ci de stipuler des commandes de haut niveau de façon naturelle, par exemple en parlant à voix haute. Les fonctions du gestionnaire sont accomplies à l'aide d'un POMDP et constituent un scénario d'apprentissage idéal, dans lequel l'agent doit s'ajuster progressivement aux besoins de l'usager.
Sullivan, Josephine Jean. "A Bayesian framework for object localisation in visual images." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365337.
Full textParno, Matthew David. "A multiscale framework for Bayesian inference in elliptic problems." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65322.
Full textPage 118 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 112-117).
The Bayesian approach to inference problems provides a systematic way of updating prior knowledge with data. A likelihood function involving a forward model of the problem is used to incorporate data into a posterior distribution. The standard method of sampling this distribution is Markov chain Monte Carlo which can become inefficient in high dimensions, wasting many evaluations of the likelihood function. In many applications the likelihood function involves the solution of a partial differential equation so the large number of evaluations required by Markov chain Monte Carlo can quickly become computationally intractable. This work aims to reduce the computational cost of sampling the posterior by introducing a multiscale framework for inference problems involving elliptic forward problems. Through the construction of a low dimensional prior on a coarse scale and the use of iterative conditioning technique the scales are decouples and efficient inference can proceed. This work considers nonlinear mappings from a fine scale to a coarse scale based on the Multiscale Finite Element Method. Permeability characterization is the primary focus but a discussion of other applications is also provided. After some theoretical justification, several test problems are shown that demonstrate the efficiency of the multiscale framework.
by Matthew David Parno.
S.M.
GUERRERO, PEÑA Fidel Alejandro. "A Bayesian framework for object recognition under severe occlusion." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/25221.
Full textSubmitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-07-25T18:34:38Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Fidel Alenjandro Guerrero Peña.pdf: 3548161 bytes, checksum: 0af5697d578c29adf24e374dac93cf4f (MD5)
Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-07-26T21:16:04Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Fidel Alenjandro Guerrero Peña.pdf: 3548161 bytes, checksum: 0af5697d578c29adf24e374dac93cf4f (MD5)
Made available in DSpace on 2018-07-26T21:16:04Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Fidel Alenjandro Guerrero Peña.pdf: 3548161 bytes, checksum: 0af5697d578c29adf24e374dac93cf4f (MD5) Previous issue date: 2017-02-22
CNPq
Shape classification has multiple applications. In real scenes, shapes may contain severe occlusions, hardening the identification of objects. In this work, a bayesian framework for object recognition under severe and varied conditions of occlusion is proposed. The proposed framework is capable of performing three main steps in object recognition: representation of parts, retrieval of the most probable objects and hypotheses validation for final object identification. Occlusion is dealt with separating shapes into parts through high curvature points, then tangent angle signature is found for each part and continuous wavelet transform is calculated for each signature in order to reduce noise. Next, the best matching object is retrieved for each part using Pearson’s correlation coefficient as query prior, indicating the similarity between the part representation and of the most probable object in the database. For each probable class, an ensemble of Hidden Markov Model (HMM) is created through training with the one-class approach. A sort of search space retrieval is created using class posterior probability given by the ensemble. For occlusion likelihood, an area term that measure visual consistency between retrieved object and occlusion is proposed. For hypotheses validation, a area constraint is set to enhance recognition performance eliminating duplicated hypotheses. Experiments were carried out employing several real world images and synthetical generated occluded objects datasets using shapes of CMU_KO and MPEG-7 databases. The MPEG-7 dataset contains 1500 test shape instances with different scenarios of object occlusion with varied levels of object occlusion, different number of object classes in the problem, and different number of objects in the occlusion. For real images experimentation the CMU_KO challenge set contains 8 single view object classes with 100 occluded objects per class for testing and 1 non occluded object per class for training. Results showed the method not only was capable of identifying highly occluded shapes (60%-80% overlapping) but also present several advantages over previous methods. The minimum F-Measure obtained in MPEG-7 experiments was 0.67, 0.93 and 0.92, respectively and minimum AUROC of 0.87 for recognition in CMU_KO dataset, a very promising result due to complexity of the problem. Different amount of noise and varied amount of search space retrieval visited were also tested to measure framework robustness. Results provided an insight on capabilities and limitations of the method, demonstrating the use of HMMs for sorting search space retrieval improved efficiency over typical unsorted version. Also, wavelet filtering consistently outperformed the unfiltered and sampling noise reduction versions under high amount of noise.
