Journal articles on the topic 'BDNF-TrkB signaling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'BDNF-TrkB signaling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Feng, Ning, Sabine Huke, Guangshuo Zhu, et al. "Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation." Proceedings of the National Academy of Sciences 112, no. 6 (2015): 1880–85. http://dx.doi.org/10.1073/pnas.1417949112.
Full textFu, Xiuping, Yanrui Yang, Chenchang Xu, et al. "Retrolinkin cooperates with endophilin A1 to mediate BDNF–TrkB early endocytic trafficking and signaling from early endosomes." Molecular Biology of the Cell 22, no. 19 (2011): 3684–98. http://dx.doi.org/10.1091/mbc.e11-04-0308.
Full textSpaeth, Andrea M., Scott E. Kanoski, Matthew R. Hayes, and Harvey J. Grill. "TrkB receptor signaling in the nucleus tractus solitarius mediates the food intake-suppressive effects of hindbrain BDNF and leptin." American Journal of Physiology-Endocrinology and Metabolism 302, no. 10 (2012): E1252—E1260. http://dx.doi.org/10.1152/ajpendo.00025.2012.
Full textTaylor, Kathryn, Helena Zhang, Alexa Hui, Shawn Gillespie, and Michelle Monje. "TBIO-06. BDNF-TRKB SIGNALING REGULATES NEURON-GLIOMA SYNAPTOGENESIS AND PROMOTES TUMOR PROGRESSION." Neuro-Oncology 22, Supplement_3 (2020): iii468. http://dx.doi.org/10.1093/neuonc/noaa222.834.
Full textFontanesi, Cecilia, Svetlana Kvint, Giuseppe Frazzitta, et al. "Intensive Rehabilitation Enhances Lymphocyte BDNF-TrkB Signaling in Patients With Parkinson’s Disease." Neurorehabilitation and Neural Repair 30, no. 5 (2015): 411–18. http://dx.doi.org/10.1177/1545968315600272.
Full textJin. "Regulation of BDNF-TrkB Signaling and Potential Therapeutic Strategies for Parkinson’s Disease." Journal of Clinical Medicine 9, no. 1 (2020): 257. http://dx.doi.org/10.3390/jcm9010257.
Full textKang, Seong Su, Zhentao Zhang, Xia Liu та ін. "TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson’s disease". Proceedings of the National Academy of Sciences 114, № 40 (2017): 10773–78. http://dx.doi.org/10.1073/pnas.1713969114.
Full textGangarossa, Giuseppe, Sylvie Perez, Yulia Dembitskaya, Ilya Prokin, Hugues Berry, and Laurent Venance. "BDNF Controls Bidirectional Endocannabinoid Plasticity at Corticostriatal Synapses." Cerebral Cortex 30, no. 1 (2019): 197–214. http://dx.doi.org/10.1093/cercor/bhz081.
Full textMcCarthy, Deirdre M., Kaly A. Mueller, Elisa N. Cannon, et al. "Prenatal Cocaine Exposure Alters BDNF-TrkB Signaling in the Embryonic and Adult Brain." Developmental Neuroscience 38, no. 5 (2016): 365–74. http://dx.doi.org/10.1159/000453609.
Full textZou, Wujun, Xiaoyan Hu, and Liang Jiang. "Advances in Regulating Tumorigenicity and Metastasis of Cancer Through TrkB Signaling." Current Cancer Drug Targets 20, no. 10 (2020): 779–88. http://dx.doi.org/10.2174/1568009620999200730183631.
Full textSuzuki, Shingo, Tadahiro Numakawa, Kazuhiro Shimazu, et al. "BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts." Journal of Cell Biology 167, no. 6 (2004): 1205–15. http://dx.doi.org/10.1083/jcb.200404106.
Full textWójcik-Gryciuk, Anna, Olga Gajewska-Woźniak, Katarzyna Kordecka, Paweł M. Boguszewski, Wioletta Waleszczyk, and Małgorzata Skup. "Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma." International Journal of Molecular Sciences 21, no. 17 (2020): 6262. http://dx.doi.org/10.3390/ijms21176262.
