Dissertations / Theses on the topic 'Bayesian Modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Bayesian Modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Joseph, Joshua Mason. "Nonparametric Bayesian behavior modeling." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45263.
Full textIncludes bibliographical references (p. 91-94).
As autonomous robots are increasingly used in complex, dynamic environments, it is crucial that the dynamic elements are modeled accurately. However, it is often difficult to generate good models due to either a lack of domain understanding or the domain being intractably large. In many domains, even defining the size of the model can be a challenge. While methods exist to cluster data of dynamic agents into common motion patterns, or "behaviors," assumptions of the number of expected behaviors must be made. This assumption can cause clustering processes to under-fit or over-fit the training data. In a poorly understood domain, knowing the number of expected behaviors a priori is unrealistic and in an extremely large domain, correctly fitting the training data is difficult. To overcome these obstacles, this thesis takes a Bayesian approach and applies a Dirichlet process (DP) prior over behaviors, which uses experience to reduce the likelihood of over-fitting or under-fitting the model complexity. Additionally, the DP maintains a probability mass associated with a novel behavior and can address countably infinite behaviors. This learning technique is applied to modeling agents driving in an urban setting. The learned DP-based driver behavior model is first demonstrated on a simulated city. Building on successful simulation results, the methodology is applied to GPS data of taxis driving around Boston. Accurate prediction of future vehicle behavior from the model is shown in both domains.
by Joshua Mason Joseph.
S.M.
Turner, Brandon Michael. "Likelihood-Free Bayesian Modeling." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316714657.
Full textLi, Feng. "Bayesian Modeling of Conditional Densities." Doctoral thesis, Stockholms universitet, Statistiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-89426.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: In press. Paper 4: Manuscript.
Rahlin, Alexandra Sasha. "Bayesian modeling of microwave foregrounds." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44735.
Full textIncludes bibliographical references (p. 93-94).
In the past decade, advances in precision cosmology have pushed our understanding of the evolving Universe to new limits. Since the discovery of the cosmic microwave background (CMB) radiation in 1965 by Penzias and Wilson, precise measurements of various cosmological parameters have provided a glimpse into the dynamics of the early Universe and the fate that awaits it in the very distant future. However, these measurements are hindered by the presence of strong foreground contamination (synchrotron, free-free, dust emission) from the interstellar medium in our own Galaxy and others that masks the CMB signal. Recent developments in modeling techniques may provide a better understanding of these foregrounds and allow improved constraints on current cosmological models. The method of nested sampling [16, 5], a Bayesian inference technique for calculating the evidence (the average of the likelihood over the prior mass), promises to be efficient and accurate for modeling the microwave foregrounds masking the CMB signal. An efficient and accurate algorithm would prove extremely useful for analyzing data obtained from current and future CMB experiments. This analysis aims to characterize the behavior of the nested sampling algorithm. We create a physically realistic data simulation, which we then use to reconstruct the CMB sky using both the Internal Linear Combination (ILC) method and nested sampling. The accuracy of the reconstruction is determined by figures of merit based on the RMS of the reconstruction, residuals and foregrounds. We find that modeling the foregrounds by nested sampling produces the most accurate results when the spectral index for the dust foreground component is fixed.
(cont.) Although the reconstructed foregrounds are qualitatively similar to what is expected, none of the non-linear models produce a CMB map as accurate as that produced by internal linear combination(ILC). More over, additional low-frequency components (synchrotron steepening, spinning dust) produce inconclusive results. Further study is needed to improve efficiency and accuracy of the nested sampling algorithm.
by Alexandra Sasha Rahlin.
S.B.
Gao, Wenyu. "Advanced Nonparametric Bayesian Functional Modeling." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99913.
Full textDoctor of Philosophy
As we have easier access to massive data sets, functional analyses have gained more interest to analyze data providing information about curves, surfaces, or others varying over a continuum. However, such data sets often contain large heterogeneities and noise. When generalizing the analyses from vectors to functions, classical methods might not work directly. This dissertation considers noisy information reduction in functional analyses from two perspectives: functional variable selection to reduce the dimensionality and functional clustering to group similar observations and thus reduce the sample size. The complicated data structures and relations can be easily modeled by a Bayesian hierarchical model due to its flexibility. Hence, this dissertation focuses on the development of nonparametric Bayesian approaches for functional analyses. Our proposed methods can be applied in various applications: the epidemiological studies on aseptic meningitis with clustered binary data, the genetic diabetes data, and breast cancer racial disparities.
