Academic literature on the topic 'Bean common mosaic virus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bean common mosaic virus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bean common mosaic virus"
Koo, Dong-Jin, Hye-Young Shin, Jung-Hyun Sung, Dong-Kyon Kang, and Moo-Ung Chang. "Bean common mosaic virus and Peanut mottle virus isolated from Peanut in Korea." Research in Plant Disease 8, no. 2 (August 1, 2002): 92–100. http://dx.doi.org/10.5423/rpd.2002.8.2.092.
Full textFlores-Estévez, N., J. A. Acosta-Gallegos, and L. Silva-Rosales. "Bean common mosaic virus and Bean common mosaic necrosis virus in Mexico." Plant Disease 87, no. 1 (January 2003): 21–25. http://dx.doi.org/10.1094/pdis.2003.87.1.21.
Full textTSUCHIZAKI, Tsuneo, and Toshihiro OMURA. "Relationships among bean common mosaic virus, blackeye cowpea mosaic virus, azuki bean mosaic virus, and soybean mosaic virus." Japanese Journal of Phytopathology 53, no. 4 (1987): 478–88. http://dx.doi.org/10.3186/jjphytopath.53.478.
Full textPark, S. J. "Shetland common bean." Canadian Journal of Plant Science 71, no. 4 (October 1, 1991): 1147–49. http://dx.doi.org/10.4141/cjps91-157.
Full textKyrychenko, A., and V. Prylipko. "The Physical Properties of Bean Common Mosaic Virus Distributed in Ukraine." Mikrobiolohichnyi Zhurnal 82, no. 3 (June 17, 2020): 65–70. http://dx.doi.org/10.15407/microbiolj82.03.065.
Full textArli-Sokmen, Miray, Ilyas Deligoz, and Nazli Dide Kutluk-Yilmaz. "Characterization of Bean common mosaic virus and Bean common mosaic necrosis virus isolates in common bean growing areas in Turkey." European Journal of Plant Pathology 146, no. 1 (February 16, 2016): 1–16. http://dx.doi.org/10.1007/s10658-016-0886-x.
Full textPark, S. J., and T. Rupert. "AC ELK common bean." Canadian Journal of Plant Science 79, no. 1 (January 1, 1999): 105–6. http://dx.doi.org/10.4141/p98-018.
Full textPark, S. J., and J. C. Tu. "AC Litekid common bean." Canadian Journal of Plant Science 76, no. 1 (January 1, 1996): 147–48. http://dx.doi.org/10.4141/cjps96-028.
Full textBabovic, M., A. Bulajic, G. DelibaÅ¡ic, S. Milijic, and D. Todorovic. "ROLE OF BEAN SEED IN TRANSMITTING BEAN COMMON MOSAIC VIRUS AND CUCUMBER MOSAIC VIRUS." Acta Horticulturae, no. 462 (December 1997): 253–58. http://dx.doi.org/10.17660/actahortic.1997.462.36.
Full textSilbernagel, M. J. "Tanzanian Strain of Bean Common Mosaic Virus." Plant Disease 70, no. 9 (1986): 839. http://dx.doi.org/10.1094/pd-70-839.
Full textDissertations / Theses on the topic "Bean common mosaic virus"
Millar, Austin Walter. "Relationships between pathotypes of bean common mosaic virus." Thesis, Queen's University Belfast, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334484.
Full textMukoko, Olivia Zvinofa. "Breeding beans (Phaseolus vulgaris L.) for resistance to bean common mosaic virus in Zimbabwe." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240145.
Full textJimenez, Garcia Emilio. "ETIOLOGY, PATHOLOGY AND CHARACTERIZATION OF VIRUSES FROM BEANS GROWING IN THE SONORA DESERT OF MEXICO (COWPEA, CHLOROTIC MOTTLE)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187907.
Full textMasli, Aryananda. "Search for restriction fragment length polymorphism of Phaseolus vulgaris in relation to the immune gene to bean common mosaic virus." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc798405/.
