Academic literature on the topic 'Bayesian logistic regression models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian logistic regression models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian logistic regression models"
Hwang, Jin-Soo, and Sung-Chan Kang. "Inferential Problems in Bayesian Logistic Regression Models." Korean Journal of Applied Statistics 24, no. 6 (December 31, 2011): 1149–60. http://dx.doi.org/10.5351/kjas.2011.24.6.1149.
Full textWang, Xiaoyin. "Bayesian Relative Importance Analysis of Logistic Regression Models." Journal of Statistics Applications & Probability Letters 3, no. 2 (May 1, 2016): 53–69. http://dx.doi.org/10.18576/jsapl/030201.
Full textWagner, Helga, and Christine Duller. "Bayesian model selection for logistic regression models with random intercept." Computational Statistics & Data Analysis 56, no. 5 (May 2012): 1256–74. http://dx.doi.org/10.1016/j.csda.2011.06.033.
Full textGe, Yang, and Wenxin Jiang. "On Consistency of Bayesian Inference with Mixtures of Logistic Regression." Neural Computation 18, no. 1 (January 1, 2006): 224–43. http://dx.doi.org/10.1162/089976606774841594.
Full textChen, M. H., J. G. Ibrahim, and C. Yiannoutsos. "Prior elicitation, variable selection and Bayesian computation for logistic regression models." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61, no. 1 (February 1999): 223–42. http://dx.doi.org/10.1111/1467-9868.00173.
Full textBulso, Nicola, Matteo Marsili, and Yasser Roudi. "On the Complexity of Logistic Regression Models." Neural Computation 31, no. 8 (August 2019): 1592–623. http://dx.doi.org/10.1162/neco_a_01207.
Full textJalava, Katri, Sirpa Räsänen, Kaija Ala-Kojola, Saara Nironen, Jyrki Möttönen, and Jukka Ollgren. "Binary Regression Models with Log-Link in the Cohort Studies." Open Epidemiology Journal 6, no. 1 (October 4, 2013): 18–20. http://dx.doi.org/10.2174/1874297101306010018.
Full textPrasetyo, Rindang Bangun, Heri Kuswanto, Nur Iriawan, and Brodjol Sutijo Suprih Ulama. "Binomial Regression Models with a Flexible Generalized Logit Link Function." Symmetry 12, no. 2 (February 2, 2020): 221. http://dx.doi.org/10.3390/sym12020221.
Full textPham, Huong T. T., and Hoa Pham. "On the existence of posterior mean for Bayesian logistic regression." Monte Carlo Methods and Applications 27, no. 3 (May 18, 2021): 277–88. http://dx.doi.org/10.1515/mcma-2021-2089.
Full textDucher, Michel, Emilie Kalbacher, François Combarnous, Jérome Finaz de Vilaine, Brigitte McGregor, Denis Fouque, and Jean Pierre Fauvel. "Comparison of a Bayesian Network with a Logistic Regression Model to Forecast IgA Nephropathy." BioMed Research International 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/686150.
Full textDissertations / Theses on the topic "Bayesian logistic regression models"
Webster, Gregg. "Bayesian logistic regression models for credit scoring." Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1005538.
Full textRichmond, James Howard. "Bayesian Logistic Regression Models for Software Fault Localization." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1326658577.
Full textOzturk, Olcay. "Bayesian Semiparametric Models For Nonignorable Missing Datamechanisms In Logistic Regression." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613241/index.pdf.
Full textKynn, Mary. "Eliciting Expert Knowledge for Bayesian Logistic Regression in Species Habitat Modelling." Queensland University of Technology, 2005. http://eprints.qut.edu.au/16041/.
Full textPaz, Rosineide Fernando da. "Alternative regression models to beta distribution under bayesian approach." Universidade Federal de São Carlos, 2017. https://repositorio.ufscar.br/handle/ufscar/9146.
Full textApproved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:14Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5)
Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:22Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5)
Made available in DSpace on 2017-10-10T18:23:04Z (GMT). No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5) Previous issue date: 2017-08-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models.
A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
Zimmer, Zachary. "Predicting NFL Games Using a Seasonal Dynamic Logistic Regression Model." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd_retro/97.
Full textFu, Shuting. "Bayesian Logistic Regression Model with Integrated Multivariate Normal Approximation for Big Data." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/451.
Full textSchoergendorfer, Angela. "BAYESIAN SEMIPARAMETRIC GENERALIZATIONS OF LINEAR MODELS USING POLYA TREES." UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/214.
Full textTang, Zhongwen. "LOF of logistic GEE models and cost efficient Bayesian optimal designs for nonlinear combinations of parameters in nonlinear regression models." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1011.
Full textDikshit, Anubhav. "Omnichannel path to purchase : Viability of Bayesian Network as Market Attribution Models." Thesis, Linköpings universitet, Filosofiska fakulteten, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165443.
Full textBooks on the topic "Bayesian logistic regression models"
Houston, Walter M. Empirical Bayes estimates of parameters from the logistic regression model. Iowa City, Iowa: ACT, Inc., 1997.
Find full textHouston, Walter M. Empirical Bayes estimates of parameters from the logistic regression model. Iowa City, Iowa: ACT, Inc., 1997.
Find full textRonald, Christensen. Log-linear models and logistic regression. 2nd ed. New York: Springer, 1997.
Find full textO'Connell, Ann. Logistic Regression Models for Ordinal Response Variables. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2006. http://dx.doi.org/10.4135/9781412984812.
Full textRegression modeling strategies: With applications to linear models, logistic regression, and survival analysis. New York: Springer, 2001.
Find full textGuttman, Irwin. Bayesian assessment of assumptions of regression analysis. Toronto: University of Toronto, Dept. of Statistics, 1988.