A classificação da forma tem múltiplas aplicações. Em cenas reais, as formas podem conter oclusões severas, tornando difícil a identificação de objetos. Neste trabalho, propõe-se uma abordagem bayesiana para o reconhecimento de objetos com oclusão severa e em condições variadas. O esquema proposto é capaz de realizar três etapas principais no reconhecimento de objetos: representação das partes, recuperação dos objetos mais prováveis e a validação de hipóteses para a identificação final dos objetos. A oclusão é tratada separando as formas em partes através de pontos de alta curvatura, então a assinatura do ângulo tangente é encontrada para cada parte e a transformada contínua de wavelet é calculada para cada assinatura reduzindo o ruído. Em seguida, o objeto mais semelhante é recuperado para cada parte usando o coeficiente de correlação de Pearson como prior da consulta, indicando a similaridade entre a representação da parte e o objeto mais provável no banco de dados. Para cada classe provável, um sistema de múltiplos classificadores com Modelos Escondido de Markov (HMM) é criado através de treinamento com a abordagem de uma classe. Um ordenamento do espaço de busca é criada usando a probabilidade a posterior da classe dada pelos classificadores. Como verosimilhança de oclusão, é proposto um termo de área que mede a consistência visual entre o objeto recuperado e a oclusão. Para a validação de hipóteses, uma restrição de área é definida para melhorar o desempenho do reconhecimento eliminando hipóteses duplicadas. Os experimentos foram realizados utilizando várias imagens do mundo real e conjuntos de dados de objetos oclusos gerados de forma sintética usando formas dos bancos de dados CMU_KO e MPEG-7. O conjunto de dados MPEG-7 contém 1500 instâncias de formas de teste com diferentes cenários de oclusão por exemplo, com vários níveis de oclusões de objetos, número diferente de classes de objeto no problema e diferentes números de objetos na oclusão. Para a experimentação de imagens reais, o desafiante conjunto CMU_KO contém 8 classes de objeto na mesma perspectiva com 100 objetos ocluídos por classe para teste e 1 objeto não ocluso por classe para treinamento. Os resultados mostraram que o método não só foi capaz de identificar formas altamente ocluídas (60% - 80% de sobreposição), mas também apresentar várias vantagens em relação aos métodos anteriores. A F-Measure mínima obtida em experimentos com MPEG-7 foi de 0.67, 0.93 e 0.92, respectivamente, e AUROC mínimo de 0.87 para o reconhecimento no conjunto de dados CMU_KO, um resultado muito promissor devido à complexidade do problema. Diferentes quantidades de ruído e quantidade variada de espaço de busca visitado também foram testadas para medir a robustez do método. Os resultados forneceram uma visão sobre as capacidades e limitações do método, demonstrando que o uso de HMMs para ordenar o espaço de busca melhorou a eficiência sobre a versão não ordenada típica. Além disso, a filtragem com wavelets superou consistentemente as versões de redução de ruído não filtradas e de amostragem sob grande quantidade de ruído.
Nightingale, Glenna Faith. "Bayesian point process modelling of ecological communities." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3710.
Full textMohamed, Ibrahim Daoud Ahmed. "Automatic history matching in Bayesian framework for field-scale applications." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3170.
Full textDavradakis, Emmanuel. "Monetary policy analysis at a non-linear and Bayesian framework." Thesis, University of Warwick, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404693.
Full textKumuthini, Judit. "Extraction of genetic network from microarray data using Bayesian framework." Thesis, Cranfield University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442547.
Full textKorrapati, Raghu B. "A Bayesian Framework to Determine Patient Compliance in Glaucoma Cases." NSUWorks, 2000. http://nsuworks.nova.edu/gscis_etd/643.
Full textPrezioso, Jamie. "An Inverse Problem of Cerebral Hemodynamics in the Bayesian Framework." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1492108014359289.
