Academic literature on the topic 'Beam Position Monitor (BPM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Beam Position Monitor (BPM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Beam Position Monitor (BPM)"
Honda, T., M. Katoh, T. Mitsuhashi, A. Ueda, M. Tadano, and Y. Kobayashi. "Single-pass BPM system of the Photon Factory storage ring." Journal of Synchrotron Radiation 5, no. 3 (May 1, 1998): 618–20. http://dx.doi.org/10.1107/s0909049597015094.
Full textTaccetti, F., L. Carraresi, M. E. Fedi, M. Manetti, P. Mariani, G. Tobia, and P. A. Mandò. "A Beam Profile Monitor for Rare Isotopes in Accelerator Mass Spectrometry: Preliminary Measurements." Radiocarbon 52, no. 2 (2010): 272–77. http://dx.doi.org/10.1017/s0033822200045306.
Full textSamadi, Nazanin, Xianbo Shi, and Dean Chapman. "Optimization of a phase-space beam position and size monitor for low-emittance light sources." Journal of Synchrotron Radiation 26, no. 6 (September 11, 2019): 1863–71. http://dx.doi.org/10.1107/s1600577519010658.
Full textHaga, K., T. Honda, M. Tadano, T. Obina, and T. Kasuga. "New beam-position monitor system for upgraded Photon Factory storage ring." Journal of Synchrotron Radiation 5, no. 3 (May 1, 1998): 624–26. http://dx.doi.org/10.1107/s0909049597014349.
Full textDal Forno, Massimo, Paolo Craievich, Roberto Baruzzo, Raffaele De Monte, Mario Ferianis, Giuseppe Lamanna, and Roberto Vescovo. "A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 662, no. 1 (January 2012): 1–11. http://dx.doi.org/10.1016/j.nima.2011.09.040.
Full textAydin, Ayhan, Erkan Bostanci, and Omer Ozgur Tanriover. "A multiple objective evolutionary algorithm approach to find optimal design parameters for beam position monitoring systems." International Journal of Modern Physics C 31, no. 03 (February 12, 2020): 2050038. http://dx.doi.org/10.1142/s0129183120500382.
Full textYuh, Jih-Young, Shan-Wei Lin, Liang-Jen Huang, Hok-Sum Fung, Long-Life Lee, Yu-Joung Chen, Chiu-Ping Cheng, Yi-Ying Chin, and Hong-Ji Lin. "Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline." Journal of Synchrotron Radiation 22, no. 5 (August 8, 2015): 1312–18. http://dx.doi.org/10.1107/s1600577515014009.
Full textAYDIN, Ayhan, and Ergün KASAP. "Design studies for the beam position monitor (BPM) front-end electronics of the Turkish accelerator and radiation laboratory in Ankara (TARLA)." TURKISH JOURNAL OF PHYSICS 41 (2017): 269–76. http://dx.doi.org/10.3906/fiz-1702-13.
Full textIzumi, T., T. Nakajima, and T. Kurihama. "Photon beam position monitor." Review of Scientific Instruments 60, no. 7 (July 1989): 1951–52. http://dx.doi.org/10.1063/1.1140897.
Full textAnnala, G., B. Banerjee, B. Barker, T. Boes, M. Bowden, C. Briegel, G. Cancelo, et al. "Tevatron beam position monitor upgrade." Journal of Instrumentation 6, no. 11 (November 25, 2011): T11005. http://dx.doi.org/10.1088/1748-0221/6/11/t11005.
Full textDissertations / Theses on the topic "Beam Position Monitor (BPM)"
Lindström, Björn. "A novel diamond-based beam position monitoring system for the High Radiation to Materials facility at CERN SPS." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123881.
Full textBlanco, Oscar. "Dynamique des faisceaux dans la section finale de focalisation du futur collisionneur linéaire." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112108/document.