Caballero, Jose Louis Galan. "Modeling qualitative judgements in Bayesian networks." Thesis, Queen Mary, University of London, 2008. http://qmro.qmul.ac.uk/xmlui/handle/123456789/28170.
Full textZhuang, Lili. "Bayesian Dynamical Modeling of Count Data." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1315949027.
Full textNounou, Mohamed Numan. "Multiscale bayesian linear modeling and applications /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488203552781115.
Full textHarati, Nejad Torbati Amir Hossein. "Nonparametric Bayesian Approaches for Acoustic Modeling." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/338396.
Full textPh.D.
The goal of Bayesian analysis is to reduce the uncertainty about unobserved variables by combining prior knowledge with observations. A fundamental limitation of a parametric statistical model, including a Bayesian approach, is the inability of the model to learn new structures. The goal of the learning process is to estimate the correct values for the parameters. The accuracy of these parameters improves with more data but the model’s structure remains fixed. Therefore new observations will not affect the overall complexity (e.g. number of parameters in the model). Recently, nonparametric Bayesian methods have become a popular alternative to Bayesian approaches because the model structure is learned simultaneously with the parameter distributions in a data-driven manner. The goal of this dissertation is to apply nonparametric Bayesian approaches to the acoustic modeling problem in continuous speech recognition. Three important problems are addressed: (1) statistical modeling of sub-word acoustic units; (2) semi-supervised training algorithms for nonparametric acoustic models; and (3) automatic discovery of sub-word acoustic units. We have developed a Doubly Hierarchical Dirichlet Process Hidden Markov Model (DHDPHMM) with a non-ergodic structure that can be applied to problems involving sequential modeling. DHDPHMM shares mixture components between states using two Hierarchical Dirichlet Processes (HDP). An inference algorithm for this model has been developed that enables DHDPHMM to outperform both its hidden Markov model (HMM) and HDP HMM (HDPHMM) counterparts. This inference algorithm is shown to also be computationally less expensive than a comparable algorithm for HDPHMM. In addition to sharing data, the proposed model can learn non-ergodic structures and non-emitting states, something that HDPHMM does not support. This extension to the model is used to model finite length sequences. We have also developed a generative model for semi-supervised training of DHDPHMMs. Semi-supervised learning is an important practical requirement for many machine learning applications including acoustic modeling in speech recognition. The relative improvement in error rates on classification and recognition tasks is shown to be 22% and 7% respectively. Semi-supervised training results are slightly better than supervised training (29.02% vs. 29.71%). Context modeling was also investigated and results show a modest improvement of 1.5% relative over the baseline system. We also introduce a nonparametric Bayesian transducer based on an ergodic HDPHMM/DHDPHMM that automatically segments and clusters the speech signal using an unsupervised approach. This transducer was used in several applications including speech segmentation, acoustic unit discovery, spoken term detection and automatic generation of a pronunciation lexicon. For the segmentation problem, an F¬¬¬¬¬¬-score of 76.62% was achieved which represents a 9% relative improvement over the baseline system. On the spoken term detection tasks, an average precision of 64.91% was achieved, which represents a 20% improvement over the baseline system. Lexicon generation experiments also show automatically discovered units (ADU) generalize to new datasets. In this dissertation, we have established the foundation for applications of non-parametric Bayesian modeling to problems such as speech recognition that involve sequential modeling. These models allow a new generation of machine learning systems that adapt their overall complexity in a data-driven manner and yet preserve meaningful modalities in the data. As a result, these models improve generalization and offer higher performance at lower complexity.
Temple University--Theses
Beierholm, Ulrik Ravnsborg Quartz Steven Quartz Steven. "Bayesian modeling of sensory cue combinations /." Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-05212007-172639.
Full textDurante, Daniele. "Bayesian Nonparametric Modeling of Network Data." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424390.