Find full textBagchi, Parthasarathy. Bayesian assessment of assumptions of regression analysis. Toronto: University of Toronto, Dept. of Statistics, 1989.
Find full textPilz, Jürgen. Bayesian estimation and experimental design in linear regression models. Chichester: Wiley, 1991.
Find full textPilz, Jürgen. Bayesian estimation and experimental design in linear regression models. 2nd ed. Chichester: Wiley, 1991.
Find full textBook chapters on the topic "Bayesian logistic regression models"
Heumann, Christian, and Moritz Grenke. "An Efficient Model Averaging Procedure for Logistic Regression Models Using a Bayesian Estimator with Laplace Prior." In Statistical Modelling and Regression Structures, 79–90. Heidelberg: Physica-Verlag HD, 2009. http://dx.doi.org/10.1007/978-3-7908-2413-1_5.
Full textManeejuk, Paravee, Woraphon Yamaka, and Duentemduang Nachaingmai. "Bayesian Analysis of the Logistic Kink Regression Model Using Metropolis-Hastings Sampling." In Beyond Traditional Probabilistic Methods in Economics, 1073–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04200-4_78.
Full textFriendly, Michael, David Meyer, and Achim Zeileis. "Logistic Regression Models." In Discrete Data Analysis with R, 261–322. Boca Raton : Taylor & Francis, 2016. | Series: Chapman & hall/CRC texts in statistical science series ; 120 | “A CRC title.”: Chapman and Hall/CRC, 2015. http://dx.doi.org/10.1201/b19022-10.
Full textBisong, Ekaba. "Logistic Regression." In Building Machine Learning and Deep Learning Models on Google Cloud Platform, 243–50. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8_20.
Full textNiranjan, Mahesan. "On Sequential Bayesian Logistic Regression." In Neural Nets WIRN Vietri-99, 3–11. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0877-1_1.
Full textAlbert, Jim. "Regression Models." In Bayesian Computation with R, 205–34. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-92298-0_9.
Full textKelly, Dana, and Curtis Smith. "Bayesian Regression Models." In Springer Series in Reliability Engineering, 141–63. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-187-5_11.
Full textWilson, Jeffrey R., and Kent A. Lorenz. "Hierarchical Logistic Regression Models." In ICSA Book Series in Statistics, 201–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23805-0_10.
Full textHoffmann, John P. "A Brief Introduction to Logistic Regression." In Linear Regression Models, 337–54. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003162230-16.
Full textBillio, Monica, Roberto Casarin, and Matteo Iacopini. "Bayesian Tensor Regression Models." In Mathematical and Statistical Methods for Actuarial Sciences and Finance, 149–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89824-7_28.
Full textConference papers on the topic "Bayesian logistic regression models"
Niranjan, M. "Sequential Bayesian computation of logistic regression models." In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258). IEEE, 1999. http://dx.doi.org/10.1109/icassp.1999.759927.
Full textXu, Zuobing, and Ram Akella. "A bayesian logistic regression model for active relevance feedback." In the 31st annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390334.1390375.
Full textPavlyshenko, B. "Machine learning, linear and Bayesian models for logistic regression in failure detection problems." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840828.
Full textHuttunen, Heikki, Tapio Manninen, and Jussi Tohka. "Bayesian error estimation and model selection in sparse logistic regression." In 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2013. http://dx.doi.org/10.1109/mlsp.2013.6661987.
Full textZhang, Zhi-yong, and Bai-lin Yang. "A relevance feedback based on Bayesian logistic regression for 3D model retrieval." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5620071.
Full textMladenov, Martin, Craig Boutilier, Dale Schuurmans, Ofer Meshi, Gal Elidan, and Tyler Lu. "Logistic Markov Decision Processes." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/346.
Full textNguyen, Vu, Dinh Phung, Trung Le, and Hung Bui. "Discriminative Bayesian Nonparametric Clustering." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/355.
Full text"Using the Bayesian Logistic Regression Model to determine the relationship of demographics and Hyperaldosteronism." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.h1.bartolucci.
Full textBuettner, Florian, Sarah Gulliford, Steve Webb, and Mike Partridge. "Using Bayesian Logistic Regression with High-Order Interactions to Model Radiation-Induced Toxicities Following Radiotherapy." In 2009 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2009. http://dx.doi.org/10.1109/icmla.2009.65.
Full textFoulds, James R., Mijung Park, Kamalika Chaudhuri, and Max Welling. "Variational Bayes in Private Settings (VIPS) (Extended Abstract)." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/705.
Full textReports on the topic "Bayesian logistic regression models"
Churchill, Alexandrea, and Grace Kissling. Convergence in Mixed Effects Logistic Regression Models. Journal of Young Investigators, February 2019. http://dx.doi.org/10.22186/jyi.36.2.18-35.
Full textJohnston, Katherine. Bayesian Regression of Thermodynamic Models of Redox Active Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1389915.
Full textStefanski, L. A., R. J. Carroll, and D. Ruppert. Optimally Bounded Score Functions for Generalized Linear Models with Applications to Logistic Regression. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160348.
Full textHaubrich, Julia, Sarah Benz, Ullrich Isermann, Beat Schäffer, Rainer Schmid, Dirk Schreckenberg, Jean Marc Wunderli, and Rainer Guski. Leq+X - Lärmexposition, Ereignishäufigkeiten und Belästigung: Re-Analyse von Daten zur Belästigung und Schlafstörung durch Fluglärm an deutschen und Schweizer Flughäfen. Universitätsbibliothek der Ruhr-Universität Bochum, 2020. http://dx.doi.org/10.46586/rub.164.139.
Full text