Full textThe exploration of new physics in the “Tera electron-Volt” (TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction Point (IP).Three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.This thesis considers two aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3 TeV, and the instrumentation and experimental work on beam stabilization in a test facility.A new chromaticity correction scheme, called non-interleaved, is proposed to the local and non-local chromaticity corrections for CLIC. This lattice is designed and diagnosed, where the main issue in the current state of lattice design is the non-zero second order dispersion in the Final Doublet (FD) region where a strong sextupole is used to correct the remaining geometrical components.The radiation effect can be evaluated by tracking particles through the lattice or by analytical approximations during the design stage of the lattices. In order to include both, radiation and optic parameters, during the design optimization process, two particular radiation phenomena are reviewed: the Oide effect and the radiation caused by bending magnets .The analytical result of the radiation in bending magnets in was generalized to the case with non-zero alpha and non-zero dispersion at the IP, required during the design and luminosity optimization process. The closed solution for one dipole and one dipole with a drift is compared with the tracking code PLACET, resulting in the improvement of the tracking code results.The Oide effect sets a limit on the vertical beamsize due to the radiation in the final quadrupole. Only for CLIC 3 TeV this limit is significant, therefore two possibilities are explored to mitigate its contribution to beam size: double the length and reduce the QD0 gradient, or the integration of a pair of octupoles before and after QD0.Part of the requirements of the FFS for new linear accelerators are tested in The Accelerator Test Facility (ATF). The beam size reduction using the local chromaticity correction is explored by an extension of the original design, called ATF2 with two goals: achieve 37 nm of vertical beam size at the IP, and the stabilization of the IP beam position at the level of few nanometres. Since 2014 beam size of 44 nm are achieved as a regular basis at charges of about 0.1 × 10^10 particules per bunch.A set of three cavities (IPA, IPB and IPC), two upstream and one downstream of the nominal IP and on top of separate blocks of piezo-electric movers, were installed and are used to measure the beam trajectory in the IP region, thus providing enough information to reconstruct the bunch position and angle at the IP. These will be used to for beam stabilization and could detect beam drift/jitter beyond the tolerable margin and undetected optics mismatch affecting the beam size measurements. The specifications required of 1 nm resolution over 10 μm dynamic range at 1.0 × 10 10 particules per bunch with the ATF2 nominal optics have not been yet achieved.The minimum resolution achieved is just below 50 nm at 0.4 × 10^10 particules per bunch with a set of electronics impossing a noise limit on resolution of 10 nm per cavity. The dynamic range is 10 μm at 10 dB attenuation and 0.4 × 10^10 particules per bunch, indicating the need to upgrade theelectronics. The integration to the ATF tuning instruments is ongoing. Nonetheless, feedback has been tested resulting in reduction of beam jitterdown to 67 nm, compatible with resolution
Sargsyan, Vahagn. "Cavity beam position monitor for the TESLA-cryomodule cross-talk minimization /." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969232640.
Full textCarlà, Michele. "Transverse beam dynamics studies from turn-by-turn beam position monitor data in the ALBA storage ring." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457886.
Full textALBA is a third generation light source, commissioned in 2011, serving a national and international scientific and industrial community. It provides synchrotron radiation up to the hard x-rays as a tool to multiple laboratories (beamlines) for a wide range of physical, chemical, and biological experiments. In order to achieve the required radiation flux and small divergence, the electron storage ring employs an optimized design where strong magnets are combined in a rather complex lattice to properly shape the characteristics of the electron beam. However, the lattice can have several errors, which detrimentally affect the electron beam characteristics such as size, divergence, or lifetime. Unavoidable lattice errors can be due to manufacturing mechanical tolerances, magnet hysteresis, thermal variations and/or mechanical misalignments. The delicate "magnetic equilibrium" required to operate such light sources could be hardly met without a tool to measure and correct the actual magnetic lattice. For this purpose beam-based methods, where the stored beam serves as probe to inspect the lattice, have been developed. Among the various techniques, turn-by-turn measurements allow to asses a lattice error model by sampling turn after turn the transverse motion of the beam. The main purpose of this PhD work is to implement for the first time the turn-by-turn technique at ALBA in order to establish the capabilities of the measurements in the context of linear and non-linear lattice errors. A first set of experiments was dedicated to the characterization of the linear lattice, showing a level of agreement (beta-beat < 2%), comparable to what observed with other methods based on the closed orbit technique. Further tests to establish the ultimate sensitivity to small optical functions variations were obtained by manipulating single lattice elements and measuring the resulting optics variations. Turn-by-turn technique has been applied to the characterization of coupling in the ALBA light source. The ability of turn-by-turn to correctly localize a single source of coupling was challenged by introducing in the storage ring lattice a controlled coupling source. A high degree of precision was observed in localizing the error source, and only a 10% disagreement between measurements and theoretical predictions on the coupling source strength was observed. A similar test was also carried out for the sextupole families using a resistive shunt to change the excitation current of a single element. The ability to localize the sextupolar error position in the lattice was successfully demonstrated. The experiments showed how the turn-by-turn acquisitions shine as for sensibility, enabling the detection of very small variations of the optics function. This made it possible to apply the turn-by-turn technique, for the first time in a light source, to the measurement of localized transverse impedance sources. The experiment, carried out in the ALBA storage ring, led to the characterization of the individual defocusing effects produced by different transverse impedance sources, including elements like scraper, injection zone, in-vacuum undulator and standard vacuum beam pipe. The good agreement between the measurements and the transverse impedance model based on analytical calculation of the resistive wall and GdfidL simulation of the geometrical impedance confirmed that the turn-by-turn technique is a valid diagnostic tool to carry out very sensitive and non-intrusive optics measurements. Furthermore it has been shown how the smaller impedance sources can still be properly characterized by manipulating the machine optics in order to obtain a magnification of the induced defocusing kick. This method has been used to characterize impedances as small as the one of the ALBA IVUs.