Full textMartin, Mauricio G., Simona Perga, Laura Trovò, et al. "Cholesterol Loss Enhances TrkB Signaling in Hippocampal Neurons Aging in Vitro." Molecular Biology of the Cell 19, no. 5 (2008): 2101–12. http://dx.doi.org/10.1091/mbc.e07-09-0897.
Full textHang, Peng-Zhou, Hua Zhu, Pei-Feng Li, et al. "The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases." Life 11, no. 1 (2021): 70. http://dx.doi.org/10.3390/life11010070.
Full textSopi, Ramadan B., Richard J. Martin, Musa A. Haxhiu, et al. "Role of brain-derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma." American Journal of Physiology-Lung Cellular and Molecular Physiology 295, no. 2 (2008): L348—L355. http://dx.doi.org/10.1152/ajplung.00067.2008.
Full textJensen, T., and A. L. Johnson. "Expression and function of brain-derived neurotrophin factor and its receptor, TrkB, in ovarian follicles from the domestic hen (Gallus gallus domesticus)." Journal of Experimental Biology 204, no. 12 (2001): 2087–95. http://dx.doi.org/10.1242/jeb.204.12.2087.
Full textBariohay, Bruno, Julien Roux, Catherine Tardivel, Jérôme Trouslard, Andre Jean, and Bruno Lebrun. "Brain-Derived Neurotrophic Factor/Tropomyosin-Related Kinase Receptor Type B Signaling Is a Downstream Effector of the Brainstem Melanocortin System in Food Intake Control." Endocrinology 150, no. 6 (2009): 2646–53. http://dx.doi.org/10.1210/en.2008-1184.
Full textOlenick, Mara A., Roberto Dominguez, and Erika L. F. Holzbaur. "Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons." Journal of Cell Biology 218, no. 1 (2018): 220–33. http://dx.doi.org/10.1083/jcb.201805016.
Full textNumakawa, Tadahiro, and Haruki Odaka. "Brain-Derived Neurotrophic Factor Signaling in the Pathophysiology of Alzheimer’s Disease: Beneficial Effects of Flavonoids for Neuroprotection." International Journal of Molecular Sciences 22, no. 11 (2021): 5719. http://dx.doi.org/10.3390/ijms22115719.
Full textShang, Yingchun, Xin Wang, Fangjuan Li, Tao Yin, Jianhai Zhang, and Tao Zhang. "rTMS Ameliorates Prenatal Stress–Induced Cognitive Deficits in Male-Offspring Rats Associated With BDNF/TrkB Signaling Pathway." Neurorehabilitation and Neural Repair 33, no. 4 (2019): 271–83. http://dx.doi.org/10.1177/1545968319834898.
Full textAl-Qudah, M., C. D. Anderson, S. Mahavadi, et al. "Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C." American Journal of Physiology-Gastrointestinal and Liver Physiology 306, no. 4 (2014): G328—G337. http://dx.doi.org/10.1152/ajpgi.00203.2013.
Full textWu, Zhourui, Chun Chen, Seong Su Kang, et al. "Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer’s disease pathogenesis." Proceedings of the National Academy of Sciences 118, no. 25 (2021): e2100986118. http://dx.doi.org/10.1073/pnas.2100986118.
Full textKawamura, Kazuhiro, Nanami Kawamura, Yuta Kawagoe, Jin Kumagai, Toshio Fujimoto, and Yukihiro Terada. "Suppression of Hydatidiform Molar Growth by Inhibiting Endogenous Brain-Derived Neurotrophic Factor/Tyrosine Kinase B Signaling." Endocrinology 153, no. 8 (2012): 3972–81. http://dx.doi.org/10.1210/en.2012-1167.
Full textLee, Heow Won, Monir Ahmad, Jonathan J. Weldrick, Hong-Wei Wang, Patrick G. Burgon, and Frans H. H. Leenen. "Effects of exercise training and TrkB blockade on cardiac function and BDNF-TrkB signaling postmyocardial infarction in rats." American Journal of Physiology-Heart and Circulatory Physiology 315, no. 6 (2018): H1821—H1834. http://dx.doi.org/10.1152/ajpheart.00245.2018.
