Journal articles on the topic 'Bayesian Stochastic Optimization Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bayesian Stochastic Optimization Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gavrilov, Andrey, Evgeny Loskutov, and Dmitry Mukhin. "Bayesian optimization of empirical model with state-dependent stochastic forcing." Chaos, Solitons & Fractals 104 (November 2017): 327–37. http://dx.doi.org/10.1016/j.chaos.2017.08.032.
Full textMujumdar, P. P., and B. Nirmala. "A Bayesian Stochastic Optimization Model for a Multi-Reservoir Hydropower System." Water Resources Management 21, no. 9 (2006): 1465–85. http://dx.doi.org/10.1007/s11269-006-9094-3.
Full textSha, Di, Kaan Ozbay, and Yue Ding. "Applying Bayesian Optimization for Calibration of Transportation Simulation Models." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 10 (2020): 215–28. http://dx.doi.org/10.1177/0361198120936252.
Full textIm, Jongbin, and Jungsun Park. "Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics." Chinese Journal of Aeronautics 26, no. 1 (2013): 112–21. http://dx.doi.org/10.1016/j.cja.2012.12.022.
Full textYin, Long, Sheng Zhang, Kun Xiang, et al. "A New Stochastic Process of Prestack Inversion for Rock Property Estimation." Applied Sciences 12, no. 5 (2022): 2392. http://dx.doi.org/10.3390/app12052392.
Full textGrana, Dario, Leandro de Figueiredo, and Klaus Mosegaard. "Markov chain Monte Carlo for petrophysical inversion." GEOPHYSICS 87, no. 1 (2021): M13—M24. http://dx.doi.org/10.1190/geo2021-0177.1.
Full textWadoux, Alexandre M. J. C., Gerard B. M. Heuvelink, Remko Uijlenhoet, and Sytze de Bruin. "Optimization of rain gauge sampling density for river discharge prediction using Bayesian calibration." PeerJ 8 (July 30, 2020): e9558. http://dx.doi.org/10.7717/peerj.9558.
Full textWang, Han, Yunhe Liu, Changchun Yin, Jinfeng Li, Yang Su, and Bin Xiong. "Stochastic inversion of magnetotelluric data using deep reinforcement learning." GEOPHYSICS 87, no. 1 (2021): E49—E61. http://dx.doi.org/10.1190/geo2020-0425.1.
Full textShao, Wei, and Guangbao Guo. "Multiple-Try Simulated Annealing Algorithm for Global Optimization." Mathematical Problems in Engineering 2018 (July 17, 2018): 1–11. http://dx.doi.org/10.1155/2018/9248318.
Full textChen, Xiqun (Michael), Xiang He, Chenfeng Xiong, Zheng Zhu, and Lei Zhang. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management." Transportation Science 53, no. 2 (2019): 545–65. http://dx.doi.org/10.1287/trsc.2018.0819.
Full textMahmood, Tariq, Nasir Ali, Naveed Ishtiaq Chaudhary, Khalid Mehmood Cheema, Ahmad H. Milyani, and Muhammad Asif Zahoor Raja. "Novel Adaptive Bayesian Regularization Networks for Peristaltic Motion of a Third-Grade Fluid in a Planar Channel." Mathematics 10, no. 3 (2022): 358. http://dx.doi.org/10.3390/math10030358.
Full textWu, Mingqi, Yinsen Miao, Neilkunal Panchal, et al. "Stochastic clustering and pattern matching for real-time geosteering." GEOPHYSICS 84, no. 5 (2019): ID13—ID24. http://dx.doi.org/10.1190/geo2018-0781.1.
Full textPerdikaris, Paris, and George Em Karniadakis. "Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond." Journal of The Royal Society Interface 13, no. 118 (2016): 20151107. http://dx.doi.org/10.1098/rsif.2015.1107.
Full textNishimura, Haruki, and Mac Schwager. "SACBP: Belief space planning for continuous-time dynamical systems via stochastic sequential action control." International Journal of Robotics Research 40, no. 10-11 (2021): 1167–95. http://dx.doi.org/10.1177/02783649211037697.
Full textSchmidt, Dominik, Katrin Kahlen, Christopher Bahr, and Matthias Friedel. "Towards a Stochastic Model to Simulate Grapevine Architecture: A Case Study on Digitized Riesling Vines Considering Effects of Elevated CO2." Plants 11, no. 6 (2022): 801. http://dx.doi.org/10.3390/plants11060801.
Full textPeng, Yong, Wei Xu, and Xiaoli Zhang. "An aggregation-decomposition bayesian stochastic optimization model for cascade hydropower reservoirs using medium-range precipitation forecasts." Journal of Physics: Conference Series 887 (August 2017): 012005. http://dx.doi.org/10.1088/1742-6596/887/1/012005.
