Academic literature on the topic 'Bayesian Optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian Optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian Optimization"
Nguyen, Thanh Dai, Sunil Gupta, Santu Rana, and Svetha Venkatesh. "Stable Bayesian optimization." International Journal of Data Science and Analytics 6, no. 4 (April 9, 2018): 327–39. http://dx.doi.org/10.1007/s41060-018-0119-9.
Full textAhmed, Mohamed Osama, Sharan Vaswani, and Mark Schmidt. "Combining Bayesian optimization and Lipschitz optimization." Machine Learning 109, no. 1 (January 2020): 79–102. http://dx.doi.org/10.1007/s10994-019-05833-y.
Full textMotoyama, Yuichi, Ryo Tamura, Kazuyoshi Yoshimi, Kei Terayama, Tsuyoshi Ueno, and Koji Tsuda. "Bayesian optimization package: PHYSBO." Computer Physics Communications 278 (September 2022): 108405. http://dx.doi.org/10.1016/j.cpc.2022.108405.
Full textEwerhart, Christian. "Bayesian optimization and genericity." Operations Research Letters 21, no. 5 (January 1997): 243–48. http://dx.doi.org/10.1016/s0167-6377(97)00050-3.
Full textCochran, James J., Martin S. Levy, and Jeffrey D. Camm. "Bayesian coverage optimization models." Journal of Combinatorial Optimization 19, no. 2 (June 29, 2008): 158–73. http://dx.doi.org/10.1007/s10878-008-9172-y.
Full textShapiro, Alexander, Enlu Zhou, and Yifan Lin. "Bayesian Distributionally Robust Optimization." SIAM Journal on Optimization 33, no. 2 (June 26, 2023): 1279–304. http://dx.doi.org/10.1137/21m1465548.
Full textKlepac, Goran. "Particle Swarm Optimization Algorithm as a Tool for Profile Optimization." International Journal of Natural Computing Research 5, no. 4 (October 2015): 1–23. http://dx.doi.org/10.4018/ijncr.2015100101.
Full textHickish, Bob, David I. Fletcher, and Robert F. Harrison. "Investigating Bayesian Optimization for rail network optimization." International Journal of Rail Transportation 8, no. 4 (October 14, 2019): 307–23. http://dx.doi.org/10.1080/23248378.2019.1669500.
Full textDogan, Vedat, and Steven Prestwich. "Multi-Objective BiLevel Optimization by Bayesian Optimization." Algorithms 17, no. 4 (March 30, 2024): 146. http://dx.doi.org/10.3390/a17040146.
Full textMuzayanah, Rini, Dwika Ananda Agustina Pertiwi, Muazam Ali, and Much Aziz Muslim. "Comparison of gridsearchcv and bayesian hyperparameter optimization in random forest algorithm for diabetes prediction." Journal of Soft Computing Exploration 5, no. 1 (April 2, 2024): 86–91. http://dx.doi.org/10.52465/joscex.v5i1.308.
Full textDissertations / Theses on the topic "Bayesian Optimization"
Klein, Aaron [Verfasser], and Frank [Akademischer Betreuer] Hutter. "Efficient bayesian hyperparameter optimization." Freiburg : Universität, 2020. http://d-nb.info/1214592961/34.
Full textMahendran, Nimalan. "Bayesian optimization for adaptive MCMC." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/30636.
Full textGelbart, Michael Adam. "Constrained Bayesian Optimization and Applications." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467236.
Full textBiophysics
Gaudrie, David. "High-Dimensional Bayesian Multi-Objective Optimization." Thesis, Lyon, 2019. https://tel.archives-ouvertes.fr/tel-02356349.
Full textThis thesis focuses on the simultaneous optimization of expensive-to-evaluate functions that depend on a high number of parameters. This situation is frequently encountered in fields such as design engineering through numerical simulation. Bayesian optimization relying on surrogate models (Gaussian Processes) is particularly adapted to this context.The first part of this thesis is devoted to the development of new surrogate-assisted multi-objective optimization methods. To improve the attainment of Pareto optimal solutions, an infill criterion is tailored to direct the search towards a user-desired region of the objective space or, in its absence, towards the Pareto front center introduced in our work. Besides targeting a well-chosen part of the Pareto front, the method also considers the optimization budget in order to provide an as wide as possible range of optimal solutions in the limit of the available resources.Next, inspired by shape optimization problems, an optimization method with dimension reduction is proposed to tackle the curse of dimensionality. The approach hinges on the construction of hierarchized problem-related auxiliary variables that can describe all candidates globally, through a principal component analysis of potential solutions. Few of these variables suffice to approach any solution, and the most influential ones are selected and prioritized inside an additive Gaussian Process. This variable categorization is then further exploited in the Bayesian optimization algorithm which operates in reduced dimension
Scotto, Di Perrotolo Alexandre. "A Theoretical Framework for Bayesian Optimization Convergence." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225129.