Full textParpart, Paula. "Why less can be more : a Bayesian framework for heuristics." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10024597/.
Full textEzeani, Callistus. "A Framework for MultiFactorAuthentication on Mobile Devices.- A Bayesian Approach." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-85984.
Full textBiresaw, Tewodros Atanaw. "Self-correcting Bayesian target tracking." Thesis, Queen Mary, University of London, 2015. http://qmro.qmul.ac.uk/xmlui/handle/123456789/7925.
Full textCevher, Volkan. "A Bayesian Framework for Target Tracking using Acoustic and Image Measurements." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6824.
Full textKabir, Golam. "Planning repair and replacement program for water mains : a Bayesian framework." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57568.
Full textApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Yu, Li Ph D. Massachusetts Institute of Technology. "Efficient IC statistical modeling and extraction using a Bayesian inference framework." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99786.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 147-156).
Variability modeling and extraction in advanced process technologies is a key challenge to ensure robust circuit performance as well as high manufacturing yield. In this thesis, we present an ecient framework for device and circuit variability modeling and extraction by combining an ultra-compact transistor model, called the MIT virtual source (MVS) model, and a Bayesian extraction method. Based on statistical formulations extended from the MVS model, we propose algorithms for three applications that greatly reduce time and cost required for measurement of on-chip test structures and characterization of library cells. We start with a novel DC and transient parameter extraction methodology for the MVS model and achieve a quantitative match with industry standard models for output characteristics of MOS transistor devices. We develop a physically based statistical MVS model extension and a corresponding statistical extraction technique based on the backward propagation of variance (BPV). The resulting statistical MVS model is validated using Monte Carlo simulations, and the statistical distributions of several gures of merit for logic and memory cells are compared with those of a 40-nm CMOS industrial design kit. A critical problem in design for manufacturability (DFM) is to build statistically valid prediction models of circuit performance based on a small number of measurements taken from a mixture of on-chip test structures. Towards this goal, we propose a technique named physical subspace projection to transfer a mixture of measurements into a unique probability space spanned by MVS parameters. We search over MVS parameter combinations to nd those with the maximum probability by extending the expectation-maximization (EM) algorithm and iteratively solve the maximum a posteriori (MAP) estimation problem. Finally, we develop a process shift calibration technique to estimate circuit performance by combining SPICE simulation and very few new measurements. We further develop a parameter extraction algorithm to accurately extract all current-voltage (I - V ) parameters given limited and incomplete I - V measurements, applicable to early technology evaluation and statistical parameter extraction. An important step in this method is the use of MAP estimation where past measurements of transistors from various technologies are used to learn a prior distribution and its uncertainty matrix for the parameters of the target technology. We then utilize Bayesian inference to facilitate extraction and posterior estimates for the target technologies using a very small set of additional measurements. Finally, we develop a novel flow to enable computationally efficient statistical characterization of delay and slew in standard cell libraries. We first propose a novel ultra-compact, analytical model for gate timing characterization. Next, instead of exploiting the sparsity of the regression coefficients of the process space with a reduced process sample size, we exploit correlations between dierent cell variables (design and input conditions) by a Bayesian learning algorithm to estimate the parameters of the aforementioned timing model using past library characterizations along with a very small set of additional simulations.
by Li Yu.
Ph. D.
Casamitjana, Diaz Adria. "New insights on speech signal modeling in a Bayesian framework approach." Thesis, KTH, Kommunikationsteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166844.
Full textPapakis, Ioannis. "A Bayesian Framework for Multi-Stage Robot, Map and Target Localization." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/93024.
Full textM.S.