Full textEnemark, Trine, Luk JM Peeters, Dirk Mallants, Okke Batelaan, Andrew P. Valentine, and Malcolm Sambridge. "Hydrogeological Bayesian Hypothesis Testing through Trans-Dimensional Sampling of a Stochastic Water Balance Model." Water 11, no. 7 (2019): 1463. http://dx.doi.org/10.3390/w11071463.
Full textLandi, Filippo, Francesca Marsili, Noemi Friedman, and Pietro Croce. "gPCE-Based Stochastic Inverse Methods: A Benchmark Study from a Civil Engineer’s Perspective." Infrastructures 6, no. 11 (2021): 158. http://dx.doi.org/10.3390/infrastructures6110158.
Full textXu, Wei, Chi Zhang, Yong Peng, Guangtao Fu, and Huicheng Zhou. "A two stage Bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts." Water Resources Research 50, no. 12 (2014): 9267–86. http://dx.doi.org/10.1002/2013wr015181.
Full textPrivas, Edwin, Cyrille De Saint Jean, and Gilles Noguere. "On the use of the BMC to resolve Bayesian inference with nuisance parameters." EPJ Nuclear Sciences & Technologies 4 (2018): 36. http://dx.doi.org/10.1051/epjn/2018042.
Full textFouskakis, D. "Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods." European Journal of Operational Research 220, no. 2 (2012): 414–22. http://dx.doi.org/10.1016/j.ejor.2012.01.040.
Full textMerlé, Yann, and France Mentré. "Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models: Application in pharmacokinetics." Mathematical Biosciences 144, no. 1 (1997): 45–70. http://dx.doi.org/10.1016/s0025-5564(97)00017-5.
Full textMartelli, Saulo, Daniela Calvetti, Erkki Somersalo, and Marco Viceconti. "Stochastic modelling of muscle recruitment during activity." Interface Focus 5, no. 2 (2015): 20140094. http://dx.doi.org/10.1098/rsfs.2014.0094.
Full textSmith, Rory J. E., Gregory Ashton, Avi Vajpeyi, and Colm Talbot. "Massively parallel Bayesian inference for transient gravitational-wave astronomy." Monthly Notices of the Royal Astronomical Society 498, no. 3 (2020): 4492–502. http://dx.doi.org/10.1093/mnras/staa2483.
Full textLi, Chunyuan, Changyou Chen, Yunchen Pu, Ricardo Henao, and Lawrence Carin. "Communication-Efficient Stochastic Gradient MCMC for Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4173–80. http://dx.doi.org/10.1609/aaai.v33i01.33014173.
Full textZHANG, Jian, Yanlong JIANG, Wei SUN, Hua LIU, Guodong LI, and Jiayong WANG. "Adaptive Powell’s Identification of Elastic Constants of Composite Glass Girder with Layered Shell Element Theory." Mechanics 26, no. 5 (2020): 390–97. http://dx.doi.org/10.5755/j01.mech.26.5.27873.
Full textWang, Huawei, Jun Gao, and Zhiyong Liu. "Maintenance Decision Based on Data Fusion of Aero Engines." Mathematical Problems in Engineering 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/628792.
Full textIhou, Koffi Eddy, Manar Amayri, and Nizar Bouguila. "Stochastic Variational Optimization of a Hierarchical Dirichlet Process Latent Beta-Liouville Topic Model." ACM Transactions on Knowledge Discovery from Data 16, no. 5 (2022): 1–48. http://dx.doi.org/10.1145/3502727.
Full textLiu, Baisen, Liangliang Wang, and Jiguo Cao. "Bayesian estimation of ordinary differential equation models when the likelihood has multiple local modes." Monte Carlo Methods and Applications 24, no. 2 (2018): 117–27. http://dx.doi.org/10.1515/mcma-2018-0010.
Full textWatanabe, Sumio. "Information criteria and cross validation for Bayesian inference in regular and singular cases." Japanese Journal of Statistics and Data Science 4, no. 1 (2021): 1–19. http://dx.doi.org/10.1007/s42081-021-00121-3.
Full textTeng, Tong, Jie Chen, Yehong Zhang, and Bryan Kian Hsiang Low. "Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5997–6004. http://dx.doi.org/10.1609/aaai.v34i04.6061.
Full textThompson, Bill, and Thomas L. Griffiths. "Human biases limit cumulative innovation." Proceedings of the Royal Society B: Biological Sciences 288, no. 1946 (2021): 20202752. http://dx.doi.org/10.1098/rspb.2020.2752.
Full textBorisyak, Maxim, Tatiana Gaintseva, and Andrey Ustyuzhanin. "Adaptive divergence for rapid adversarial optimization." PeerJ Computer Science 6 (May 18, 2020): e274. http://dx.doi.org/10.7717/peerj-cs.274.
Full textMohamed, Linah, Mike Christie, and Vasily Demyanov. "Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification." SPE Journal 15, no. 01 (2009): 31–38. http://dx.doi.org/10.2118/119139-pa.
