Journal articles on the topic 'Bayesian Machine Learning (BML)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bayesian Machine Learning (BML).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rigueira, Xurxo, María Pazo, María Araújo, Saki Gerassis, and Elvira Bocos. "Bayesian Machine Learning and Functional Data Analysis as a Two-Fold Approach for the Study of Acid Mine Drainage Events." Water 15, no. 8 (2023): 1553. http://dx.doi.org/10.3390/w15081553.
Full textMobiny, Aryan, Aditi Singh, and Hien Van Nguyen. "Risk-Aware Machine Learning Classifier for Skin Lesion Diagnosis." Journal of Clinical Medicine 8, no. 8 (2019): 1241. http://dx.doi.org/10.3390/jcm8081241.
Full textOladyshkin, Sergey, Farid Mohammadi, Ilja Kroeker, and Wolfgang Nowak. "Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory." Entropy 22, no. 8 (2020): 890. http://dx.doi.org/10.3390/e22080890.
Full textZhou, Ting, Xiaohu Wen, Qi Feng, Haijiao Yu, and Haiyang Xi. "Bayesian Model Averaging Ensemble Approach for Multi-Time-Ahead Groundwater Level Prediction Combining the GRACE, GLEAM, and GLDAS Data in Arid Areas." Remote Sensing 15, no. 1 (2022): 188. http://dx.doi.org/10.3390/rs15010188.
Full textKim, Sungwon, Meysam Alizamir, Nam Won Kim, and Ozgur Kisi. "Bayesian Model Averaging: A Unique Model Enhancing Forecasting Accuracy for Daily Streamflow Based on Different Antecedent Time Series." Sustainability 12, no. 22 (2020): 9720. http://dx.doi.org/10.3390/su12229720.
Full textNajafi, Mohammad Reza, Zahra Kavianpour, Banafsheh Najafi, Mohammad Reza Kavianpour, and Hamid Moradkhani. "Air demand in gated tunnels – a Bayesian approach to merge various predictions." Journal of Hydroinformatics 14, no. 1 (2011): 152–66. http://dx.doi.org/10.2166/hydro.2011.108.
Full textXu, Ren, Nengcheng Chen, Yumin Chen, and Zeqiang Chen. "Downscaling and Projection of Multi-CMIP5 Precipitation Using Machine Learning Methods in the Upper Han River Basin." Advances in Meteorology 2020 (March 9, 2020): 1–17. http://dx.doi.org/10.1155/2020/8680436.
Full textShu, Meiyan, Shuaipeng Fei, Bingyu Zhang, et al. "Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits." Plant Phenomics 2022 (August 28, 2022): 1–17. http://dx.doi.org/10.34133/2022/9802585.
Full textQuadeer, Ahmed A., Matthew R. McKay, John P. Barton, and Raymond H. Y. Louie. "MPF–BML: a standalone GUI-based package for maximum entropy model inference." Bioinformatics 36, no. 7 (2019): 2278–79. http://dx.doi.org/10.1093/bioinformatics/btz925.
Full textSoria-Olivas, E., J. Gomez-Sanchis, J. D. Martin, et al. "BELM: Bayesian Extreme Learning Machine." IEEE Transactions on Neural Networks 22, no. 3 (2011): 505–9. http://dx.doi.org/10.1109/tnn.2010.2103956.
Full textBiletskyy, B. "Distributed Bayesian Machine Learning Procedures." Cybernetics and Systems Analysis 55, no. 3 (2019): 456–61. http://dx.doi.org/10.1007/s10559-019-00153-4.
Full textChen, Yarui, Jucheng Yang, Chao Wang, and DongSun Park. "Variational Bayesian extreme learning machine." Neural Computing and Applications 27, no. 1 (2014): 185–96. http://dx.doi.org/10.1007/s00521-014-1710-1.
Full textSuyama, Atsushi. "Introduction to Bayesian Machine Learning." Journal of the Robotics Society of Japan 40, no. 10 (2022): 857–62. http://dx.doi.org/10.7210/jrsj.40.857.
Full textLi, Yifen, Yun Wang, Zhiya Chen, and Runmin Zou. "Bayesian robust multi-extreme learning machine." Knowledge-Based Systems 210 (December 2020): 106468. http://dx.doi.org/10.1016/j.knosys.2020.106468.
Full textGandhi, Shipra, Sarabjot Pabla, Mary Nesline, et al. "Algorithmic prediction of response to checkpoint inhibitors: Hyperprogressors versus responders." Journal of Clinical Oncology 35, no. 15_suppl (2017): 11565. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.11565.
Full textWang, Peipei, Xinqi Zheng, Junhua Ku, and Chunning Wang. "Multiple-Instance Learning Approach via Bayesian Extreme Learning Machine." IEEE Access 8 (2020): 62458–70. http://dx.doi.org/10.1109/access.2020.2984271.