Full textI dati di rete misurano connessioni tra un insieme di nodi e ricorrono in molti campi di studio, tra cui le scienze sociali, le neuroscienze, il marketing ed altre discipline. Sebbene i primi modelli probabilistici per dati di rete risalgano a circa sessant'anni fa, questo campo di ricerca è tuttora oggetto di vivace ed intenso interesse. La principale motivazione per la recente crescita di metodologie statistiche per la modellazione di reti è legata alla sempre più massiccia accessibilità a dati di questo tipo. Le reti sociali online, i recenti sviluppi tecnologici nel monitoraggio di reti cerebrali e la disponibilità di algoritmi sofisticati per catalogare informazioni dai mezzi di comunicazione, forniscono dati di rete caratterizzati da una progressiva complessità e contribuiscono a nuovi interrogativi applicativi e metodologici. Un aspetto comune a queste nuove basi di dati è legato alla disponibilità di misure ripetute di reti, anziché di una sola rete. Di conseguenza, l'ampia letteratura nello studio di una singola rete richiede generalizzazioni sostanziali per fornire adeguati strumenti inferenziali in questi nuovi scenari. Le tecniche statistiche di modellazione per misure ripetute di reti sono ancora agli albori e diversi interrogativi rimangono ancora irrisolti in merito alla coerenza dei metodi inferenziali, alla maneggevolezza degli strumenti computazionali ed altre importanti questioni. Questa tesi è motivata da applicazioni complesse in diversi ambiti di studio e si pone l'obiettivo di compiere un passo considerevole nella risponda alle precedenti tematiche attraverso modelli Bayesiani non parametrici. Il lavoro è organizzato in due macro aree, a loro volta suddivise in diverse tematiche. La prima si pone l'obiettivo di sviluppare processi stocastici flessibili per la modellazione di reti dinamiche, capaci di incorporare sia la dipendenza temporale che quella di rete. La seconda macro area cerca invece di definire tecniche di rappresentazione flessibili per definire meccanismi probabilistici associati a variabili aleatorie di rete, con il fine di fornire informazioni chiave su strutture comuni di connessione e comprendere se e come queste si modifichino in funzione di altre variabili
D'ANGELO, LAURA. "Bayesian modeling of calcium imaging data." Doctoral thesis, Università degli Studi di Padova, 2022. https://hdl.handle.net/10281/399067.
Full textCho, Hyun Cheol. "Dynamic Bayesian networks for online stochastic modeling." abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3221394.
Full textBaker, Roderick James Samuel. "Bayesian opponent modeling in adversarial game environments." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/5205.
Full textGuan, Jinyan. "Bayesian generative modeling for complex dynamical systems." Thesis, The University of Arizona, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10109036.
Full textThis dissertation presents a Bayesian generative modeling approach for complex dynamical systems for emotion-interaction patterns within multivariate data collected in social psychology studies. While dynamical models have been used by social psychologists to study complex psychological and behavior patterns in recent years, most of these studies have been limited by using regression methods to fit the model parameters from noisy observations. These regression methods mostly rely on the estimates of the derivatives from the noisy observation, thus easily result in overfitting and fail to predict future outcomes. A Bayesian generative model solves the problem by integrating the prior knowledge of where the data comes from with the observed data through posterior distributions. It allows the development of theoretical ideas and mathematical models to be independent of the inference concerns. Besides, Bayesian generative statistical modeling allows evaluation of the model based on its predictive power instead of the model residual error reduction in regression methods to prevent overfitting in social psychology data analysis.
In the proposed Bayesian generative modeling approach, this dissertation uses the State Space Model (SSM) to model the dynamics of emotion interactions. Specifically, it tests the approach in a class of psychological models aimed at explaining the emotional dynamics of interacting couples in committed relationships. The latent states of the SSM are composed of continuous real numbers that represent the level of the true emotional states of both partners. One can obtain the latent states at all subsequent time points by evolving a differential equation (typically a coupled linear oscillator (CLO)) forward in time with some known initial state at the starting time. The multivariate observed states include self-reported emotional experiences and physiological measurements of both partners during the interactions. To test whether well-being factors, such as body weight, can help to predict emotion-interaction patterns, We construct functions that determine the prior distributions of the CLO parameters of individual couples based on existing emotion theories. Besides, we allow a single latent state to generate multivariate observations and learn the group-shared coefficients that specify the relationship between the latent states and the multivariate observations.