Full textCândida, Daniella Vieira. "Caracterização de um isolado de Bean rugose mosaic virus e busca por fontes de resistência em Phaseolus vulgaris." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7295.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-10T12:54:49Z (GMT) No. of bitstreams: 2 Tese - Daniella Vieira Cândida - 2017.pdf: 1821838 bytes, checksum: a4d863f3de465899a5c2160c17565020 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-05-10T12:54:49Z (GMT). No. of bitstreams: 2 Tese - Daniella Vieira Cândida - 2017.pdf: 1821838 bytes, checksum: a4d863f3de465899a5c2160c17565020 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-31
Abstract: In 2013, common bean plants of the cultivar Pérola were found in an experimental field belonging to Embrapa Arroz e Feijão Lat. 16 ° 28 '00 "(S); Long. 49 ° 17 '00 "(W); (GO) presenting leaf distortion, mosaic and blistering. The sample analysis by electron microscopy detected the presence of typical Comovirus genus viral particles, thus, the identification of the virus species through sequencing became essential and the search for control alternatives, due to the damage potential of Bean rugose mosaic virus (BRMV) to bean production fields. Therefore, the present work had as objectives: (1) the molecular characterization of BRMV-GO, an isolate from common bean and (2) the search for bean accessions resistant to this viral species. For germplasm selection, 172 accessions were analyzed by means of mechanical inoculation and visualization of symptoms at 5, 21 and 30 days after inoculation. The range of hosts was analyzed by inoculation of 15 typical indicator species. Soya plants (Cv. Savana, Cv. Cristalina, Cv. Doko and Cv. Conquista) and pea (Cv. Mikado and Cv. Triofin) were also analyzed for reactions to BRMV-GO. Leaves of the infected plants were used for detection of BRMV-GO through RT-PCR. Of the 172 analyzed accessions, 168 behaved as susceptible, 3 accessions: BGF0011750 (cv. Mulatinho), BGF0000880 (cv. Rico 23) and BGF0001083 (cv Rico 23) reacted to BRMV-GO with vein and petioles necrosis followed by death; 1 access, BGF0003174 cv. IPA5047, showed a hypersensitivity reaction. The two species of the indicator Chenopodium amaranticolor and C. quinoa reacted with local necrotic lesions and no systemic infection confirmed by RT-PCR. Soybean plants reacted as susceptible and all pea plants showed tip burning. For molecular characterization, complete genome sequencing was performed by Sanger method using the primer walking strategy, the 5 'and 3' ends were obtained by RACE method. Genome sizes were 5906 nucleotides with a 1856 amino acid polyprotein for RNA 1 and 3688 nucleotides with a polypeptide of 1096 amino acids for RNA 2. The nucleotide identity between BRMV-GO and BRMV-Paraná isolates was 92.7% for RNA 1 and 90.5% for RNA 2. The highest percentage of identity obtained by amino acids sequence alignment of the polymerase (RdRp) and the capsid protein (CP) was 63% (RdRp) and 66% (CPs) with Bean pod mottle virus (BPMV), however, the ICTV delimits 80% (RdRp) and 75% (CP) identity to be part of the Comovirus genus, however, these results agree with the results obtained in another work with a Paraná isolate, corroborating that BRMV is a distinct species among this genus. Phylogenetic analysis of regions RdRp and CPs showed that BRMV-GO and BRMV-Paraná do not have significant differences and revealed higher indexes of identity with BPMV, both for RNA 1 and RNA 2. The complete sequences of RNA 1 and RNA 2 were deposited on Genbank under accession numbers KY622124, KY622125, respectively.
Resumo: Em 2013, plantas de feijão-comum da cultivar Pérola foram observadas em um campo experimental da Embrapa Arroz e Feijão Lat. 16° 28’ 00”(S); Long. 49° 17’ 00”(W); (GO) apresentando deformação foliar, mosaico em desenho e bolhosidade. A análise das amostras por microscopia eletrônica detectou a presença de partículas virais típicas do gênero Comovirus, sendo assim necessária a identificação da espécie do vírus através de sequenciamento e a busca por alternativas para o controle, devido ao potencial de dano da espécie Bean rugose mosaic virus (BRMV) para a cultura do feijão. Por isso, o presente trabalho teve como objetivos: (1) a caracterização molecular do isolado BRMV-GO, proveniente