Joshi, Nirav Yashvantray. "Design and analysis techniques for cavity beam position monitor systems for electron accelerators." Thesis, Royal Holloway, University of London, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594166.
Full textBjörkqvist, Oskar. "Analog Front End Development for the Large Hadron Collider Interlock Beam Position Monitor Upgrade." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253207.
Full textDet system som mäter partikelstrålens position och ansvarar för att extraktion avdenna kan ske under säkra och pålitliga former i Large Hadron Collider (LHC) heterLHC interlock beam position monitor (BPM) och är en viktig del av LHC:s maskinskydd.Det nuvarande system som utför dessa mätningar har vissa begransningaroch till följd av detta har en uppgradering av systemet påbörjats. Detta examensarbetebeskriver utvecklingen av den elektronik som kommer att användas i systemetsanaloga signalkedja som består i huvudsak av ett filter samt en balanserad effektdelareför radiofrekvenser.Filtret har utvärderats genom verkliga mätningar av partikelstrålen och har konstateratsfungera som väntat. Mer arbete krävs dock för att bestämma påverkansom filtret självt har på positionsmätningarna då det introducerar en viss ringandeeffekt på signalerna. Den balanserade effektdelaren har testats i lab och visar ocksåpå lovande resultat men kräver tester över längre tid då denna komponent kommeratt behöva utstå höga signalnivåer under långa tidsperioder.
Benot, Morell Alfonso. "Beam position monitoring in the clic drive beam decelerator using stripline technology." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/64067.
Full text[ES] El Colisionador Lineal Compacto (Compact Linear Collider, CLIC), un colisionador de electrones y positrones concebido en el CERN para el estudio de la Física de Altas Energías en la región de los TeV, se basa en un principio de funcionamiento de doble haz: en lugar de emplear elementos activos (klystrons) para proporcionar la potencia RF requerida para acelerar el haz principal (Main Beam, MB), ésta se obtiene de la deceleración de un haz secundario (Drive Beam, DB), de alta corriente y energía moderada, en las llamadas estructuras de extracción y transferencia de potencia (Power Extraction and Transfer Structures, PETS). Estas estructuras emiten una señal interferente RF de más de 130 MW de potencia a 12 GHz, que, por estar localizada en una frecuencia superior a la de corte del modo fundamental en el tubo de vacío del haz (7.6 GHz), se propaga por éste hacia los dispositivos adyacentes, entre los cuales se encuentran los sistemas de monitorización de la posición (Beam Position Monitor, BPM). De acuerdo con el informe conceptual de diseño de CLIC (Conceptual Design Report, CDR) , un sistema eficiente de monitorización de la posición del haz en el decelerador del haz secundario deberá cumplir los siguientes requisitos: - Debe ser lo más sencillo y económico posible, ya que se precisan 41580 unidades: el 75% de todos los BPMs de CLIC. - El procesado de señal en el sistema de adquisición deberá ser inmune a la interferencia generada en las PETS. Esto excluye la solución habitual de procesar las señales del BPM a la frecuencia de pulsado del haz (12 GHz). - La señal de posición resultante del procesado debe ser capaz de detectar cambios en la posición del haz de duración igual o mayor a 10 ns (resolución temporal). - La resolución espacial requerida es de 2 um para un tubo de vacío de 23 mm de diámetro, con una calibración precisa. - Amplio rango dinámico: el sistema electrónico de adquisición del BPM debe poder resistir los altos valores de señal provocados por los casos de desviación extrema del haz nominal (se contempla una desviación máxima de la mitad del radio del tubo), así como detectar las señales inducidas por las configuraciones de haz con menor carga de todas las previstas, cuyos niveles serán muy débiles.