Full textRozos, Evangelos. "Machine Learning, Urban Water Resources Management and Operating Policy." Resources 8, no. 4 (2019): 173. http://dx.doi.org/10.3390/resources8040173.
Full textDash, Sujata, Ajith Abraham, Ashish Kr Luhach, Jolanta Mizera-Pietraszko, and Joel JPC Rodrigues. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis." International Journal of Distributed Sensor Networks 16, no. 1 (2020): 155014771989521. http://dx.doi.org/10.1177/1550147719895210.
Full textHauschild, M. W., M. Pelikan, K. Sastry, and D. E. Goldberg. "Using Previous Models to Bias Structural Learning in the Hierarchical BOA." Evolutionary Computation 20, no. 1 (2012): 135–60. http://dx.doi.org/10.1162/evco_a_00056.
Full textLiu, Mingliang, and Dario Grana. "Stochastic nonlinear inversion of seismic data for the estimation of petroelastic properties using the ensemble smoother and data reparameterization." GEOPHYSICS 83, no. 3 (2018): M25—M39. http://dx.doi.org/10.1190/geo2017-0713.1.
Full textWang, Mingzhi, and Weidong Wang. "An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation." Materials 14, no. 23 (2021): 7105. http://dx.doi.org/10.3390/ma14237105.
Full textCastelli, Simone, and Andrea Belleri. "Framework for Identification and Prediction of Corrosion Degradation in a Steel Column through Machine Learning and Bayesian Updating." Applied Sciences 13, no. 7 (2023): 4646. http://dx.doi.org/10.3390/app13074646.
Full textHernández, Felipe, and Xu Liang. "Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting." Hydrology and Earth System Sciences 22, no. 11 (2018): 5759–79. http://dx.doi.org/10.5194/hess-22-5759-2018.
Full textAvadhanula, Vashist, Andrea Celli, Riccardo Colini-Baldeschi, Stefano Leonardi, and Matteo Russo. "Fully Dynamic Online Selection through Online Contention Resolution Schemes." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 6693–700. http://dx.doi.org/10.1609/aaai.v37i6.25821.
Full textPark, Mijung, James Foulds, Kamalika Chaudhuri, and Max Welling. "Variational Bayes In Private Settings (VIPS)." Journal of Artificial Intelligence Research 68 (May 5, 2020): 109–57. http://dx.doi.org/10.1613/jair.1.11763.
Full textGuo, Yuxue, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie. "AI-based techniques for multi-step streamflow forecasts: application for multi-objective reservoir operation optimization and performance assessment." Hydrology and Earth System Sciences 25, no. 11 (2021): 5951–79. http://dx.doi.org/10.5194/hess-25-5951-2021.
Full textMitsuhashi, Yuta, Gaku Hashimoto, Hiroshi Okuda, and Fujio Uchiyama. "Stochastic Analysis of the Kamishiro Earthquake Considering a Dynamic Fault Rupture." Journal of Earthquake and Tsunami 12, no. 04 (2018): 1841009. http://dx.doi.org/10.1142/s1793431118410099.
Full textAdumene, Sidum, Rabiul Islam, Ibitoru Festus Dick, Esmaeil Zarei, Morrison Inegiyemiema, and Ming Yang. "Influence-Based Consequence Assessment of Subsea Pipeline Failure under Stochastic Degradation." Energies 15, no. 20 (2022): 7460. http://dx.doi.org/10.3390/en15207460.
Full textHan, Qinghua, Minghai Pan, Weijun Long, Zhiheng Liang, and Chenggang Shan. "Joint Adaptive Sampling Interval and Power Allocation for Maneuvering Target Tracking in a Multiple Opportunistic Array Radar System." Sensors 20, no. 4 (2020): 981. http://dx.doi.org/10.3390/s20040981.
Full textT, Ermolieva, Ermoliev Y, Zagorodniy) A, et al. "Artificial Intelligence, Machine Learning, and Intelligent Decision Support Systems: Iterative “Learning” SQG-based procedures for Distributed Models’ Linkage." Artificial Intelligence 27, AI.2022.27(2) (2022): 92–97. http://dx.doi.org/10.15407/jai2022.02.092.
Full textZhou, Sheng, Xin Wang, Jiajun Bu, et al. "DGE: Deep Generative Network Embedding Based on Commonality and Individuality." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 6949–56. http://dx.doi.org/10.1609/aaai.v34i04.6178.
Full textHelander, Mary E., and Lawrence D. Stone. "Introduction: 2020 Daniel H. Wagner Prize for Excellence in the Practice of Advanced Analytics and Operations Research." INFORMS Journal on Applied Analytics 51, no. 5 (2021): 329–31. http://dx.doi.org/10.1287/inte.2021.1094.
Full text