de feijoeiro e (2) a busca por acessos de feijoeiro resistentes à essa espécie viral. Para a seleção de germoplasma, 172 acessos foram analisados por meio de inoculação mecânica e visualização dos sintomas aos 5, 21 e 30 dias após a inoculação. A gama de hospedeiras foi analisada mediante inoculação de 15 espécies indicadoras típicas. Plantas de soja (cv. Savana, cv. Cristalina, cv. Doko e cv. Conquista) e ervilha (cv. Mikado e cv. Triofin) também foram analisadas quanto à reação ao BRMV-GO. Folhas das plantas infectadas foram usadas para detecção de BRMV-GO via RT-PCR. Dos 172 acessos analisados, 168 se comportaram como suscetíveis, 3 acessos: BGF0011750 (cv. Mulatinho), BGF0000880 (cv. Rico 23) e BGF0001083 (cv. Rico 23) reagiram ao BRMV-GO com necroses nas nervuras e pecíolos seguida de morte; 1 acesso, BGF0003174 cv. IPA5047, apresentou reação de hipersensibilidade. As duas espécies de indicadoras Chenopodium amaranticolor e C. quinoa reagiram com lesões locais necróticas não ocorrendo infecção sistêmica confirmada por meio de RT-PCR. As plantas de soja foram suscetíveis e todas as plantas de ervilha apresentaram queima do topo. Para a caracterização molecular, o sequenciamento completo do genoma foi realizado pelo método de Sanger usando a estratégia primer walking, as extremidades 5’ e 3’ foram obtidas pelo método RACE. Os tamanhos dos genomas foram de 5906 nucleotídeos com uma poliproteína de 1856 aminoácidos para RNA 1 e para RNA 2 foi de 3688 nucleotídeos com uma poliproteína de 1096 aminoácidos. A identidade de nucleotídeos entre os isolados BRMV-GO e BRMV-Paraná foi de 92,7 % para RNA 1 e 90,5% para RNA 2. A maior porcentagem de identidade obtida através do alinhamento de sequências de aminoácidos da polimerase (RdRp) e da proteína do capsídeo (CP) foi de 63% (RdRp) e 66% (CPs) com Bean pod mottle virus (BPMV), entretanto, o ICTV delimita para membros do gênero Comovirus uma identidade de 75% para aminoácidos (CPs) e 80% para a RdRp, no entanto, esses resultados estão de acordo com os resultados obtidos em outro trabalho com um isolado do Paraná, corroborando que BRMV é uma espécie distinta dentro do gênero. As análises filogenéticas das regiões RdRp e CPs mostraram que BRMV-GO e BRMV-Paraná não possuem diferenças significativas e revelou maiores índices de identidade com BPMV, tanto para o RNA 1 como para o RNA 2. As sequências completas do RNA 1 e RNA 2 foram depositadas no Genbank com os números de acesso KY622124, KY622125, respectivamente.
Beck, Amanda Louise. "Characterization of Pea Seed-Borne Mosaic Virus, Efficacy of Foliar Applications for Common Bacterial Blight Management in Dry Beans and Impact of Common Bacterial Blight on Prostrate and Upright Beans." Diss., North Dakota State University, 2018. https://hdl.handle.net/10365/28845.
Full textOthman, Rofina Yasmin. "Molecular studies on Southern Bean Mosaic virus." Thesis, University of East Anglia, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359327.
Full textBrisco, M. "Disassembly and gene expression of southern bean mosaic virus." Thesis, University of Liverpool, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381331.
Full textOliveira, Athos Silva de. "Bean necrotic mosaic virus : um novo e distinto tospovírus brasileiro." reponame:Repositório Institucional da UnB, 2011. http://repositorio.unb.br/handle/10482/8583.
Full textSubmitted by Rafael Barcelos Santos (rafabarcelosdf@hotmail.com) on 2011-06-21T20:10:44Z No. of bitstreams: 1 2011_Athos Silva de Oliveira.pdf: 1005468 bytes, checksum: 4f0942fa66ae15543a3e4bb01c8f944f (MD5)
Approved for entry into archive by Eveline Gonçalves(eveline@bce.unb.br) on 2011-06-22T13:03:29Z (GMT) No. of bitstreams: 1 2011_Athos Silva de Oliveira.pdf: 1005468 bytes, checksum: 4f0942fa66ae15543a3e4bb01c8f944f (MD5)
Made available in DSpace on 2011-06-22T13:03:29Z (GMT). No. of bitstreams: 1 2011_Athos Silva de Oliveira.pdf: 1005468 bytes, checksum: 4f0942fa66ae15543a3e4bb01c8f944f (MD5)