Full textBayesiansk optimering är en välkänd klass av globala optimeringsalgoritmer som inte beror av derivator och främst används för optimering av dyra svartlådsfunktioner. Trots sin relativa effektivitet lider de av en brist av stringent konvergenskriterium som gör dem mer benägna att användas som modelleringsverktyg istället för som optimeringsverktyg. Denna rapport är avsedd att föreslå, analysera och testa en ett globalt konvergerande ramverk (på ett sätt som som beskrivs vidare) för Bayesianska optimeringsalgoritmer, som ärver de globala sökegenskaperna för minimum medan de noggrant övervakas för att konvergera.
Wang, Ziyu. "Practical and theoretical advances in Bayesian optimization." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:9612d870-015e-4236-8c8d-0419670172fb.
Full textZinberg, Ben (Ben I. ). "Bayesian optimization as a probabilistic meta-program." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/106374.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (page 50).
This thesis answers two questions: 1. How should probabilistic programming languages in- corporate Gaussian processes? and 2. Is it possible to write a probabilistic meta-program for Bayesian optimization, a probabilistic meta-algorithm that can combine regression frameworks such as Gaussian processes with a broad class of parameter estimation and optimization techniques? We answer both questions affirmatively, presenting both an implementation and informal semantics for Gaussian process models in probabilistic programming systems, and a probabilistic meta-program for Bayesian optimization. The meta-program exposes modularity common to a wide range of Bayesian optimization methods in a way that is not apparent from their usual treatment in statistics.
by Ben Zinberg.
M. Eng.
Wang, Zheng S. M. Massachusetts Institute of Technology. "An optimization based algorithm for Bayesian inference." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98815.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 75-76).
In the Bayesian statistical paradigm, uncertainty in the parameters of a physical system is characterized by a probability distribution. Information from observations is incorporated by updating this distribution from prior to posterior. Quantities of interest, such as credible regions, event probabilities, and other expectations can then be obtained from the posterior distribution. One major task in Bayesian inference is then to characterize the posterior distribution, for example, through sampling. Markov chain Monte Carlo (MCMC) algorithms are often used to sample from posterior distributions using only unnormalized evaluations of the posterior density. However, high dimensional Bayesian inference problems are challenging for MCMC-type sampling algorithms, because accurate proposal distributions are needed in order for the sampling to be efficient. One method to obtain efficient proposal samples is an optimization-based algorithm titled 'Randomize-then-Optimize' (RTO). We build upon RTO by developing a new geometric interpretation that describes the samples as projections of Gaussian-distributed points, in the joint data and parameter space, onto a nonlinear manifold defined by the forward model. This interpretation reveals generalizations of RTO that can be used. We use this interpretation to draw connections between RTO and two other sampling techniques, transport map based MCMC and implicit sampling. In addition, we motivate and propose an adaptive version of RTO designed to be more robust and efficient. Finally, we introduce a variable transformation to apply RTO to problems with non-Gaussian priors, such as Bayesian inverse problems with Li-type priors. We demonstrate several orders of magnitude in computational savings from this strategy on a high-dimensional inverse problem.
by Zheng Wang.
S.M.
Carstens, Herman. "A Bayesian approach to energy monitoring optimization." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/63791.
