Academic literature on the topic 'Beer-Lambert'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Beer-Lambert.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Beer-Lambert"
Mitschele, Jonathan. "Beer-Lambert Law." Journal of Chemical Education 73, no. 11 (November 1996): A260. http://dx.doi.org/10.1021/ed073pa260.3.
Full textCalloway, Dean. "Beer-Lambert Law." Journal of Chemical Education 74, no. 7 (July 1997): 744. http://dx.doi.org/10.1021/ed074p744.3.
Full textChangjan, Arpapong, Sathit Punchoo, and Pongkaew Udomsamuthirun. "Magnetic Attenuation in Superconducting Cylinders by Beer-Lambert Modified Model." Applied Mechanics and Materials 548-549 (April 2014): 211–15. http://dx.doi.org/10.4028/www.scientific.net/amm.548-549.211.
Full textRicci, Robert W., Mauri Ditzler, and Lisa P. Nestor. "Discovering the Beer-Lambert Law." Journal of Chemical Education 71, no. 11 (November 1994): 983. http://dx.doi.org/10.1021/ed071p983.
Full textCasasanta, Giampietro, and Roberto Garra. "Towards a Generalized Beer-Lambert Law." Fractal and Fractional 2, no. 1 (January 31, 2018): 8. http://dx.doi.org/10.3390/fractalfract2010008.
Full textRicci, Robert W., and Lisa P. Nestor. "Beer-Lambert Law (the authors reply)." Journal of Chemical Education 73, no. 11 (November 1996): A261. http://dx.doi.org/10.1021/ed073pa261.1.
Full textFearn, Tom. "Multiplicative Pre-Treatments Spoil Beer-Lambert." NIR news 27, no. 2 (March 2016): 25–26. http://dx.doi.org/10.1255/nirn.1596.
Full textKocsis, L., P. Herman, and A. Eke. "The modified Beer–Lambert law revisited." Physics in Medicine and Biology 51, no. 5 (February 15, 2006): N91—N98. http://dx.doi.org/10.1088/0031-9155/51/5/n02.
Full textCombes, Didier, Michaël Chelle, Hervé Sinoquet, and Claude Varlet-Grancher. "Evaluation of a turbid medium model to simulate light interception by walnut trees (hybrid NG38×RA and Juglans regia) and sorghum canopies (Sorghum bicolor) at three spatial scales." Functional Plant Biology 35, no. 10 (2008): 823. http://dx.doi.org/10.1071/fp08059.
Full textDong, Z., and Xi Chen Yang. "Theoretical Simulation of Temperature Field of Coaxial Powder Stream in Laser Cladding." Key Engineering Materials 392-394 (October 2008): 245–49. http://dx.doi.org/10.4028/www.scientific.net/kem.392-394.245.
Full textDissertations / Theses on the topic "Beer-Lambert"
CAVALCANTE, Mileno Tavares. "Modelo de calibração beta." Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/12128.
Full textMade available in DSpace on 2015-03-12T12:55:45Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Cavalcante_2013_Modelo de Calibração Beta.pdf: 1287396 bytes, checksum: 4e58b1ff2a09bfb84e58587aa92cd49c (MD5) Previous issue date: 2013
O presente trabalho discute o problema de calibração em química analítica no contexto de não linearidade dos dados. A hipótese principal e que a media da variável resposta está restrita ao intervalo (0; 1) e pode ser modelada por uma distribuição beta, de modo similar ao modelo de regressão beta (Ferrari e Cribari-Neto, 2004). O objetivo _e propor uma extensão do modelo de regressão beta a estudos de calibração e verificar as propriedades de seu estimador para a concentração do analítico x comparativamente aos modelos linear e quadrático, que supõe resíduos normalmente distribuídos com variância constante. Aplicações a dados reais para os modelos considerados são apresentadas.
Liu, Yang, and Ziyu Wang. "The Numerical Computation Method of Physical Quantity of Dust Concentration Based on Matlab." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-19149.
Full textLeBlanc, Serge E. "The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19781.
Full textSilva, Daniel Gustavo Mesquita da. "Secção de choque total absoluta do espalhamento de elétrons por Metanol e Etanol." Universidade Federal de Juiz de Fora (UFJF), 2009. https://repositorio.ufjf.br/jspui/handle/ufjf/4933.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-29T12:06:17Z (GMT) No. of bitstreams: 1 danielgustavomesquitadasilva.pdf: 1286713 bytes, checksum: 02c113ea7352199324c4ee67f18311bf (MD5)
Made available in DSpace on 2017-06-29T12:06:17Z (GMT). No. of bitstreams: 1 danielgustavomesquitadasilva.pdf: 1286713 bytes, checksum: 02c113ea7352199324c4ee67f18311bf (MD5) Previous issue date: 2009-04-06
Neste trabalho foram obtidas Secções de Choque Totais Absolutas (SCTA) para moléculas de Etanol e Metanol utilizando um aparelho desenvolvido no Laboratório de Espectroscopia Atômica e Molecular do DF/UFJF, que emprega a técnica de transmissão linear. As medidas foram realizadas para o Metanol e Etanol cobrindo as energias de impacto de 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 e 500 eV e também de 60 eV para o Etanol. A resolução de energia em todas as medidas foi de 0,6 eV (FWHM) e a incerteza no cálculo das SCTs foi estimada em 5%. A faixa de pressão na célula de espalhamento foi mantida entre 1 a 4mTorr. Os elétrons que sofreram processos de colisões inelásticas podem ser descriminados daqueles que não sofreram nenhum processo de interação com o alvo por um analisador cilíndrico dispersivo 127º, que tem a finalidade de selecionar os elétrons que serão detectados pelo Coletor de Faraday. Medindo a intensidade do feixe de elétrons atenuados, a SCTA pode ser obtida aplicando a Lei de Lambert Beer. Os dados foram obtidos através de um procedimento estatístico envolvendo uma série de 4 a 7 sessões de medidas, os valores obtidos foram utilizados para encontrar a SCT para uma determinada energia definida. Além das medidas experimentais, nós determinamos SCT utilizando a Regra da Aditividade. Nós também avaliamos nossos dados experimentais usando uma fórmula de dois parâmetros (Curva de Born) para cada gás. Nossos dados experimentais concordam com a maioria dos dados publicados na literatura. Não existem dados reportados na literatura de SCT para a molécula do Etanol (C2H5OH).
