Academic literature on the topic 'Bayesian structural equation model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian structural equation model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian structural equation model"
Lee, Sik-Yum, and Xin-Yuan Song. "Bayesian structural equation model." Wiley Interdisciplinary Reviews: Computational Statistics 6, no. 4 (June 16, 2014): 276–87. http://dx.doi.org/10.1002/wics.1311.
Full textWang, Yifan, Xiang-Nan Feng, and Xin-Yuan Song. "Bayesian Quantile Structural Equation Models." Structural Equation Modeling: A Multidisciplinary Journal 23, no. 2 (July 25, 2015): 246–58. http://dx.doi.org/10.1080/10705511.2015.1033057.
Full textSong, Xin-Yuan, Ye-Mao Xia, Jun-Hao Pan, and Sik-Yum Lee. "Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models." Structural Equation Modeling: A Multidisciplinary Journal 18, no. 1 (January 13, 2011): 55–72. http://dx.doi.org/10.1080/10705511.2011.532720.
Full textFeng, Xiang-Nan, Yifan Wang, Bin Lu, and Xin-Yuan Song. "Bayesian regularized quantile structural equation models." Journal of Multivariate Analysis 154 (February 2017): 234–48. http://dx.doi.org/10.1016/j.jmva.2016.11.002.
Full textStenling, Andreas, Andreas Ivarsson, Urban Johnson, and Magnus Lindwall. "Bayesian Structural Equation Modeling in Sport and Exercise Psychology." Journal of Sport and Exercise Psychology 37, no. 4 (August 2015): 410–20. http://dx.doi.org/10.1123/jsep.2014-0330.
Full textJiang, Xiaomo, and Sankaran Mahadevan. "Bayesian structural equation modeling method for hierarchical model validation." Reliability Engineering & System Safety 94, no. 4 (April 2009): 796–809. http://dx.doi.org/10.1016/j.ress.2008.08.008.
Full textLevy, Roy. "Bayesian Data-Model Fit Assessment for Structural Equation Modeling." Structural Equation Modeling: A Multidisciplinary Journal 18, no. 4 (October 5, 2011): 663–85. http://dx.doi.org/10.1080/10705511.2011.607723.
Full textLee, Sik-Yum, and Jian-Qing Shi. "Bayesian Analysis of Structural Equation Model With Fixed Covariates." Structural Equation Modeling: A Multidisciplinary Journal 7, no. 3 (July 2000): 411–30. http://dx.doi.org/10.1207/s15328007sem0703_3.
Full textGuo, Ruixin, Hongtu Zhu, Sy-Miin Chow, and Joseph G. Ibrahim. "Bayesian Lasso for Semiparametric Structural Equation Models." Biometrics 68, no. 2 (February 29, 2012): 567–77. http://dx.doi.org/10.1111/j.1541-0420.2012.01751.x.
Full textChen, Ji, Pengfei Liu, and Xinyuan Song. "Bayesian diagnostics of transformation structural equation models." Computational Statistics & Data Analysis 68 (December 2013): 111–28. http://dx.doi.org/10.1016/j.csda.2013.06.012.
Full textDissertations / Theses on the topic "Bayesian structural equation model"
Yoo, Keunyoung. "Probabilistic SEM : an augmentation to classical Structural equation modelling." Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/66521.
Full textMini Dissertation (MCom)--University of Pretoria, 2018.
Statistics
MCom
Unrestricted
Pfleger, Phillip Isaac. "Exploring Fit for Nonlinear Structural Equation Models." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7370.
Full textCerqueira, Pedro Henrique Ramos. "Structural equation models applied to quantitative genetics." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-145419/.