Full textHierdie proefskrif ontwikkel metodes waarmee die koste van energiemonitering en verifieëring (M&V) deur Bayesiese statistiek verlaag kan word. M&V bepaal die hoeveelheid besparings wat deur energiedoeltreffendheid- en vraagkantbestuurprojekte behaal kan word. Dit word gedoen deur die energieverbruik in ’n gegewe tydperk te vergelyk met wat dit sou wees indien geen ingryping plaasgevind het nie. ’n Grootskaalse beligtingsretrofitstudie, waar filamentgloeilampe met fluoresserende spaarlampe vervang word, dien as ’n gevallestudie. Sulke projekte moet gewoonlik oor baie jare met ’n vasgestelde statistiese akkuuraatheid gemonitor word, wat M&V duur kan maak. Twee verwante onsekerheidskomponente moet in M&V beligtingsprojekte aangespreek word, en vorm die grondslag van hierdie proefskrif. Ten eerste is daar die onsekerheid in jaarlikse energieverbruik van die gemiddelde lamp. Ten tweede is daar die volhoubaarheid van die besparings oor veelvoudige jare, wat bepaal word deur die aantal lampe wat tot in ’n gegewe jaar behoue bly. Vir longitudinale projekte moet hierdie twee komponente oor veelvoudige jare bepaal word. Hierdie proefskrif spreek die probleem deur middel van ’n Bayesiese paradigma aan. Bayesiese statistiek is nog relatief onbekend in M&V, en bied ’n geleentheid om die doeltreffendheid van statistiese analises te verhoog, veral vir bogenoemde projekte. Die proefskrif begin met ’n deeglike literatuurstudie, veral met betrekking tot metingsonsekerheid in M&V. Daarna word ’n inleiding tot Bayesiese statistiek vir M&V voorgehou, en drie metodes word ontwikkel. Hierdie metodes spreek die drie hoofbronne van onsekerheid in M&V aan: metings, opnames, en modellering. Die eerste metode is ’n laekoste energiemeterkalibrasietegniek. Die tweede metode is ’n Dinamiese Linieêre Model (DLM) met Bayesiese vooruitskatting, waarmee meter opnamegroottes bepaal kan word. Die derde metode is ’n Dinamiese Veralgemeende Linieêre Model (DVLM), waarmee bevolkingsoorlewing opnamegroottes bepaal kan word. Volgens wet moet M&V energiemeters gereeld deur erkende laboratoria gekalibreer word. Dit kan duur en ongerieflik wees, veral as die aanleg tydens meterverwydering en -installering afgeskakel moet word. Sommige regsgebiede vereis ook dat meters in-situ gekalibreer word; in hul bedryfsomgewings. Tog word dit aangetoon dat metingsonsekerheid ’n klein deel van die algehele M&V onsekerheid beslaan, veral wanneer opnames gedoen word. Dit bevraagteken die kostevoordeel van laboratoriumkalibrering. Die voorgestelde tegniek gebruik ’n ander kommersieële-akkuurraatheidsgraad meter (wat self ’n nie-weglaatbare metingsfout bevat), om die kalibrasie in-situ te behaal. Dit word gedoen deur die metingsfout deur SIMulerings EKStraptolering (SIMEKS) te verminder. Die SIMEKS resultaat word dan deur Bayesiese statistiek verbeter, en behaal aanvaarbare foutbereike en akkuurate parameterafskattings. Die tweede tegniek gebruik ’n DLM met Bayesiese vooruitskatting om die onsekerheid in die meting van die opnamemonster van die algehele bevolking af te skat. ’n Genetiese Algoritme (GA) word dan toegepas om doeltreffende opnamegroottes te vind. Bayesiese statistiek is veral nuttig in hierdie geval aangesien dit vorige jare se uitslae kan gebruik om huidige afskattings te belig Dit laat ook die presiese afskatting van onsekerheid toe, terwyl standaard vertrouensintervaltegnieke dit nie doen nie. Resultate toon ’n kostebesparing van tot 66%. Die studie ondersoek dan die standvastigheid van kostedoeltreffende opnameplanne in die teenwoordigheid van vooruitskattingsfoute. Dit word gevind dat kostedoeltreffende opnamegroottes 50% van die tyd te klein is, vanweë die gebrek aan statistiese krag in die standaard M&V formules. Die derde tegniek gebruik ’n DVLM op dieselfde manier as die DLM, behalwe dat bevolkingsoorlewingopnamegroottes ondersoek word. Die saamrol van binomiale opname-uitslae binne die GA skep ’n probleem, en in plaas van ’n Monte Carlo simulasie word die relatiewe nuwe Mellin Vervorming Moment Berekening op die probleem toegepas. Die tegniek word dan uitgebou om laagsgewyse opname-ontwerpe vir heterogene bevolkings te vind. Die uitslae wys ’n 17-40% kosteverlaging, alhoewel dit van die koste-skema afhang. Laastens word die DLM en DVLM saamgevoeg om ’n doeltreffende algehele M&V plan, waar meting en opnamekostes teen mekaar afgespeel word, te ontwerp. Dit word vir eenvoudige en laagsgewyse opname-ontwerpe gedoen. Moniteringskostes word met 26-40% verlaag, maar hang van die aangenome koste-skema af. Die uitslae bewys die krag en buigsaamheid van Bayesiese statistiek vir M&V toepassings, beide vir presiese onsekerheidskwantifisering, en deur die doeltreffendheid van die dataverbruik te verhoog en sodoende moniteringskostes te verlaag.