Os tospovírus (família Bunyaviridae) são fitopatógenos que possuem genoma de RNA fita simples tripartido, denominados S (Small), M (Medium) e L (Large). Os dois primeiros possuem polaridade ambisenso e o último polaridade negativa. São vírus envelopados e transmitidos por tripes, insetos da ordem Thysanoptera, de maneira circulativa e propagativa. Além disso, acarretam significantes perdas na produção e qualidade de vegetais de interesse econômico em diversas partes do mundo. Neste trabalho um novo e distinto tospovírus foi isolado em plantas de feijão apresentando mosaico com áreas necróticas. Após experimentos de caráter biológico, sorológico e molecular, este foi caracterizado e nomeado tentativamente de Bean necrotic mosaic virus (BeNMV). No processo de caracterização biológica o BeNMV apresentou um estreito espectro de hospedeiros, replicando-se sistemicamente somente em três plantas indicadoras (Datura stramonium L, Physalis pubescens L. e Phaseolus vulgaris L. cv. Santana) após transmissão por inoculação mecânica. Diferentemente do esperado, os sintomas visualizados no campo não foram reproduzidos em Phaseolus vulgaris em casa de vegetação. BeNMV mostrou-se sorologicamente diferente quando comparado com outras espécies brasileiras em ensaio de diferenciação sorológica realizado após produção de anticorpo policlonal anti-BeNMV. Entretanto, uma fraca reação cruzada foi observada entre Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV) e este novo tospovírus. Na caracterização molecular duas proteínas estruturais foram elucidadas, o precursor das glicoproteínas do envelope Gn e Gc e a RNA polimerase dependente de RNA ou proteína L. Ambas apresentaram o maior tamanho entre as já caracterizadas, tendo 1141aa e 2932aa, respectivamente. Também, apresentaram uma baixa identidade com as demais, indicando, após estudos filogenéticos, a descoberta de uma provável nova ramificação evolutiva do gênero Tospovírus. Curiosamente, talvez por suas características intrínsecas e significativamente divergentes quando comparado as demais espécies do gênero, ainda não foi possível caracterizar a proteína estrutural do nucleocapsídeo (N) viral. Trabalhos estão em andamento para concluir a caracterização deste novo e distinto tospovírus. _________________________________________________________________________________________ ABSTRACT
Tospoviruses (family Bunyaviridae) are plant-infecting pathogens with a tripartite RNA genome, named S (Small), M (Medium) and L (Large). The latter has a negative polarity, while the other two have ambisense polarity. These viruses have enveloped particles and are transmitted by thrips insects (order Thysanoptera) in a circulative-propagative manner. Moreover, tospoviruses cause significant quality and yielding losses to economically important cultures worldwide. In this study a new and distinct tospovirus was isolated from bean plants (Phaseolus vulgaris L.) showing necrotic mosaic symptoms. After biological, serological and molecular assays, the new virus was characterized and tentatively named Bean necrotic mosaic virus (BeNMV). BeNMV showed a narrow host-range, presenting systemic infection, after mechanical inoculation, on three different indicator host-species (Datura stramonium L,. Physalis Pubescens L. and Phaseolus vulgaris L., cv. Santana). Alternate from what could be expected, field-observed symptoms were not reproducible on greenhouse grown beans. As demonstrated in serological differentiation assays utilizing specific polyclonal anti-sera, BeNMV was distinct from other known tospoviruses common in Brazil. Weak cross-reaction was detected between Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV) and the new tospovirus. Two viral structural proteins were resolved, being the largest ones known among the tospoviruses so far - the glycoprotein precursor of Gn and Gc envelope proteins and the RNA-dependent RNA polymerase (L protein) with 1141aa and 2932aa, respectively. Both proteins showed little identity with available sequences from other tospovirus species in phylogeny assays, indicating that BeNMV constitutes a new evolutionary branch in the genus Tospovirus. Due to BeNMV's discrete genome coding and significant divergence from other tospovirus species, the nucleocapsid structural protein (N) could not be characterized. Further efforts are being made to achieve complete characterization of this new and distinct tospovirus.
Urquiza, Gloria Patricia Castillo. "Caracterização de um isolado do Bean rugose mosaic virus (BRMV)." Universidade Federal de Viçosa, 2004. http://www.locus.ufv.br/handle/123456789/10179.