Full textModelos causais têm sido muitos utilizados em estudos em diferentes áreas de conhecimento, a fim de compreender as associações ou relações causais entre variáveis. Durante as últimas décadas, o uso desses modelos têm crescido muito, especialmente estudos relacionados à sistemas biológicos, uma vez que compreender as relações entre características são essenciais para prever quais são as consequências de intervenções em tais sistemas. Análise do grafo (AG) e os modelos de equações estruturais (MEE) são utilizados como ferramentas para explorar essas relações. Enquanto AG nos permite buscar por estruturas causais, que representam qualitativamente como as variáveis são causalmente conectadas, ajustando o MEE com uma estrutura causal conhecida nos permite inferir a magnitude dos efeitos causais. Os MEE também podem ser vistos como modelos de regressão múltipla em que uma variável resposta pode ser vista como explanatória para uma outra característica. Estudos utilizando MEE em genética quantitativa visam estudar os efeitos genéticos diretos e indiretos associados aos indivíduos por meio de informações realcionadas aos indivíduas, além das característcas observadas, como por exemplo o parentesco entre eles. Neste contexto, é tipicamente adotada a suposição que as características observadas são relacionadas linearmente. No entanto, para alguns cenários, relações não lineares são observadas, o que torna as suposições mencionadas inadequadas. Para superar essa limitação, este trabalho propõe o uso de modelos de equações estruturais de efeitos polinomiais mistos, de segundo grau ou seperior, para modelar relações não lineares. Neste trabalho foram desenvolvidos dois estudos, um de simulação e uma aplicação a dados reais. O primeiro estudo envolveu a simulação de 50 conjuntos de dados, com uma estrutura causal completamente recursiva, envolvendo 3 características, em que foram permitidas relações causais lineares e não lineares entre as mesmas. O segundo estudo envolveu a análise de características relacionadas ao gado leiteiro da raça Holandesa, foram utilizadas relações entre os seguintes fenótipos: dificuldade de parto, duração da gestação e a proporção de morte perionatal. Nós comparamos o modelo misto de múltiplas características com os modelos de equações estruturais polinomiais, com diferentes graus polinomiais, a fim de verificar os benefícios do MEE polinomial de segundo grau ou superior. Para algumas situações a suposição inapropriada de linearidade resulta em previsões pobres das variâncias e covariâncias genéticas diretas, indiretas e totais, seja por superestimar, subestimar, ou mesmo atribuir sinais opostos as covariâncias. Portanto, verificamos que a inclusão de um grau de polinômio aumenta o poder de expressão do MEE.
HUANG, BIN. "STATISTICAL ASSESSMENT OF THE CONTRIBUTION OF A MEDIATOR TO AN EXPOSURE OUTCOME PROCESS." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1005678075.
Full textAten, Jason Erik. "Causal not confounded gene networks inferring acyclic and non-acyclic gene bayesian networks in mRNA expression studies using recursive v-structures, genetic variation, and orthogonal causal anchor structural equation models /." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1563274791&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textFagua, José Camilo. "Geospatial Modeling of Land Cover Change in the Chocó-Darien Global Ecoregion of South America: Assessing Proximate Causes and Underlying Drivers of Deforestation and Reforestation." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7362.
Full textJahanshahi, Kaveh. "Quantification of the influences of built-form upon travel of employed adults : new models based on the UK National Travel Survey." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267841.
Full textShami, Roland G. (Roland George) 1960. "Bayesian analysis of a structural model with regime switching." Monash University, Dept. of Econometrics and Business Statistics, 2001. http://arrow.monash.edu.au/hdl/1959.1/9277.
Full textWegmann, Bertil. "Bayesian Inference in Structural Second-Price Auctions." Doctoral thesis, Stockholms universitet, Statistiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-57278.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Epub ahead of print. Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.
BRASIL, GUTEMBERG HESPANHA. "BAYESIAN DYNAMIC MODELLING THE CICLICAL COMPONENT IN STRUCTURAL MODEL FORMULATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1989. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8611@1.
Full textModelos estruturais para séries temporais vêm sendo bastante utilizados ultimamente e, adotam, basicamente, a mesma idéia da decomposição clássica de uma série temporal em seus componentes não-observáveis: tendência, sazonalidade, cíclica e irregular; para a componente cíclica, em particular, que é modelada por uma senóide a amortecida, existem apenas soluções no contexto da Estatística Clássica Harvey (1985). Neste trabalho discutimos extensivamente a solução Bayesiana para o modelo, tornando completamente estocástico a componente ciclo e obtendo um algoritmo para a estimação seqüencial dos parâmetros. A natureza não linear do problema é tratada pelos Modelos Dinâmicos Bayesianos; West e Harrison (1986).