Full textCao, Maosheng, Qiaoge Niu, XinYu Xiang, et al. "Brain-Derived Neurotrophic Factor Regulates Ishikawa Cell Proliferation through the TrkB-ERK1/2 Signaling Pathway." Biomolecules 10, no. 12 (2020): 1645. http://dx.doi.org/10.3390/biom10121645.
Full textOttem, Erich N., Laurel A. Beck, Cynthia L. Jordan, and S. Marc Breedlove. "Androgen-Dependent Regulation of Brain-Derived Neurotrophic Factor and Tyrosine Kinase B in the Sexually Dimorphic Spinal Nucleus of the Bulbocavernosus." Endocrinology 148, no. 8 (2007): 3655–65. http://dx.doi.org/10.1210/en.2007-0308.
Full textTan, Shawn, Yixin Xiao, Henry H. Yin, Albert I. Chen, Tuck Wah Soong, and H. Shawn Je. "Postnatal TrkB ablation in corticolimbic interneurons induces social dominance in male mice." Proceedings of the National Academy of Sciences 115, no. 42 (2018): E9909—E9915. http://dx.doi.org/10.1073/pnas.1812083115.
Full textAgosto-Marlin, Ibis M., та Gordon S. Mitchell. "Spinal BDNF-induced phrenic motor facilitation requires PKCθ activity". Journal of Neurophysiology 118, № 5 (2017): 2755–62. http://dx.doi.org/10.1152/jn.00945.2016.
Full textLi, Yun, Daishi Yui, Bryan W. Luikart, et al. "Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development." Proceedings of the National Academy of Sciences 109, no. 38 (2012): 15491–96. http://dx.doi.org/10.1073/pnas.1212899109.
Full textAndreska, Thomas, Patrick Lüningschrör, and Michael Sendtner. "Regulation of TrkB cell surface expression—a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor." Cell and Tissue Research 382, no. 1 (2020): 5–14. http://dx.doi.org/10.1007/s00441-020-03224-7.
Full textMcCarthy, Deirdre M., Genevieve A. Bell, Elisa N. Cannon, et al. "Reversal Learning Deficits Associated with Increased Frontal Cortical Brain-Derived Neurotrophic Factor Tyrosine Kinase B Signaling in a Prenatal Cocaine Exposure Mouse Model." Developmental Neuroscience 38, no. 5 (2016): 354–64. http://dx.doi.org/10.1159/000452739.
Full textRivera, Claudio, Hong Li, Judith Thomas-Crusells, et al. "BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion." Journal of Cell Biology 159, no. 5 (2002): 747–52. http://dx.doi.org/10.1083/jcb.200209011.
Full textHoffman, M. S., N. L. Nichols, P. M. Macfarlane, and G. S. Mitchell. "Phrenic long-term facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis." Journal of Applied Physiology 113, no. 8 (2012): 1184–93. http://dx.doi.org/10.1152/japplphysiol.00098.2012.
Full textStucky, Andres, Kalindi P. Bakshi, Eitan Friedman, and Hoau-Yan Wang. "Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling." PLOS ONE 11, no. 8 (2016): e0160585. http://dx.doi.org/10.1371/journal.pone.0160585.
Full textPandya, Chirayu D., Ammar Kutiyanawalla, and Anilkumar Pillai. "BDNF–TrkB signaling and neuroprotection in schizophrenia." Asian Journal of Psychiatry 6, no. 1 (2013): 22–28. http://dx.doi.org/10.1016/j.ajp.2012.08.010.
Full textAnderson, Ethan M., Anne Marie Wissman, Joyce Chemplanikal, et al. "BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors." Proceedings of the National Academy of Sciences 114, no. 35 (2017): 9469–74. http://dx.doi.org/10.1073/pnas.1702441114.
Full textBoukhatem, Imane, Samuel Fleury, Melanie Welman, et al. "The brain-derived neurotrophic factor prompts platelet aggregation and secretion." Blood Advances 5, no. 18 (2021): 3568–80. http://dx.doi.org/10.1182/bloodadvances.2020004098.