[CAT] El Col·lisionador Lineal Compacte (Compact Linear Collider, CLIC), un col·lisionador d'electrons i positrons concebut per l'estudi de la Física d'Altes Energies a la regió dels TeV (energía del centre de massa), es basa en un principi de funcionament de doble feix:en lloc de fer servir elements actius (klystrons) per proporcionar la potència RF requerida per accelerar el feix principal (Main Beam, MB), aquesta s'obtè de la desacceleració d'un feix secundari (Drive Beam, DB), d'alt corrent i energia moderada, a les anomenades estructures d'extracció i transferència de potència (Power Extraction and Transfer Structures, PETS). Aquestes estructures emeten una senyal interferent RF de més de 130 MW de potència a 12 GHz, que, pel fet d'estar localitzada a una freqüència superior a la de tall del mode fonamental al tub de buit del feix (7.6 GHz), es propaga a través d'aquest fins els dispositius adjacents, entre els quals trobem els sistemes de monitorització de la posició (Beam Position Monitor, BPM). D'acord amb l'informe conceptual de disseny de CLIC (Conceptual Design Report, CDR), un sistema eficient de monitorització de la posició del feix al desaccelerador del feix secundari haurà de complir els següents requisits: ¿ - Ha de ser el més senzill i econòmic possible, ja que es necessiten 41580 unitats: el 75% de tots els BPMs de CLIC. ¿ - El processat de la senyal al sistema d'adquisició haurà de ser inmune a la interferència generada als PETS. Això exclou la solució habitual de processar les senyals del BPM a la freqüència de pulsacions del feix (12 GHz). ¿- La senyal de posició resultant del processat ha de ser capaç de detectar canvis a la posició del feix de durada igual o més gran que 10 ns (resolució temporal). ¿- La resolució espaial necessària és de 2 um per a un tub de buit de 23 mm de diàmetre. ¿- Ampli rang dinàmic: el sistema electrònic d'adquisició del BPM ha de poder processar senyals amb nivells extrems, induïdes per feixos de molt alt (100 A) i molt baix (3 A) corrent.
Benot Morell, A. (2016). Beam position monitoring in the clic drive beam decelerator using stripline technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64067
TESIS
García, Garrigós Juan José. "Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/34327.
Full textGarcía Garrigós, JJ. (2013). Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34327
TESIS
Bhatt, Heeral. "Design and Development of the Beam Position Monitor Calibration Test Bench : For testing the electrical parameters of the new High Luminosity Large Hadron Collider (HL-LHC) Beam Position Monitors using the Concurrent Engineering Approach." Thesis, Luleå tekniska universitet, Rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81200.
Full textTrinkel, Fabian Verfasser], Jörg [Akademischer Betreuer] [Pretz, and Kurt [Akademischer Betreuer] Aulenbacher. "Development of a Rogowski coil beam position monitor for electric dipole moment measurements at storage rings / Fabian Trinkel ; Jörg Johannes Pretz, Kurt Aulenbacher." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1162846038/34.
Full textBook chapters on the topic "Beam Position Monitor (BPM)"
Yates, John T. "Beam Position Monitor— Charged Particles." In Experimental Innovations in Surface Science, 328–29. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2304-7_101.
Full textMinty, Michiko G., and Frank Zimmermann. "Orbit Measurement and Correction." In Particle Acceleration and Detection, 69–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_3.
Full textArutunian, S. G., N. M. Dobrovolski, M. R. Mailian, V. A. Oganessian, and I. E. Vasiniuk. "Vibrating Wires Fence as a Negligibly Destructive Beam Profile and Beam Position Monitor." In Electron-Photon Interaction in Dense Media, 303–8. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0367-4_24.