This thesis presents a generalized framework with the goal of allowing a robot to localize itself and a static target, while building a map of the environment. This map is used as in the Simultaneous Localization and Mapping (SLAM) framework to enhance robot accuracy and with close features. Target, here, is distinguished from the rest of features since the robot has to navigate to its location and thus needs to be continuously observed from a long distance. The contribution of the proposed approach is on enabling the robot to track a target object or region, using a multi-stage technique. In the first stage, the robot and close landmarks are estimated simultaneously and they are both corrected. Using the robot's uncertainty in its estimate, the target state is then estimated sequentially, considering known robot state. That decouples the target estimation from the rest of the process. In the second stage, with the target being closer, target, robot and landmarks are estimated simultaneously. When the robot is located far, the sequential stage is efficient in tracking the target position while maintaining an accurate robot state using close only features. When the robot is closer to the target and most of its field of view is covered by the target, it is shown that simultaneous correction needs to be used in order to minimize robot, target and map uncertainties in the absence of other landmarks.
Fu, Guiyu. "Relational framework of distributed Bayesian networks using an extended relational data model." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ35835.pdf.
Full textJakimovska, Ana. "Empirical framework for building and evaluating Bayesian network models for defect predication." Thesis, University of Surrey, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527022.
Full textFenwick, Elisabeth. "An iterative framework for health technology assessment employing Bayesian statistical decision theory." Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423768.
Full textLawson, Antony Steven. "Bayesian framework for multi-stage transmission expansion planning under uncertainty via emulation." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12587/.
Full textTohme, Tony. "The Bayesian validation metric : a framework for probabilistic model calibration and validation." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126919.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references (pages 109-114).
In model development, model calibration and validation play complementary roles toward learning reliable models. In this thesis, we propose and develop the "Bayesian Validation Metric" (BVM) as a general model validation and testing tool. We show that the BVM can represent all the standard validation metrics - square error, reliability, probability of agreement, frequentist, area, probability density comparison, statistical hypothesis testing, and Bayesian model testing - as special cases while improving, generalizing and further quantifying their uncertainties. In addition, the BVM assists users and analysts in designing and selecting their models by allowing them to specify their own validation conditions and requirements. Further, we expand the BVM framework to a general calibration and validation framework by inverting the validation mathematics into a method for generalized Bayesian regression and model learning. We perform Bayesian regression based on a user's definition of model-data agreement. This allows for model selection on any type of data distribution, unlike Bayesian and standard regression techniques, that "fail" in some cases. We show that our tool is capable of representing and combining Bayesian regression, standard regression, and likelihood-based calibration techniques in a single framework while being able to generalize aspects of these methods. This tool also offers new insights into the interpretation of the predictive envelopes in Bayesian regression, standard regression, and likelihood-based methods while giving the analyst more control over these envelopes.
by Tony Tohme.
S.M.
S.M. Massachusetts Institute of Technology, Computation for Design and Optimization Program
Ricciardi, Denielle E. "Uncertainty Quantification and Propagation in Materials Modeling Using a Bayesian Inferential Framework." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587473424147276.
Full textZheng, Xin. "Stock Market, Investment and Sentiment in the Framework of Bayesian DSGE Models." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20348.
Full textAdrakey, Hola Kwame. "Control and surveillance of partially observed stochastic epidemics in a Bayesian framework." Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3290.
Full textMcCall, Joel Curtis. "Human attention and intent analysis using robust visual cues in a Bayesian framework." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3215458.
Full textTitle from first page of PDF file (viewed July 24, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 159-168).
Schaberreiter, T. (Thomas). "A Bayesian network based on-line risk prediction framework for interdependent critical infrastructures." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526202129.