Thesis (PhD)--University of Pretoria, 2017.
National Research Foundation
Department of Science and Technology
National Hub for the Postgraduate Programme in Energy Efficiency and Demand Side Management
Electrical, Electronic and Computer Engineering
PhD
Unrestricted
Taheri, Sona. "Learning Bayesian networks based on optimization approaches." Thesis, University of Ballarat, 2012. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/36051.
Full textDoctor of Philosophy
Books on the topic "Bayesian Optimization"
Liu, Peng. Bayesian Optimization. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7.
Full textPelikan, Martin. Hierarchical Bayesian Optimization Algorithm. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b10910.
Full textArchetti, Francesco, and Antonio Candelieri. Bayesian Optimization and Data Science. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24494-1.
Full textMockus, Jonas. Bayesian Approach to Global Optimization. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0909-0.
Full textPackwood, Daniel. Bayesian Optimization for Materials Science. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6781-5.
Full textZhigljavsky, Anatoly, and Antanas Žilinskas. Bayesian and High-Dimensional Global Optimization. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64712-4.
Full textM, Colosimo Bianca, and Del Castillo Enrique, eds. Bayesian process monitoring, control and optimization. Boca Raton: Chapman and Hall/CRC, 2007.
Find full textPourmohamad, Tony, and Herbert K. H. Lee. Bayesian Optimization with Application to Computer Experiments. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82458-7.
Full textPourmohamad, Tony, and Herbert K. H. Lee. Bayesian Optimization with Application to Computer Experiments. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82458-7.
Full textMockus, Jonas, William Eddy, Audris Mockus, Linas Mockus, and Gintaras Reklaitis. Bayesian Heuristic Approach to Discrete and Global Optimization. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2627-5.
Full textBook chapters on the topic "Bayesian Optimization"
Liu, Peng. "Gaussian Process Regression with GPyTorch." In Bayesian Optimization, 101–30. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7_4.
Full textLiu, Peng. "Case Study: Tuning CNN Learning Rate with BoTorch." In Bayesian Optimization, 185–223. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7_7.
Full textLiu, Peng. "Knowledge Gradient: Nested Optimization vs. One-Shot Learning." In Bayesian Optimization, 155–84. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7_6.
Full textLiu, Peng. "Monte Carlo Acquisition Function with Sobol Sequences and Random Restart." In Bayesian Optimization, 131–54. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7_5.
Full textLiu, Peng. "Gaussian Processes." In Bayesian Optimization, 33–67. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7_2.
Full textLiu, Peng. "Bayesian Optimization Overview." In Bayesian Optimization, 1–32. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7_1.
Full textLiu, Peng. "Bayesian Decision Theory and Expected Improvement." In Bayesian Optimization, 69–99. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9063-7_3.
Full textWang, Hao, and Kaifeng Yang. "Bayesian Optimization." In Natural Computing Series, 271–97. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25263-1_10.
Full textAgrawal, Tanay. "Bayesian Optimization." In Hyperparameter Optimization in Machine Learning, 81–108. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6579-6_4.
Full textArchetti, Francesco, and Antonio Candelieri. "Exotic Bayesian Optimization." In SpringerBriefs in Optimization, 73–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24494-1_5.
Full textConference papers on the topic "Bayesian Optimization"
Juneja, Namit, Varun Chandola, Jaroslaw Zola, Olga Wodo, and Parth Desai. "Resource Efficient Bayesian Optimization." In 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), 12–19. IEEE, 2024. http://dx.doi.org/10.1109/cloud62652.2024.00012.