Full textWai Lam. "Bayesian network refinement via machine learning approach." IEEE Transactions on Pattern Analysis and Machine Intelligence 20, no. 3 (1998): 240–51. http://dx.doi.org/10.1109/34.667882.
Full textKrems, R. V. "Bayesian machine learning for quantum molecular dynamics." Physical Chemistry Chemical Physics 21, no. 25 (2019): 13392–410. http://dx.doi.org/10.1039/c9cp01883b.
Full textKarandikar, Jaydeep, Andrew Honeycutt, Scott Smith, and Tony Schmitz. "Milling stability identification using Bayesian machine learning." Procedia CIRP 93 (2020): 1423–28. http://dx.doi.org/10.1016/j.procir.2020.04.022.
Full textBew, David, Campbell R. Harvey, Anthony Ledford, Sam Radnor, and Andrew Sinclair. "Modeling Analysts’ Recommendations via Bayesian Machine Learning." Journal of Financial Data Science 1, no. 1 (2019): 75–98. http://dx.doi.org/10.3905/jfds.2019.1.1.075.
Full textZhu, Jun, Jianfei Chen, Wenbo Hu, and Bo Zhang. "Big Learning with Bayesian methods." National Science Review 4, no. 4 (2017): 627–51. http://dx.doi.org/10.1093/nsr/nwx044.
Full textBoyko, Nataliya, and Oleksandra Dypko. "Analysis of Machine Learning Methods Using Spam Filtering." Modeling Control and Information Technologies, no. 5 (November 21, 2021): 25–28. http://dx.doi.org/10.31713/mcit.2021.06.
Full textJ, Dr Visumathi, Tetala Durga Venkata Rama Reddy, Velagapudi Abhinandhan, and Panamganti Anil Kumar. "Multi-Disease Prediction Using Machine Learning Algorithm." International Journal for Research in Applied Science and Engineering Technology 11, no. 4 (2023): 447–53. http://dx.doi.org/10.22214/ijraset.2023.50128.
Full textTresp, Volker. "A Bayesian Committee Machine." Neural Computation 12, no. 11 (2000): 2719–41. http://dx.doi.org/10.1162/089976600300014908.
Full textGeer, A. J. "Learning earth system models from observations: machine learning or data assimilation?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2194 (2021): 20200089. http://dx.doi.org/10.1098/rsta.2020.0089.
Full textSohail, Ayesha. "INFERENCE OF BIOMEDICAL DATA SETS USING BAYESIAN MACHINE LEARNING." Biomedical Engineering: Applications, Basis and Communications 31, no. 04 (2019): 1950030. http://dx.doi.org/10.4015/s1016237219500303.
Full textMalviya, Ravi Prakash. "A Bayesian Machine Learning Approach for Smart City." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (2021): 796–816. http://dx.doi.org/10.22214/ijraset.2021.39195.
Full textGao, Haiping, Shifa Zhong, Wenlong Zhang, et al. "Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization." Environmental Science & Technology 56, no. 4 (2021): 2572–81. http://dx.doi.org/10.1021/acs.est.1c04373.
Full textJun, Sunghae, #VALUE! #VALUE!, and #VALUE! #VALUE! "Regression Machine Learning using Bayesian Inference and Regularization." Journal of Korean Institute of Intelligent Systems 29, no. 5 (2019): 390–94. http://dx.doi.org/10.5391/jkiis.2019.29.5.390.
Full textWu, Wei, Srikantan Nagarajan, and Zhe Chen. "Bayesian Machine Learning: EEG\/MEG signal processing measurements." IEEE Signal Processing Magazine 33, no. 1 (2016): 14–36. http://dx.doi.org/10.1109/msp.2015.2481559.
Full textChakraborty, Sounak. "Bayesian semi-supervised learning with support vector machine." Statistical Methodology 8, no. 1 (2011): 68–82. http://dx.doi.org/10.1016/j.stamet.2009.09.002.
Full textSarkar, Dripta, Michael A. Osborne, and Thomas A. A. Adcock. "Prediction of tidal currents using Bayesian machine learning." Ocean Engineering 158 (June 2018): 221–31. http://dx.doi.org/10.1016/j.oceaneng.2018.03.007.
Full textWang, Jing, Lin Zhang, Juan-juan Cao, and Di Han. "NBWELM: naive Bayesian based weighted extreme learning machine." International Journal of Machine Learning and Cybernetics 9, no. 1 (2014): 21–35. http://dx.doi.org/10.1007/s13042-014-0318-1.
Full textJiahua Luo, Chi-Man Vong, and Pak-Kin Wong. "Sparse Bayesian Extreme Learning Machine for Multi-classification." IEEE Transactions on Neural Networks and Learning Systems 25, no. 4 (2014): 836–43. http://dx.doi.org/10.1109/tnnls.2013.2281839.