Full textTiivistelmä Tässä väitöskirjassa esitellään läpileikkausmalli kriittisten infrastruktuurien jatkuvaan käytön riskimallinnukseen. Tämän mallin avulla voidaan tiedottaa toisistaan riippuvaisia palveluita mahdollisista vaaroista, ja siten pysäyttää tai hidastaa toisiinsa vaikuttavat ja kumuloituvat vikaantumiset. Malli analysoi kriittisen infrastruktuurin palveluriskiä tutkimalla kriittisen infrastruktuuripalvelun tilan, joka on mitattu perusmittauksella (esimerkiksi anturi- tai ohjelmistotiloina) kriittisen infrastruktuurin palvelukomponenttien välillä ja tarkkailemalla koetun kriittisen infrastruktuurin palveluriskiä, joista palvelut riippuvat (kriittisen infrastruktuurin palveluriippuvuudet). Kriittisen infrastruktuurin palveluriski arvioidaan todennäköisyyden avulla käyttämällä Bayes-verkkoja. Lisäksi malli mahdollistaa tulevien riskien ennustamisen lyhyellä, keskipitkällä ja pitkällä aikavälillä, ja mahdollistaa niiden keskinäisten riippuvuuksien mallintamisen, joka on yleensä vaikea esittää Bayes-verkoissa. Kriittisen infrastruktuurin esittäminen kriittisen infrastruktuurin tietoturvamallina edellyttää analyysiä. Tässä väitöskirjassa esitellään kriittisen infrastruktuurin analyysimenetelmä, joka perustuu PROTOS-MATINE -riippuvuusanalyysimetodologiaan. Kriittiset infrastruktuurit esitetään kriittisen infrastruktuurin palveluina, palvelujen keskinäisinä riippuvuuksina ja perusmittauksina. Lisäksi tutkitaan varmuusindikaattoreita, joilla voidaan tutkia suoraan toiminnassa olevan kriittisen infrastruktuuripalvelun riskianalyysin oikeellisuutta, kuin myös riskiarvioita riippuvuuksista. Tutkimuksessa laadittiin työkalu, joka tukee kriittisen infrastruktuurin tietoturvamallin toteuttamisen kaikkia vaiheita. Kriittisen infrastruktuurin tietoturvamalli ja varmuusindikaattorien oikeellisuus vahvistettiin konseptitutkimuksella, ja alustavat tulokset osoittavat menetelmän toimivuuden
Kurzfassung In dieser Doktorarbeit wird ein Sektorübergreifendes Modell für die kontinuierliche Risikoabschätzung von kritische Infrastrukturen im laufenden Betrieb vorgestellt. Das Modell erlaubt es, Dienstleistungen, die in Abhängigkeit einer anderen Dienstleistung stehen, über mögliche Gefahren zu informieren und damit die Gefahr des Übergriffs von Risiken in andere Teile zu stoppen oder zu minimieren. Mit dem Modell können Gefahren in einer Dienstleistung anhand der Überwachung von kontinuierlichen Messungen (zum Beispiel Sensoren oder Softwarestatus) sowie der Überwachung von Gefahren in Dienstleistungen, die eine Abhängigkeit darstellen, analysiert werden. Die Abschätzung von Gefahren erfolgt probabilistisch mittels eines Bayessches Netzwerks. Zusätzlich erlaubt dieses Modell die Voraussage von zukünftigen Risiken in der kurzfristigen, mittelfristigen und langfristigen Zukunft und es erlaubt die Modellierung von gegenseitigen Abhängigkeiten, die im Allgemeinen schwer mit Bayesschen Netzwerken darzustellen sind. Um eine kritische Infrastruktur als ein solches Modell darzustellen, muss eine Analyse der kritischen Infrastruktur durchgeführt werden. In dieser Doktorarbeit wird diese Analyse durch die PROTOS-MATINE Methode zur Analyse von Abhängigkeiten unterstützt. Zusätzlich zu dem vorgestellten Modell wird in dieser Doktorarbeit eine Studie über Indikatoren, die das Vertrauen in die Genauigkeit einer Risikoabschätzung evaluieren können, vorgestellt. Die Studie beschäftigt sich sowohl mit der Evaluierung von Risikoabschätzungen innerhalb von Dienstleistungen als auch mit der Evaluierung von Risikoabschätzungen, die von Dienstleistungen erhalten wurden, die eine Abhängigkeiten darstellen. Eine Software, die alle Aspekte der Erstellung des vorgestellten Modells unterstützt, wurde entwickelt. Sowohl das präsentierte Modell zur Abschätzung von Risiken in kritischen Infrastrukturen als auch die Indikatoren zur Uberprüfung der Risikoabschätzungen wurden anhand einer Machbarkeitsstudie validiert. Erste Ergebnisse suggerieren die Anwendbarkeit dieser Konzepte auf kritische Infrastrukturen
Yang, Boye, and 扬博野. "Online auction price prediction: a Bayesian updating framework based on the feedback history." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43085830.
Full textCook, Alex. "Inference and prediction in plant populations using data augmentation within a Bayesian framework." Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/178.