Full textMade available in DSpace on 2017-04-28T10:50:51Z (GMT). No. of bitstreams: 1 texto completo.pdf: 293374 bytes, checksum: 3cac7991cb8c86d500d4d51179490aa4 (MD5) Previous issue date: 2004-02-27
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Plantas de feijão-vagem do cultivar Novirex apresentando sintomas de mosaico e enrolamento de vagens, sem deformação foliar evidente, foram coletadas em 2002 no município de Cordisburgo, MG. Estudos anteriores de microscopia eletrônica, eletroforese da proteína e do RNA viral e sorologia identificaram o isolado como o comovírus Bean rugose mosaic virus (BRMV). Neste trabalho deu-se prosseguimento à caracterização do isolado, por meio de análises em laboratório e casa de vegetação envolvendo produção e avaliação de anti- soro policlonal, determinação da gama de hospedeiros, estudo da transmissão do vírus por besouros crisomelídeos e avaliação de perdas em feijoeiro como resultado de infecção isolada ou em conjunto com o potyvírus Bean common mosaic virus (BCMV). O procedimento adotado para purificação possibilitou a obtenção de vírus purificado em rendimento satisfatório para a obtenção de anti-soro. A titulação dos anti-soros obtidos foi realizada por ELISA indireto, obtendo-se reações positivas com a diluição máxima testada (1:70.000), e nenhuma reação com extrato de planta sadia. Das 22 espécies vegetais testadas, Chenopodium quinoa apresentou inicialmente lesões locais cloróticas e posteriormente infecção sistêmica com mosaico e distorção foliar. Nos cultivares de feijão e soja observou-se sintomas de mosaico e bolhosidade, em conformidade com os resultados esperados para o BRMV. O isolado de BRMV foi transmitido pelo besouro crisomelídeo Cerotoma arcuata a uma taxa de 33,3%. Este isolado foi inoculado em plantas de feijoeiro ‘Ouro Negro’ e de feijão-vagem ‘Novirex’, levando a uma redução do peso de vagens por planta de 44,6% e 65,7%, respectivamente. O Bean common mosaic virus (BCMV) ocasionou porcentagens de redução de peso de vagens menores em ‘Novirex’ (13,1%) em comparação a ‘Ouro Negro’ (50,4%). Quando o BRMV foi inoculado inicialmente, seguido do BCMV, verificou-se redução do peso de vagens por planta de até 69,3% para ‘Novirex’ e de 91,5% para ‘Ouro Negro’. Não se observou diferença significativa em peso ou número de vagens por planta quando estas foram inoculadas seqüencialmente com o BCMV seguido do BRMV.
Bean plants of the cultivar Novirex, showing an atypical pod curling symptom without mosaic or leaf distortion, were collected in 2002 at Cordisburgo, MG. Previous studies involving electron microscopy and electrophoretic analysis of viral protein and RNA identified the isolate as the comovirus Bean rugose mosaic virus (BRMV). The present work continued the characterization of the isolate, and included its purification and production of a polyclonal antiserum, determination of a partial host range, vector transmission studies, and estimates of yield losses in beans due to single or mixed infection with the potyvirus Bean common mosaic virus (BCMV). The protocol adopted for virus purification led to purified preparations with high yield, and the antisera obtained after rabbit immunization reacted with the maximum dilution tested (1:70.000) in indirect ELISA, without any reactions with sap from healthy plants. Out of the 22 plant species tested as hosts, Chenopodium quinoa reacted with chlorotic local lesions which evolved to mosaic and leaf distortion in non-inoculated leaves. Bean and soybean cultivars reacted with mosaic of varied intensities, as expected for BRMV. The isolate was transmitted by Ceratoma arcuata to 33,3% of the inoculated plants. Upon inoculation onto ‘Ouro Negro’ and ‘Novirex’ beans, the total weight of pods per plant was reduced by 44,6% and 65,7%, respectively. Single infection by BCMV led to a smaller reduction of pod weight in ‘Novirex’ (13,1%) compared to ‘Ouro Negro’ (50,4%). When BRMV was inoculated first, followed by BCMV, total pod weight was reduced by up to 69,3% in ‘Novirex’ and 91,5% in ‘Ouro Negro’. No statistically significant differences were observed in total weight or number of pods per plant after inoculation with BCMV followed by BRMV.
Dissertação importada do Alexandria
Books on the topic "Bean common mosaic virus"
Forster, Robert L. Bean common mosaic virus. [Moscow, Idaho]: University of Idaho Cooperative Extension Service, 1991.
Find full textDonovan, Georgina Marie. Characterisation of pathotypes of bean common mosaic virus (BCMV). Birmingham: University of Birmingham, 2000.
Find full textA, Walkey D. G., ed. Bean common mosaic virus and related viruses in Africa. Chatham Maritime: Natural Resources Institute, 1994.
Find full textSpence, Nicola Jane. The identification, distribution and ecology of bean common mosaic virus in Africa. Birmingham: University of Birmingham, 1992.
Find full textOthman, Rofina Yasmin. Molecular studies on southern bean mosaic virus. Norwich: University of East Anglia, 1994.