Furthermore, we model the nonlinearity of the emotional interaction by allowing smooth changes (drift) in the model parameters. By restricting the stochasticity to the parameter level, the proposed approach models the dynamics in longer periods of social interactions assuming that the interaction dynamics slowly and smoothly vary over time. The proposed approach achieves this by applying Gaussian Process (GP) priors with smooth covariance functions to the CLO parameters. Also, we propose to model the emotion regulation patterns as clusters of the dynamical parameters. To infer the parameters of the proposed Bayesian generative model from noisy experimental data, we develop a Gibbs sampler to learn the parameters of the patterns using a set of training couples.
To evaluate the fitted model, we develop a multi-level cross-validation procedure for learning the group-shared parameters and distributions from training data and testing the learned models on held-out testing data. During testing, we use the learned shared model parameters to fit the individual CLO parameters to the first 80% of the time points of the testing data by Monte Carlo sampling and then predict the states of the last 20% of the time points. By evaluating models with cross-validation, one can estimate whether complex models are overfitted to noisy observations and fail to generalize to unseen data. I test our approach on both synthetic data that was generated by the generative model and real data that was collected in multiple social psychology experiments. The proposed approach has the potential to model other complex behavior since the generative model is not restricted to the forms of the underlying dynamics.
Guan, Jinyan. "Bayesian Generative Modeling of Complex Dynamical Systems." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612950.
Full textLee, Ju Hee. "Robust Statistical Modeling through Nonparametric Bayesian Methods." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275399497.
Full textHuo, Shuning. "Bayesian Modeling of Complex High-Dimensional Data." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/101037.
Full textDoctor of Philosophy
With the rapid development of modern high-throughput technologies, scientists can now collect high-dimensional data in different forms, such as engineering signals, medical images, and genomics measurements. However, acquisition of such data does not automatically lead to efficient knowledge discovery. The main objective of this dissertation is to develop novel Bayesian methods to extract useful knowledge from complex high-dimensional data. It has two parts—the development of an ultra-fast functional mixed model and the modeling of data heterogeneity via Dirichlet Diffusion Trees. The first part focuses on developing approximate Bayesian methods in functional mixed models to estimate parameters and detect significant regions. Two datasets demonstrate the effectiveness of proposed method—a mass spectrometry dataset in a cancer study and a neuroimaging dataset in an Alzheimer's disease study. The second part focuses on modeling data heterogeneity via Dirichlet Diffusion Trees. The method helps uncover the underlying hierarchical tree structures and estimate systematic differences between the group of samples. We demonstrate the effectiveness of the method through the brain tumor imaging data.
SILVA, Rodrigo Bernardo da. "A Bayesian approach for modeling stochastic deterioration." Universidade Federal de Pernambuco, 2010. https://repositorio.ufpe.br/handle/123456789/5610.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
A modelagem de deterioracão tem estado na vanguarda das analises Bayesianas de confiabilidade. As abordagens mais conhecidas encontradas na literatura para este proposito avaliam o comportamento da medida de confiabilidade ao longo do tempo a luz dos dados empiricos, apenas. No contexto de engenharia de confiabilidade, essas abordagens têm aplicabilidade limitada uma vez que frequentemente lida-se com situacões caracterizadas pela escassez de dados empiricos. Inspirado em estrategias Bayesianas que agregam dados empiricos e opiniões de especialistas na modelagem de medidas de confiabilidade não-dependentes do tempo, este trabalho propõe uma metodologia para lidar com confiabilidade dependente do tempo. A metodologia proposta encapsula conhecidas abordagens Bayesianas, como metodos Bayesianos para combinar dados empiricos e opiniões de especialistas e modelos Bayesianos indexados no tempo, promovendo melhorias sobre eles a fim de encontrar um modelo mais realista para descrever o processo de deterioracão de um determinado componente ou sistema. Os casos a serem discutidos são os tipicamente encontrados na pratica de confiabilidade (por meio de simulacão): avaliacão dos dados sobre tempo de execucão para taxas de falha e a quantidade de deterioracão, dados com base na demanda para probabilidade de falha; e opiniões de especialistas para analise da taxa de falha, quantidade de deterioracão e probabilidade de falha. Estes estudos de caso mostram que o uso de informacões especializadas pode levar a uma reducão da incerteza sobre distribuicões de medidas de confiabilidade, especialmente em situacões em que poucas ou nenhuma falha e observada.