Full textSong, Min-Jong, and Yong-Sik Cho. "Probabilistic Tsunami Heights Model using Bayesian Machine Learning." Journal of Coastal Research 95, sp1 (2020): 1291. http://dx.doi.org/10.2112/si95-249.1.
Full textHobson, Michael, Philip Graff, Farhan Feroz, and Anthony Lasenby. "Machine-learning in astronomy." Proceedings of the International Astronomical Union 10, S306 (2014): 279–87. http://dx.doi.org/10.1017/s1743921314013672.
Full textWhite, Brian S., Suleiman A. Khan, Muhammad Ammad-ud-din, et al. "Comparative Analysis of Independent Ex Vivo functional Drug Screens Identifies Predictive Biomarkers of BCL-2 Inhibitor Response in AML." Blood 132, Supplement 1 (2018): 2763. http://dx.doi.org/10.1182/blood-2018-99-111916.
Full textChavan, Mr Vikram. "Malware Classification using Machine Learning Algorithms and Tools." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 69–73. http://dx.doi.org/10.22214/ijraset.2021.34353.
Full textNixon, Matthew C., and Nikku Madhusudhan. "Assessment of supervised machine learning for atmospheric retrieval of exoplanets." Monthly Notices of the Royal Astronomical Society 496, no. 1 (2020): 269–81. http://dx.doi.org/10.1093/mnras/staa1150.
Full textLehto, M. R., and G. S. Sorock. "Machine Learning of Motor Vehicle Accident Categories from Narrative Data." Methods of Information in Medicine 35, no. 04/05 (1996): 309–16. http://dx.doi.org/10.1055/s-0038-1634680.
Full textHwang, Ha-Eun, Yoon-Sang Cho, Seok-Cheol Hwang, and Seoung-Bum Kim. "Optimal Tire Design Using Machine Learning and Bayesian Optimization." Journal of the Korean Institute of Industrial Engineers 48, no. 4 (2022): 433–40. http://dx.doi.org/10.7232/jkiie.2022.48.4.433.
Full textBaggio, Giacomo, Algo Carè, Anna Scampicchio, and Gianluigi Pillonetto. "Bayesian frequentist bounds for machine learning and system identification." Automatica 146 (December 2022): 110599. http://dx.doi.org/10.1016/j.automatica.2022.110599.
Full textWilliams, Dominic P., Stanley E. Lazic, Alison J. Foster, Elizaveta Semenova, and Paul Morgan. "Predicting Drug-Induced Liver Injury with Bayesian Machine Learning." Chemical Research in Toxicology 33, no. 1 (2019): 239–48. http://dx.doi.org/10.1021/acs.chemrestox.9b00264.
Full textWang, Hui. "Finding patterns in subsurface using Bayesian machine learning approach." Underground Space 5, no. 1 (2020): 84–92. http://dx.doi.org/10.1016/j.undsp.2018.10.006.
Full textWang, Jian, Ting Ran, Yadong Chen, and Tao Lu. "Bayesian machine learning to discover Bruton’s tyrosine kinase inhibitors." Chemical Biology & Drug Design 96, no. 4 (2020): 1114–22. http://dx.doi.org/10.1111/cbdd.13656.
Full textGarcia-Bonete, Maria-Jose, and Gergely Katona. "Bayesian machine learning improves single-wavelength anomalous diffraction phasing." Acta Crystallographica Section A Foundations and Advances 75, no. 6 (2019): 851–60. http://dx.doi.org/10.1107/s2053273319011446.
Full textSantucci, Raymond J., Christine E. Sanders, Hongyu Zhu, Kenneth D. Smith, and Robert G. Kelly. "Bayesian Network Machine Learning Approach to Atmospheric Corrosion Modelling." ECS Meeting Abstracts MA2022-02, no. 10 (2022): 693. http://dx.doi.org/10.1149/ma2022-0210693mtgabs.
Full textBessa, Miguel A., Piotr Glowacki, and Michael Houlder. "Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible." Advanced Materials 31, no. 48 (2019): 1904845. http://dx.doi.org/10.1002/adma.201904845.
Full textChen, Hongyu, Xinyi Li, Zongbao Feng, et al. "Shield attitude prediction based on Bayesian-LGBM machine learning." Information Sciences 632 (June 2023): 105–29. http://dx.doi.org/10.1016/j.ins.2023.03.004.
Full textChaturvedi, Iti, Edoardo Ragusa, Paolo Gastaldo, Rodolfo Zunino, and Erik Cambria. "Bayesian network based extreme learning machine for subjectivity detection." Journal of the Franklin Institute 355, no. 4 (2018): 1780–97. http://dx.doi.org/10.1016/j.jfranklin.2017.06.007.
Full text