Full textXiao, Liang, Dongxu Zhao, Hongyu Zhang, Yubin Zhao, Xingcheng Tian, and Xiuku Wang. "Design of Data Acquisition System for CSNS RCS Beam Position Monitor." In Springer Proceedings in Physics, 431–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1313-4_82.
Full textConference papers on the topic "Beam Position Monitor (BPM)"
Hsueh, H. P., C. C. Chang, S. N. Hsu, I. T. Huang, Y. B. Chen, C. K. Kuan, G. Y. Hsiung, et al. "Design and Manufacturing Criteria for Beam Position Monitor (BPM) of Taiwan Photon Source (TPS)." In SRI 2009, 10TH INTERNATIONAL CONFERENCE ON RADIATION INSTRUMENTATION. AIP, 2010. http://dx.doi.org/10.1063/1.3463263.
Full textGündoğan, M. Tural, Ç. Kaya, and Ö. Yavaş. "A button - type beam position monitor design for TARLA facility." In 9TH INTERNATIONAL PHYSICS CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU-9). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4944200.
Full textSmith, Stephen R. "Beam position monitor engineering." In Beam instrumentation. AIP, 1997. http://dx.doi.org/10.1063/1.52306.
Full textGullotta, J., W. C. Dawson, C. Degen, R. Michnoff, S. Naase, T. Russo, and T. Satogata. "RHIC Beam Position Monitor Calibration." In BEAM INSTRUMENTATION WORKSHOP 2006: Twelfth Beam Instrumentation Workshop. AIP, 2006. http://dx.doi.org/10.1063/1.2401421.
Full textHaciomeroglu, Selcuk, David Kawall, Yong-Ho Lee, Andrei Matlashov, Zhanibek Omarov, and Yannis K. Semertzidis. "SQUID-based beam position monitor." In The 39th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.340.0279.
Full textPiller, M., R. Flood, L. Hammer, M. Parks, E. Strong, L. Turlington, and R. Ursic. "1 nA Beam position monitor." In The eighth beam instrumentation workshop. AIP, 1998. http://dx.doi.org/10.1063/1.57023.
Full textMedvedko, Evgeny A. "The logarithmic beam position monitor." In The ninth beam instrumentation workshop. AIP, 2000. http://dx.doi.org/10.1063/1.1342623.
Full textJones, Alan A. "VXIbus beam position monitor module." In Accelerator instrumentation fourth annual workshop. AIP, 1992. http://dx.doi.org/10.1063/1.44349.
Full textAiello, G. Roberto, Alan A. Jones, and Mark R. Mills. "SSC Linac Beam Position Monitor System." In Beam Instrumentation Workshop. AIP, 1994. http://dx.doi.org/10.1063/1.46978.
Full textAiello, G. Roberto, Ronald G. Johnson, Donald J. Martin, Mark R. Mills, Jeff J. Olsen, and Stephen R. Smith. "Beam position monitor system for PEP-II." In Beam instrumentation. AIP, 1997. http://dx.doi.org/10.1063/1.52291.
Full textReports on the topic "Beam Position Monitor (BPM)"
Smith, S., and S. Williams. Linac BPM (Beam Position Monitor) modification program status. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/7166490.
Full textDiMassa, G., and A. G. Ruggiero. Beam position monitor. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/1118921.
Full textDi Massa, G., and A. G. Ruggiero. Beam position monitor analysis. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/5912811.
Full textClaus, J. Beam Position Monitor for RHIC. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/1119136.
Full textShafer, R. Tevatron Beam Position Monitor System. Office of Scientific and Technical Information (OSTI), February 1988. http://dx.doi.org/10.2172/1119137.
Full textMedvedko, Evgeny A. The Logarithmic Beam Position Monitor. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/763770.
Full textLidia, S. M., F. M. Bieniosek, E. Henestroza, and J. H. Takakuwa. Capacitive Beam Position Monitor for NDCX-II. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1051287.
Full textMa, Hengjie. Report III on Switchyard beam position monitor. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10115431.
Full textAuthor, Not Given. High Precision Integrated Beam-Position and Emittance Monitor. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1484267.
Full textKurita, N., D. Martin, C. K. Ng, S. Smith, and T. Weiland. Numerical simulation of the PEP-II beam position monitor. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/125107.
Full text