Baker, Roderick J. S. "Bayesian opponent modeling in adversarial game environments." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/5205.
Full textEngineering and Physical Sciences Research Council (EPSRC)
Frermann, Lea. "Bayesian models of category acquisition and meaning development." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/25379.
Full textWhite, Gentry. "Bayesian semiparametric spatial and joint spatio-temporal modeling." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4450.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 2, 2007) Vita. Includes bibliographical references.
Lin, Yi. "Bayesian spatial and ecological modeling of suicide rates." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12568.
Full textStein, Nathan Mathes. "Advances in Empirical Bayes Modeling and Bayesian Computation." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11051.
Full textStatistics
Havasi, Catherine Andrea 1981. "Bayesian modeling of manner and path psychological data." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16678.
Full textIncludes bibliographical references (leaves 106-110).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
How people and computers can learn the meaning of words has long been a key question for both AI and cognitive science. It is hypothesized that a person acquires a bias to favor the characteristics of their native language, in order to aid word learning. Other hypothesized aids are syntactic bootstrapping, in which the learner assumes that the meaning of a novel word is similar to that of other words used in a similar syntax, and its complement, semantic bootstrapping, in which the learner assumes that the syntax of a novel word is similar to that of other words used in similar situations. How these components work together is key to understanding word learning. Using cognitive psychology and computer science as a platform, this thesis attempts to tackle these questions using the classic example of manner and path verb bias. A series of cognitive psychology experiments was designed to gather information on this bias. Considerable flexibility of the subject's bias was demonstrated during these experiments. Another separate series of experiments was conducted using different syntactic frames for the novel verbs to address the question of bootstrapping. The resulting information was used to design a Bayesian model which successfully predicts the human behavior in the psychological experiments that were conducted. Dynamic parameters were required to account for subjects revising their expected manner and path verb distributions during the course of an experiment. Bayesian model parameters that were optimized for rich syntactic frame data performed equally well in predicting poor syntactic frame data.
by Catherine Andrea Havasi.
M.Eng.
Molari, Marco. "Modeling and Bayesian inference for antibody affinity maturation." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE017.
Full textAffinity Maturation (AM) is the biological process through which our Immune System generates potent Antibodies (Abs) against newly encountered pathogens. This process is also at the base of vaccination, one of the most successful and cost-effective medical procedures ever developed, responsible for saving millions of lives every year. AM still present many open questions, whose answers have the potential of improving the way we vaccinate. The mechanisms at the base of AM are extremely complex, involving non-linear interactions between many different cellular agents. In this context theoretical models and Bayesian Inference are invaluable tools, respectively to link qualitative hypothesis to quantitative descriptions and to extract information from experimental data. In this manuscript we make use of these tools to tackle some of the open questions, such as the non-trivial effect of Ag dosage on the outcome of vaccination
Jochmann, Markus. "Three Essays on Bayesian Nonparametric Modeling in Microeconometrics." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-57862.
Full textGrundy, William Noble. "A bayesian approach to motif-based protein modeling /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9904723.
Full textLeininger, Thomas J. "An Adaptive Bayesian Approach to Dose-Response Modeling." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3325.pdf.
Full textFerrari, Clarissa <1976>. "The wrapping approach for circular data Bayesian modeling." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1473/1/clarissa_ferrari_tesi.pdf.
Full textFerrari, Clarissa <1976>. "The wrapping approach for circular data Bayesian modeling." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1473/.
Full textMANFREDOTTI, CRISTINA ELENA. "Modeling and inference with relational dynamic bayesian networks." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/7829.