The structural models for time series, so much in use today make use of the well know idea of decomposing a time series into its unobserved components of trend, seasonal, cycle and noise. The cyclical component in particular, which uses a damped sine wave to describe its moviment, has a clear solution available already in computer packages on the Classica framework of Harvey (1985). In this thesis we present a Bayesian solution to the cyclical component modelled by the same damped sine wave. The frequency and the damping factor, regarded as hyperparameters on the Classical solution are now incorporated to the system state vector and estimated by a sequential procedure. Finally, the non-linear nature of model is elegantly dealt with by the Bayesian Dynamic Models of West and Harrison (1986).
Books on the topic "Bayesian structural equation model"
Lee, Sik-Yum. Basic and advanced structural equation models for medical and behavioural sciences. Hoboken: Wiley, 2012.
Find full textStructural equation modeling: A Bayesian approach. Chichester, England: Wiley, 2007.
Find full textGhoshal, Sumantra. A structural equation model of scanning behavior of managers. Cambridge, Mass: Massachusetts Institute of Technology, Alfred P. Sloan School of Management, 1985.
Find full textHui-xin, Ke. Software system for the analysis of linear structural equation model. Fukuoka, Japan: Kyushu University, Research Institute of Fundamental Inforamtion Science, 1988.
Find full textJonsson, Fan Yang. Non-linear structural equation models: Simulation studies of the Kenny-Judd model. Uppsala, Sweden: Uppsala University, 1997.
Find full textMishler, William. What are the political consequences of trust?: A Russian structural equation model. Glasgow: University of Strathclyde, Centre for the Study of Public Policy, 2003.
Find full textAmit, Gupta. Effect of service climate on service quality: Test of a model using structural equation modeling. Bangalore: Indian Institute of Management, 2002.
Find full textLee, Sik-Yum. Structural Equation Modeling: A Bayesian Approach. Wiley & Sons, Incorporated, John, 2007.
Find full textBollen, Kenneth A., Sophia Rabe‐Hesketh, and Anders Skrondal. Structural Equation Models. Edited by Janet M. Box-Steffensmeier, Henry E. Brady, and David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0018.
Full textMiksza, Peter, and Kenneth Elpus. Structural Equation Modeling. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199391905.003.0014.
Full textBook chapters on the topic "Bayesian structural equation model"
Lee, Sik-Yum, and Xin-Yuan Song. "Bayesian Model Comparison of Structural Equation Models." In Random Effect and Latent Variable Model Selection, 121–50. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_6.
Full textStern, Hal S., and Yoonsook Jeon. "Applying Structural Equation Models with Incomplete Data." In Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, 331–42. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470090456.ch30.
Full textDijk, Herman K. van. "Chapter 25. On Bayesian Structural Inference in a Simultaneous Equation Model." In Econometrics and the Philosophy of Economics, 642–82. Princeton: Princeton University Press, 2003. http://dx.doi.org/10.1515/9781400873234-028.
Full textShigemasu, Kazuo, Takahiro Hoshino, and Takuya Ohmori. "Bayesian Analysis of Structural Equation Modeling." In Measurement and Multivariate Analysis, 207–16. Tokyo: Springer Japan, 2002. http://dx.doi.org/10.1007/978-4-431-65955-6_22.
Full textDemeyer, Séverine, Nicolas Fischer, and Gilbert Saporta. "Contributions to Bayesian Structural Equation Modeling." In Proceedings of COMPSTAT'2010, 469–76. Heidelberg: Physica-Verlag HD, 2010. http://dx.doi.org/10.1007/978-3-7908-2604-3_46.
Full textBretthorst, G. Larry. "The General Model Equation Plus Noise." In Bayesian Spectrum Analysis and Parameter Estimation, 31–41. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4684-9399-3_3.