Find full textXu, Ling. Serological and molecular approaches for distinguishing bean common mosaic and bean common mosaic necrosis potyviruses and their respective pathogroups. 1995.
Find full textKrokhmal, Ludmila. Genethics of resistance to bean leaf roll virus in pea (Pisum sativum L.). 1994.
Find full textWang, Wei-Young. Production and characterization of hybridoma cell lines and a broad spectrum monoclonal antibody against bean common mosaic virus. 1985.
Find full textChang, Chin-An. Bean yellow mosaic and clover yellow vein viruses: Purification, characterization, detection and antigenic relationships of their nuclear inclusion proteins. 1986.
Find full textLux, Gretchen. Chitinase and -1,-3-glucanase activities in extracellular fluids from bean plants (Phaseolus vulgaris). 1996.
Find full textBook chapters on the topic "Bean common mosaic virus"
Kyrychenko, Angelina, Katerina Hrynchuk, Ihor Antipov, and Artur Likhanov. "Bean Common Mosaic Virus Transmission by Bean Seed cv. Chervona Shapochka." In Advances in Seed Production and Management, 587–97. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4198-8_29.
Full textMcKern, N. M., C. W. Ward, and D. D. Shukla. "Strains of bean common mosaic virus consist of at least two distinct potyviruses." In Potyvirus Taxonomy, 407–14. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-6920-9_43.
Full textMink, G. I., and M. J. Silbernagel. "Serological and biological relationships among viruses in the bean common mosaic virus subgroup." In Potyvirus Taxonomy, 397–406. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-6920-9_42.
Full textVetten, H. J., D. E. Lesemann, and E. Maiss. "Serotype A and B strains of bean common mosaic virus are two distinct potyviruses." In Potyvirus Taxonomy, 415–31. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-6920-9_44.
Full textMorales, Francisco J. "Common Bean." In Virus and Virus-like Diseases of Major Crops in Developing Countries, 425–45. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-0791-7_17.
Full textDijkstra, Jeanne, and J. A. Khan. "A proposal for a bean common mosaic subgroup of potyviruses." In Potyvirus Taxonomy, 389–95. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-6920-9_41.
Full textZhang, Chunquan, Steven A. Whitham, and John H. Hill. "Virus-Induced Gene Silencing in Soybean and Common Bean." In Methods in Molecular Biology, 149–56. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-278-0_11.
Full textNakahara, Kenji S., Kei Nishino, and Ichiro Uyeda. "Construction of Infectious cDNA Clones Derived from the Potyviruses Clover Yellow Vein Virus and Bean Yellow Mosaic Virus." In Methods in Molecular Biology, 219–27. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1743-3_16.
Full textStaniulis, J. "Yield Reduction and Seed Transmission Rate of Lithuanian Isolate of Broad Bean True Mosaic Virus." In Developments in Plant Pathology, 531–33. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_118.
Full textLovisolo, O., and E. W. Kitajima. "Nomenclature and relationships of some Brazilian leguminous potyviruses related to bean common mosaic and/or passionfruit woodiness viruses." In Potyvirus Taxonomy, 307–10. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-6920-9_31.
Full textConference papers on the topic "Bean common mosaic virus"
Santana, Marcus Vinícius. "Damage ofBemisia tabacibiotype B in transgenic common bean resistant to theBean golden mosaic virus." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.113498.
Full textQuintela, Eliane Dias. "Damage of cowpea mild mottle virus and incidence ofBemisia tabacibiotype B in transgenic common bean lines resistant to bean golden mosaic virus." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.114983.
Full textChandra, Mukesh, Pallavi Somvanshi, B. N. Mishra, and Amod Tiwari. "Genetics of Yellow Mosaic Virus Resistance in Mung bean." In 2010 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2010. http://dx.doi.org/10.1109/iccic.2010.5705760.
Full textRobertson, Alison E., Forrest W. Nutter, Emmanuel Byamukama, Xin Lu, and Jana Stedman. "Soybean Mosaic Virus and Bean Pod Mottle Virus in Iowa: Occurrence, Interactions, Impact and Identification of Preplant Risk Factors." In Proceedings of the 16th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2007. http://dx.doi.org/10.31274/icm-180809-888.
Full textQin, ZuoDong, QianZhuo Mao, AiPing Ding, LeiLei Jin, WenJun Peng, ZhiYou Du, SuSu ShenTu, and JiShuang Chen. "Sequence Characterization and Molecular Detection of the 3'-Terminal Region of Bean Yellow Mosaic Virus Infecting Canna." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5515708.
Full text