Full textPetit, Sébastien. "Improved Gaussian process modeling : Application to Bayesian optimization." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG063.
Full textThis manuscript focuses on Bayesian modeling of unknown functions with Gaussian processes. This task arises notably for industrial design, with numerical simulators whose computation time can reach several hours. Our work focuses on the problem of model selection and validation and goes in two directions. The first part studies empirically the current practices for stationary Gaussian process modeling. Several issues on Gaussian process parameter selection are tackled. A study of parameter selection criteria is the core of this part. It concludes that the choice of a family of models is more important than that of the selection criterion. More specifically, the study shows that the regularity parameter of the Matérn covariance function is more important than the choice of a likelihood or cross-validation criterion. Moreover, the analysis of the numerical results shows that this parameter can be selected satisfactorily by the criteria, which leads to a practical recommendation. Then, particular attention is given to the numerical optimization of the likelihood criterion. Observing important inconsistencies between the different libraries available for Gaussian process modeling like Erickson et al. (2018), we propose elementary numerical recipes making it possible to obtain significant gains both in terms of likelihood and model accuracy. Finally, the analytical formulas for computing cross-validation criteria are revisited under a new angle and enriched with similar formulas for the gradients. This last contribution aligns the computational cost of a class of cross-validation criteria with that of the likelihood. The second part presents a goal-oriented methodology. It is designed to improve the accuracy of the model in an (output) range of interest. This approach consists in relaxing the interpolation constraints on a relaxation range disjoint from the range of interest. We also propose an approach for automatically selecting the relaxation range. This new method can implicitly manage potentially complex regions of interest in the input space with few parameters. Outside, it learns non-parametrically a transformation improving the predictions on the range of interest. Numerical simulations show the benefits of the approach for Bayesian optimization, where one is interested in low values in the minimization framework. Moreover, the theoretical convergence of the method is established under some assumptions
Ghotikar, Miheer S. "Aortic valve analysis and area prediction using bayesian modeling." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001369.
Full textLi, Junning. "Dynamic Bayesian networks : modeling and analysis of neural signals." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12618.
Full textDu, Chao. "Stochastic Modeling and Bayesian Inference with Applications in Biophysics." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10366.
Full textStatistics
Molinares, Carlos A. "Parametric and Bayesian Modeling of Reliability and Survival Analysis." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3252.
Full textYang, Ming. "Hierarchical Bayesian topic modeling with sentiment and author extension." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20598.
Full textComputing and Information Sciences
William H. Hsu
While the Hierarchical Dirichlet Process (HDP) has recently been widely applied to topic modeling tasks, most current hybrid models for concurrent inference of topics and other factors are not based on HDP. In this dissertation, we present two new models that extend an HDP topic modeling framework to incorporate other learning factors. One model injects Latent Dirichlet Allocation (LDA) based sentiment learning into HDP. This model preserves the benefits of nonparametric Bayesian models for topic learning, while learning latent sentiment aspects simultaneously. It automatically learns different word distributions for each single sentiment polarity within each topic generated. The other model combines an existing HDP framework for learning topics from free text with latent authorship learning within a generative model using author list information. This model adds one more layer into the current hierarchy of HDPs to represent topic groups shared by authors, and the document topic distribution is represented as a mixture of topic distribution of its authors. This model automatically learns author contribution partitions for documents in addition to topics.
Hagerty, Nicholas L. "Bayesian Network Modeling of Causal Relationships in Polymer Models." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1619009432971036.
Full textAndreev, Andriy. "Nonparametric statistical modeling of recurrent events : a Bayesian approach." Helsinki : University of Helsinki, 2000. http://ethesis.helsinki.fi/julkaisut/mat/rolfn/vk/andreev/.
Full textToronto, Neil. "Super-resolution via image recapture and Bayesian effect modeling /." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2805.pdf.
Full textPage, Garritt L. "Bayesian mixture modeling and outliers in inter-laboratory studies." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389133.
Full textDel, Pero Luca. "Top-Down Bayesian Modeling and Inference for Indoor Scenes." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/297040.
Full textToronto, Neil B. "Super-Resolution via Image Recapture and Bayesian Effect Modeling." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1839.