Full textAlterovitz, Gil 1975. "A Bayesian framework for statistical signal processing and knowledge discovery in proteomic engineering." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34479.
Full textIncludes bibliographical references (leaves 73-85).
Proteomics has been revolutionized in the last couple of years through integration of new mass spectrometry technologies such as -Enhanced Laser Desorption/Ionization (SELDI) mass spectrometry. As data is generated in an increasingly rapid and automated manner, novel and application-specific computational methods will be needed to deal with all of this information. This work seeks to develop a Bayesian framework in mass-based proteomics for protein identification. Using the Bayesian framework in a statistical signal processing manner, mass spectrometry data is filtered and analyzed in order to estimate protein identity. This is done by a multi-stage process which compares probabilistic networks generated from mass spectrometry-based data with a mass-based network of protein interactions. In addition, such models can provide insight on features of existing models by identifying relevant proteins. This work finds that the search space of potential proteins can be reduced such that simple antibody-based tests can be used to validate protein identity. This is done with real proteins as a proof of concept. Regarding protein interaction networks, the largest human protein interaction meta-database was created as part of this project, containing over 162,000 interactions. A further contribution is the implementation of the massome network database of mass-based interactions- which is used in the protein identification process.
(cont.) This network is explored in terms potential usefulness for protein identification. The framework provides an approach to a number of core issues in proteomics. Besides providing these tools, it yields a novel way to approach statistical signal processing problems in this domain in a way that can be adapted as proteomics-based technologies mature.
by Gil Alterovitz.
Ph.D.
Enderwick, Tracey Claire. "Reasoning with incomplete information : within the framework of Bayesian networks and influence diagrams." Thesis, Cranfield University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501518.
Full textYang, Boye. "Online auction price prediction a Bayesian updating framework based on the feedback history /." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43085830.
Full textPARADISO, SIMONE. "CMB LIKELIHOOD AND COSMOLOGICAL PARAMETERS ESTIMATION IN A BAYESIAN END-TO-END FRAMEWORK." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/875458.
Full textBitto, Angela, and Sylvia Frühwirth-Schnatter. "Achieving shrinkage in a time-varying parameter model framework." Elsevier, 2019. http://dx.doi.org/10.1016/j.jeconom.2018.11.006.
Full textKaraaslan, Hatice. "A Study Of Argumentation In Turkish Within A Bayesian Reasoning Framework: Arguments From Ignorance." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614858/index.pdf.
Full textargument from ignorance&rdquo
or &ldquo
argumentum ad ignorantiam&rdquo
. The study was carried out in Turkish with Turkish participants. In the Bayesian framework, argument strength is determined by the interactions between three major factors: prior belief, polarity, and evidence reliability. In addition, topic effects are considered. Three experiments were conducted. The first experiment replicated Hahn et al.&rsquo
s (2005) study in Turkish to investigate whether similar results would be obtained in a different linguistic and cultural community. We found significant main effects of three of the manipulated factors in Oaksford and Hahn (2004) and Hahn et al. (2005): prior belief, reliability and topic. With respect to the Bayesian analysis, the overall fit between the data and the model was very good. The second experiment tested the hypothesis that argument acceptance would not vary across different intelligence levels. There was no significant main effect of prior belief, polarity, topic, and intelligence. We found a main effect of reliability only. However, further analyses on significant interactions showed that more intelligent subjects were less inclined to accept negative polarity items. Finally, the third experiment investigated the hypothesis that argument acceptance would vary depending on the presence of and the kind of evidentiality markers prevalent in Turkish, indicating the certainty with which events in the past have happened, marked with overt morpho-syntactic markers (&ndash
DI or &ndash
mIs). The experiment found a significant main effect of evidentiality as well as replicating the significant main effects of the two of the manipulated factors (prior belief and reliability) in Oaksford and Hahn (2004), Hahn et al. (2005) and in our first experiment. Furthermore, reliability and evidentiality interacted, indicating separate as well as combined effects of the two. With respect to the Bayesian analysis, the overall fit between the data and the model was lower than the one in the first experiment, but still acceptable. Overall, this study supported the normative Bayesian approach to studying argumentation in an interdisciplinary perspective, combining computation, psychology, linguistics, and philosophy.