Full textMitre, Mariela, Abigail Mariga, and Moses V. Chao. "Neurotrophin signalling: novel insights into mechanisms and pathophysiology." Clinical Science 131, no. 1 (2016): 13–23. http://dx.doi.org/10.1042/cs20160044.
Full textLi, Xiaohong, Chong Chen, Xiping Yang, et al. "Acupuncture Improved Neurological Recovery after Traumatic Brain Injury by Activating BDNF/TrkB Pathway." Evidence-Based Complementary and Alternative Medicine 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/8460145.
Full textWang, Hua, Yuan Wei, Yichen Pu, et al. "Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity." Science Signaling 12, no. 600 (2019): eaaw2300. http://dx.doi.org/10.1126/scisignal.aaw2300.
Full textHu, Min, Wei Zou, Chun-Yan Wang, et al. "Hydrogen Sulfide Protects against Chronic Unpredictable Mild Stress-Induced Oxidative Stress in Hippocampus by Upregulation of BDNF-TrkB Pathway." Oxidative Medicine and Cellular Longevity 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/2153745.
Full textBariohay, Bruno, Catherine Tardivel, Juliette Pio, André Jean, and Bernadette Félix. "BDNF-TrkB signaling interacts with the GABAergic system to inhibit rhythmic swallowing in the rat." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 295, no. 4 (2008): R1050—R1059. http://dx.doi.org/10.1152/ajpregu.90407.2008.
Full textNumakawa, Tadahiro, Haruki Odaka, and Naoki Adachi. "Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases." International Journal of Molecular Sciences 19, no. 11 (2018): 3650. http://dx.doi.org/10.3390/ijms19113650.
Full textSandhya, Varot K., Rajesh Raju, Renu Verma, et al. "A network map of BDNF/TRKB and BDNF/p75NTR signaling system." Journal of Cell Communication and Signaling 7, no. 4 (2013): 301–7. http://dx.doi.org/10.1007/s12079-013-0200-z.
Full textRössler, Oliver G., and Gerald Thiel. "Brain-derived neurotrophic factor-, epidermal growth factor-, or A-Raf-induced growth of HaCaT keratinocytes requires extracellular signal-regulated kinase." American Journal of Physiology-Cell Physiology 286, no. 5 (2004): C1118—C1129. http://dx.doi.org/10.1152/ajpcell.00301.2003.
Full textFukumoto, Kenichi, Manoela V. Fogaça, Rong-Jian Liu, et al. "Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine." Proceedings of the National Academy of Sciences 116, no. 1 (2018): 297–302. http://dx.doi.org/10.1073/pnas.1814709116.
Full textLee, Young-Ju, Hye Ryeong Kim, Chang Youn Lee, et al. "2-Phenylethylamine (PEA) Ameliorates Corticosterone-Induced Depression-Like Phenotype via the BDNF/TrkB/CREB Signaling Pathway." International Journal of Molecular Sciences 21, no. 23 (2020): 9103. http://dx.doi.org/10.3390/ijms21239103.
Full textZhao, Liangfang, and Eric S. Levine. "BDNF-endocannabinoid interactions at neocortical inhibitory synapses require phospholipase C signaling." Journal of Neurophysiology 111, no. 5 (2014): 1008–15. http://dx.doi.org/10.1152/jn.00554.2013.
Full textSchaich, Chris L., Theresa L. Wellman, Zachary Einwag, Richard A. Dutko, and Benedek Erdos. "Inhibition of BDNF signaling in the paraventricular nucleus of the hypothalamus lowers acute stress-induced pressor responses." Journal of Neurophysiology 120, no. 2 (2018): 633–43. http://dx.doi.org/10.1152/jn.00459.2017.
Full textRoesler, Rafael, Caroline Brunetto de Farias, Ana Lucia Abujamra, Algemir Lunardi Brunetto, and Gilberto Schwartsmann. "BDNF/TrkB signaling as an anti-tumor target." Expert Review of Anticancer Therapy 11, no. 10 (2011): 1473–75. http://dx.doi.org/10.1586/era.11.150.
Full text