Full textVisalli, Antonino. "Bayesian modeling of temporal expectations in the human brain." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426247.
Full textSaper anticipare il tempo di occorrenza di un evento è una capacità necessaria alla sopravvivenza. Quest’abilità cognitiva, cui di solito ci si riferisce con il termine di preparazione temporale, ci permette di preparare in maniera temporalmente ottimizzata delle risposte a stimoli imminenti. Dal punto di vista sperimentale, la preparazione temporale è stata tradizionalmente studiata usando compiti di foreperiod. Con il termine foreperiod s’intende l’intervallo di tempo che separa un segnale di allerta da un target che richiede una risposta. Dai risultati comportamentali di questo compito si osserva di solito che i tempi di risposta riflettono la probabilità a priori di occorrenza del target condizionata allo scorrere del tempo. In altre parole, sembra che le persone abbiano dei modelli predittivi interni di aspettativa temporale che usano per ottimizzare il loro comportamento. Nonostante studi precedenti hanno ampliamente studiato i meccanismi neurali che utilizzano tali modelli di predizione temporale, non ci sono studi, sulla base delle nostre conoscenze, che abbiano studiato come il cervello forma e aggiorna tali modelli. Su queste premesse, lo scopo generale di questo progetto di dottorato è stato quello di individuare i meccanismi neurali coinvolti nell’updating, cioè aggiornamento, di modelli di predizione temporale. Un secondo, ma strettamente legato, obiettivo è stato quello di distinguere tali processi di updating da quei meccanismi coinvolti nel far fronte a eventi sorprendenti. È da notare, infatti, che l’aggiornamento delle aspettative avviene solitamente di fronte ad eventi poco probabili per il modello, cioè sorprendenti. Per raggiungere questi obiettivi ci siamo serviti delle tecniche più diffuse nello studio funzionale del cervello, cioè l’elettroencefalografia (EEG) e la risonanza magnetica funzionale (fMRI) utilizzando un approccio di tipo computazionale legato all’ipotesi del cervello bayesiano. Quest’ approccio consiste nell’implementare un modello di osservatore ideale che permetta di rappresentare quantitativamente l’aspettativa temporale in termini di distribuzioni di probabilità. La seguente dissertazione è composta di tre studi. Nei primi due studi abbiamo utilizzato un compito di foreperiod in cui i partecipanti potevano predire il tempo di occorrenza dei target stimandone la probabilità temporale di occorrenza. Durante il compito, la distribuzione reale da cui venivano estratte le durate di foreperiod, cambiava, e ciò richiedeva ai partecipanti di aggiornare i loro modelli di predizione. Per decorrelare sorpresa e updating, in questi due studi abbiamo utilizzato una manipolazione che segnalava esplicitamente ai partecipanti se un evento sorprendente era utile o no nel predire i futuri eventi. Nel primo studio, il segnale fMRI acquisito durante il compito è stato correlato a due misure delle teoria dell’informazione calcolate sulla base del nostro modello bayesiano ed utilizzate in precedenza per quantificare l’updating e la sorpresa associate a un evento, la Kullbach Leibler divergence e la Shannon’s information. I nostri risultati hanno mostrato che due network cerebrali di controllo cognitivo, il network fronto-parietale e il network cingolo-opercolare erano differentemente modulati da updating e sorpresa. Dopo aver validato il nostro modello nel primo studio e aver dissociato updating e sorpresa, il passo successivo è stato quello di studiare le dinamiche temporali di questi due processi. A tale scopo, nel secondo studio, abbiamo condotto uno studio EEG con lo stesso compito di foreperiod. I risultati hanno mostrato che anche a livello di segnale EEG è possibile dissociare updating e sorpresa. Mentre nei primi due studi i partecipanti erano esplicitamente incoraggiati ad aggiornare le loro aspettative temporali, nel terzo studio (EEG) ci siamo chiesti se l’utilizzo di un compito più implicito potesse influire sui processi di updating. A tal scopo, abbiamo utilizzato un task in cui i cambi di durata dei foreperiod non erano segnalati esplicitamente. Così facendo abbiamo potuto esaminare come i partecipanti aggiornavano le loro aspettative temporali in presenza di cambiamenti nel compito non esplicitamente segnalati. Integrando i due studi EEG, siamo riusciti a isolare due indici elettrofisiologici coinvolti nell’updating temporale in risposta a cambiamenti nel compito sia espliciti che impliciti.