McClellan, Michael James. "Estimating regional nitrous oxide emissions using isotopic ratio observations and a Bayesian inverse framework." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119986.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-148).
Atmospheric nitrous oxide (N₂O) significantly impacts Earth's climate due to its dual role as an inert potent greenhouse gas in the troposphere and as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. Global atmospheric concentrations of N₂O, produced by natural and anthropogenic processes, continue to rise due to increases in emissions linked to human activity. The understanding of the impact of this gas is incomplete as there remain significant uncertainties in its global budget. The experiment described in this thesis, in which a global chemical transport model (MOZART-4), a fine-scale regional Lagrangian model (NAME), and new high-frequency atmospheric observations are combined, shows that uncertainty in N₂O emissions estimates can be reduced in areas with continuous monitoring of N₂O mole fraction and site-specific isotopic ratios. Due to unique heavy-atom (15N and 18O) isotopic substitutions made by different N₂O sources, the measurement of N₂O isotopic ratios in ambient air can help identify the distribution and magnitude of distinct sources. The new Stheno-TILDAS continuous wave laser spectroscopy instrument developed at MIT, recently installed at the Mace Head Atmospheric Research Station in western Ireland, can produce high-frequency timelines of atmospheric N₂O isotopic ratios that can be compared to contemporaneous trends in correlative trace gas mole fractions and NAME-based statistical distributions of the origin of air sampled at the station. This combination leads to apportionment of the relative contribution from five major N₂O sectors in the European region (agriculture, oceans, natural soils, industry, and biomass burning) plus well-mixed air transported from long distances to the atmospheric N₂O measured at Mace Head. Bayesian inverse modeling methods that compare N₂O mole fraction and isotopic ratio observations at Mace Head and at Diibendorf, Switzerland to simulated conditions produced using NAME and MOZART-4 lead to an optimized set of source-specific N₂O emissions estimates in the NAME Europe domain. Notably, this inverse modeling experiment leads to a significant decrease in uncertainty in summertime emissions for the four largest sectors in Europe, and shows that industrial and agricultural N₂O emissions in Europe are underestimated in inventories such as EDGAR v4.3.2. This experiment sets up future work that will be able to help constrain global estimates of N₂O emissions once additional isotopic observations are made in other global locations and integrated into the NAME-MOZART inverse modeling framework described in this thesis.
by Michael James McClellan.
Ph. D. in Atmospheric Science
Tsiftsi, Thomai. "Statistical shape analysis in a Bayesian framework : the geometric classification of fluvial sand bodies." Thesis, Durham University, 2015. http://etheses.dur.ac.uk/11368/.
Full textMukhtar, Abdulaziz Yagoub Abdelrahman. "Mathematical modeling of the transmission dynamics of malaria in South Sudan." University of the Western Cape, 2019. http://hdl.handle.net/11394/7037.
Full textMalaria is a common infection in tropical areas, transmitted between humans through female anopheles mosquito bites as it seeks blood meal to carry out egg production. The infection forms a direct threat to the lives of many people in South Sudan. Reports show that malaria caused a large proportion of morbidity and mortality in the fledgling nation, accounting for 20% to 40% morbidity and 20% to 25% mortality, with the majority of the affected people being children and pregnant mothers. In this thesis, we construct and analyze mathematical models for malaria transmission in South Sudan context incorporating national malaria control strategic plan. In addition, we investigate important factors such as climatic conditions and population mobility that may drive malaria in South Sudan. Furthermore, we study a stochastic version of the deterministic model by introducing a white noise.
Kenja, Krishna. "Bayesian Parameter Estimation for Hyperelastic Constitutive Models of Soft Tissue under Non-homogeneous Deformation." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1515505801223584.
Full textKroon, Rodney Stephen. "A framework for estimating risk." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019.1/1104.
Full textAprilia, Asti Wulandari. "Uncertainty quantification of volumetric and material balance analysis of gas reservoirs with water influx using a Bayesian framework." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4998.
Full text