Full textCaicedo, Juan M., Boris A. Zárate, Victor Giurgiutiu, Lingyu Yu, and Paul Ziehl. "Bayesian Finite Element Model Updating for Crack Growth." In Structural Dynamics, Volume 3, 861–66. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9834-7_76.
Full textRogers, Timothy J., Keith Worden, and Elizabeth J. Cross. "Bayesian Solutions to State-Space Structural Identification." In Model Validation and Uncertainty Quantification, Volume 3, 247–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47638-0_27.
Full textWedel, Michel, and Wagner A. Kamakura. "Model-Based Segmentation Using Structural Equation Models." In International Series in Quantitative Marketing, 217–29. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4651-1_13.
Full textZárate, Boris A., Juan M. Caicedo, Glen Wieger, and Johannio Marulanda. "Bayesian Finite Element Model Updating Using Static and Dynamic Data." In Structural Dynamics, Volume 3, 395–402. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9834-7_38.
Full textConference papers on the topic "Bayesian structural equation model"
Thanoon, Thanoon Y., and Robiah Adnan. "Comparison between Bayesian structural equation models with ordered categorical data." In ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23). Author(s), 2016. http://dx.doi.org/10.1063/1.4954631.
Full text"Combining Structure Equation Model with Bayesian Networks for predicting with high accuracy of recommending surgery for better survival in Benign prostatic hyperplasia patients." In 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2013. http://dx.doi.org/10.36334/modsim.2013.i4.yoo3.
Full textMay, Allan, David McMillan, and Sebastian Thöns. "Integrating Structural Health and Condition Monitoring: A Cost Benefit Analysis for Offshore Wind Energy." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41126.
Full textde Waal, Alta, and Keunyoung Yoo. "Latent Variable Bayesian Networks Constructed Using Structural Equation Modelling." In 2018 International Conference on Information Fusion (FUSION). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455240.
Full textYanuar, Ferra, and Aidinil Zetra. "Simulation Study to Describe Bayesian Analysis of Nonlinear Structural Equation Modeling." In Proceedings of the 1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019, Bogor, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.2-8-2019.2290337.
Full textTasaka, Shuji. "Bayesian structural equation modeling of multidimensional QoE in haptic-audiovisual interactive communications." In ICC 2016 - 2016 IEEE International Conference on Communications. IEEE, 2016. http://dx.doi.org/10.1109/icc.2016.7511202.
Full textIshita, Emi, Yosuke Miyata, Shuichi Ueda, and Keiko Kurata. "A Structural Equation Model of Information Retrieval Skills." In CHIIR '17: Conference on Human Information Interaction and Retrieval. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3020165.3022142.
Full textGARDNER, PAUL, ROBERT J. BARTHORPE, and CHARLES LORD. "Bayesian Calibration and Bias Correction for Forward Model-driven SHM." In Structural Health Monitoring 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/shm2017/14088.
Full textMuangpan, T., M. Chaowarat, and J. Neamvonk. "Performance Model of Sustainable Supply Chain Management: The Structural Equation Model." In Annual International Conference on Sustainable Energy and Environmental Sciences. Global Science & Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2251-189x_sees15.21.
Full textHu, Shu-Jen, Sin-Ying Jou, and Yu-Hua Liu. "Structural Equation Model for Brand Image Measurement of Jeans." In 2009 Ninth International Conference on Hybrid Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/his.2009.25.
Full textReports on the topic "Bayesian structural equation model"
Beron, Kurt, Helen Tauchen, and Ann Dryden Witte. A Structural Equation Model for Tax Compliance and Auditing. Cambridge, MA: National Bureau of Economic Research, April 1988. http://dx.doi.org/10.3386/w2556.
Full textWilcove, Gerry L., Donna G. Wolosin, and Michael J. Schwerin. Development of a New Quality of Life (QOL) Model Using Structural Equation Modeling. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada405971.
Full textGroeneveld, Andrew B., Stephanie G. Wood, and Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39601.
Full text