Bäcklund, JOakim, and Johdet Nils. "A Bayesian approach to predict the number of soccer goals : Modeling with Bayesian Negative Binomial regression." Thesis, Linköpings universitet, Statistik och maskininlärning, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149028.
Full textShahrabi, Farahani Hossein. "Computational Modeling of Cancer Progression." Doctoral thesis, KTH, Beräkningsbiologi, CB, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121597.
Full textQC 20130503
McHugh, Sean W. "Phylogenetic Niche Modeling." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104893.
Full textMaster of Science
As many species face increasing pressure in a changing climate, it is crucial to understand the set of environmental conditions that shape species' ranges--known as the environmental niche--to guide conservation and land management practices. Species distribution models (SDMs) are common tools that are used to model species' environmental niche. These models treat a species' probability of occurrence as a function of environmental conditions. SDM niche estimates can predict a species' range given climate data, paleoclimate, or projections of future climate change to estimate species range shifts from the past to the future. However, SDM estimates are often biased by non-environmental factors shaping a species' range including competitive divergence or dispersal barriers. Biased SDM estimates can result in range predictions that get worse as we extrapolate beyond the observed climatic conditions. One way to overcome these biases is by leveraging the shared evolutionary history amongst related species to "fill in the gaps". Species that are more closely phylogenetically related often have more similar or "conserved" environmental niches. By estimating environmental niche over all species in a clade jointly, we can leverage niche conservatism to produce more biologically realistic estimates of niche. However, currently a methodological gap exists between SDMs estimates and macroevolutionary models, prohibiting them from being estimated jointly. We propose a novel model of evolutionary niche called PhyNE (Phylogenetic Niche Evolution), where biologically realistic environmental niches are fit across a set of species with occurrence data, while simultaneously fitting and leveraging a model of evolution across a portion of the tree of life. We evaluated model accuracy, bias, and precision through simulation analyses. Accuracy and precision increased with larger phylogeny size and effectively estimated model parameters. We then applied PhyNE to Plethodontid salamanders from Eastern North America. This ecologically-important and diverse group of lungless salamanders require cold and wet conditions and have distributions that are strongly affected by climatic conditions. Species within the family vary greatly in distribution, with some species being wide ranging generalists, while others are hyper-endemics that inhabit specific mountains in the Southern Appalachians with restricted thermal and hydric conditions. We fit PhyNE to occurrence data for these species and their associated average annual precipitation and temperature data. We identified no correlations between species environmental preference and specialization. Pattern of preference and specialization varied among Plethodontid species groups, with more aquatic species possessing a broader environmental niche, likely due to the aquatic microclimate facilitating occurrence in a wider range of conditions. We demonstrated the effectiveness of PhyNE's evolutionarily-informed estimates of environmental niche, even when species' occurrence data is limited or even absent. PhyNE establishes a proof-of-concept framework for a new class of approaches for studying niche evolution, including improved methods for estimating niche for data-deficient species, historical reconstructions, future predictions under climate change, and evaluation of niche evolutionary processes across the tree of life. Our approach establishes a framework for leveraging the rapidly growing availability of biodiversity data and molecular phylogenies to make robust eco-evolutionary predictions and assessments of species' niche and distributions in a rapidly changing world.
Guo, Xiao. "Bayesian surrogates for functional response modeling and metamaterial rapid design." HKBU Institutional Repository, 2017. http://repository.hkbu.edu.hk/etd_oa/418.
Full textLin, Qihua. "Bayesian hierarchial spatiotemporal modeling of functional magnetic resonance imaging data." Ann Arbor, Mich. : ProQuest, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3245023.
Full textTitle from PDF title page (viewed Mar. 18, 2008). Source: Dissertation Abstracts International, Volume: 67-12, Section: B, page: 7154. Adviser: Richard F. Gunst. Includes bibliographical references.