Full textBilal, Ahmad, Abdul Hadee, Yash H. Shah, Sohom Bhattacharjee, and Choon Sik Cho. "RCS Minimization using Bayesian Optimization." In 2024 54th European Microwave Conference (EuMC), 740–43. IEEE, 2024. http://dx.doi.org/10.23919/eumc61614.2024.10732618.
Full textNambiraja, Shyam Sundar, and Giulia Pedrielli. "Multi Agent Rollout for Bayesian Optimization." In 2024 Winter Simulation Conference (WSC), 3518–29. IEEE, 2024. https://doi.org/10.1109/wsc63780.2024.10838839.
Full textTuran, Mehmet, and Ahmed H. AKGiriray. "Bayesian Optimization of Passive RF Circuits." In 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS), 1–6. IEEE, 2024. https://doi.org/10.1109/isas64331.2024.10845681.
Full textMacé, Maxime, Tassadit Amghar, Paul Richard, and Emmanuelle Ménétrier. "Renyi Entropy Search for Bayesian Optimization." In 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI), 782–89. IEEE, 2024. https://doi.org/10.1109/ictai62512.2024.00115.
Full textKato, Masahiro, Kentaro Baba, Hibiki Kaibuchi, and Ryo Inokuchi. "Bayesian Portfolio Optimization by Predictive Synthesis." In 2024 16th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), 523–28. IEEE, 2024. http://dx.doi.org/10.1109/iiai-aai63651.2024.00100.
Full textYahya, Abdelmajid Ben, Robbe De Laet, Santiago Ramos Garces, Nick Van Oosterwyck, Ivan De Boi, Annie Cuyt, and Stijn Derammelaere. "Geometric Optimization through CAD-Based Bayesian Optimization with unknown constraint." In 2024 12th International Conference on Control, Mechatronics and Automation (ICCMA), 394–402. IEEE, 2024. https://doi.org/10.1109/iccma63715.2024.10843905.
Full textAl Kontar, Raed. "Collaborative and Federated Black-box Optimization: A Bayesian Optimization Perspective." In 2024 IEEE International Conference on Big Data (BigData), 7854–59. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825753.
Full textHabibeh, Mohammad, and Jeff Eldred. "Bayesian Optimization For Accelerator Tuning." In Bayesian Optimization For Accelerator Tuning. US DOE, 2024. http://dx.doi.org/10.2172/2427359.
Full textCouckuyt, Ivo, Sebastian Rojas Gonzalez, and Juergen Branke. "Bayesian optimization." In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3520304.3533654.
Full textReports on the topic "Bayesian Optimization"
Brown, Jesse, Goran Arbanas, Dorothea Wiarda, and Andrew Holcomb. Bayesian Optimization Framework for Imperfect Data or Models. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1874643.
Full textWillcox, Karen, and Youssef Marzouk. Large-Scale Optimization for Bayesian Inference in Complex Systems. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1104917.
Full textBiros, George. Large-Scale Optimization for Bayesian Inference in Complex Systems. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1234919.
Full textDay, Amber, Sinead Williamson, and Natalie Klein. Utilizing Bayesian Optimization for Efficient Dispersion Curve Feature Acquisition. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335729.
Full textGhattas, Omar. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1113343.
Full textDay, Amber. Complex-Valued Signal Denoising and Bayesian Optimization for Detection of Synthetic Opioids. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1897402.
Full textCandy, J. V. Model-Based Localizatiion in a Shallow Ocean Environment: A Sequential Bayesian/Optimization Approach. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1544957.
Full textCatanach, Thomas, and Kevin Monogue. Analysis and Optimization of Seismo-Acoustic Monitoring Networks with Bayesian Optimal Experimental Design. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1815356.
Full textDarling, Arthur H., and William J. Vaughan. The Optimal Sample Size for Contingent Valuation Surveys: Applications to Project Analysis. Inter-American Development Bank, April 2000. http://dx.doi.org/10.18235/0008824.
Full textQi, Fei, Zhaohui Xia, Gaoyang Tang, Hang Yang, Yu Song, Guangrui Qian, Xiong An, Chunhuan Lin, and Guangming Shi. A Graph-based Evolutionary Algorithm for Automated Machine Learning. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ser.v1i2.77.
Full text