We have measured the absolute Total Cross Section (TCS) for methanol and ethanol molecules using an apparatus manufactured at the Molecular Spectroscopy Laboratory at DF/UFJF, which employ the linear transmission technique. The experimental data were taken at incident electron energies of 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 and 500 eV for methanol and ethanol and also of 60 eV for ethanol. The energy resolution in all measurements was 0,6 eV (FWHM) and the overall systematic uncertainty at the TCS were evaluated to be less than 5%. The pressure range in the scattering cell was chosen between 1 and 4mTorr. Those electrons which passed the exit orifice of the chamber were discriminated with a 127o cylindrical energy selector coupled with an entrance set of electrostatic lenses and detected by a Faraday cup. Measuring the attenuation of intensity of the projectile-particle beam transmitted through the target volume, the absolute TCS for a given impact energy was derived from the Beer-Lambert law. The measurements were carried out for a given energy in a series of alt least 4 runs, each one taking at least 7 values and an averaging procedure was applied to derive the final total cross section at a particular energy. Besides the experimental measurements, we have additionally determined TCS using the Additivity Rule. We have also evaluated our experimental data using a fitting procedure with the Born-like formula containing two parameters for each gas. Our experimental data are in good agreement with the majority of previous measurements published in the literature. There are no previous reports of experimental electron scattering Total Cross Section C2H5OH in the literature.
Mohammad, Penaz Parveen Sultana. "Quantitative Measurement of Cerebral Hemodynamics During Activation of Auditory Cortex With Single- and Multi-Distance Near Infrared Spectroscopy." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7698.
Full textRamaglia, Amadasi Roberto. "La spettroscopia funzionale nel vicino infrarosso: principi fisici e applicazioni." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19761/.
Full textAlfeeli, Bassam. "Miniature gas sensing device based on near-infrared spectroscopy." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/35911.
Full textMaster of Science
Fuente, Herraiz David. "Contribution to the modelling of the light field distribution within Synechocystis sp. PCC 6803 cultures and its influence on cellular photosynthesis processes." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/106362.
Full textThe present doctoral thesis, entitled "Contribution to the modelling of the light field distribution within Synechocystis sp PCC 6803 cultures and its influence on cellular photosynthesis processes", includes several works whose objective is to advance in the understanding of the light distribution in cyanobacterial cultures and in the effects of light on the photosynthetic mechanisms of these microorganisms. It is, ultimately, another step towards the integration of mathematical models on photosynthesis at the cellular level and at the scale of culture. First, to understand how a culture of photosynthetic bacteria behaves, it is essential to predict the distribution of the light field along the bioreactor profile, both at the level of total intensity and with respect to its photon flux distribution. The distribution of wavelengths present in the medium is important since many processes of photosynthesis are regulated by certain wavelengths and are therefore modulated by the spectral distribution - the colour - of the light. Taking advantage of the inherent optical properties of the culture, a mathematical model based on the self-consistent field concept was developed. This algorithm, named in the corresponding publication as Auto-consistent Field Approximation Algorithm (AFA), provides an estimation of the light field, including the spectral evolution thereof along the optical path-length, for acclimated cultures to different radiation values. This research was published in the journal Algal Research through the article entitled "Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors", in which the algorithm is validated with experimental data of two strains of study of the cyanobacterium Synechocystis. Although the results were satisfactory, the use of the Lambert-Beer Law with a constant attenuation value, cannot correctly model the part of the light field with less intensity, where the attenuation coefficient ceases to be constant and the behaviour deviates from the exponential. Therefore, it was decided to model the light field with a function that generalizes the exponential case through the use of fractional calculus. A Mittag-Leffler function was used that fulfilled the formal requirements and offered a better data fit than that obtained with the Lambert-Beer law. As a remarkable finding, it was determined that the value of this parameter, which characterises the Mittag-Leffler function, was the same for the empirical data of both studied strains. This work was published in the contribution called "Estimation of the light field in photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions" in the journal Journal of Quantitative Spectroscopy & Radiative Transfer. Thereafter we proceeded to use both research works to calculate the light field within Synechocystis cultures and relate it to its maximum productivity. Specifically, it has been studied, as an indicator of the performance of photosynthesis, the production of oxygen and the associated respiratory mechanisms under different light intensities. This research is in its final phase and the writing of the article is being finalised to submit it to a scientific journal soon. This manuscript is entitled "Experimental characterization of Synechocystis sp. PCC 6803 cultures productivity up on light conditions". Finally, a fourth contribution entitled "Individual pigment contribution to overall in vivo absorption in Synechocystis sp. PCC 6803 cells" is under development. This research studies the amount of light absorbed by Synechocystis chromophores according to the type of employed illumination and calculates the concentration of pigments present in the cell.
La present tesi doctoral, titulada "Contribution to the modelling of the light field distribution within Synechocystis sp. PCC 6803 cultures and its influence on cellular photosynthesis processes", engloba diversos treballs l'objectiu dels quals és avançar en la compressió de la distribució lumínica en cultius de cianobacteris i en els efectes de la llum sobre els mecanismes fotosintètics d'aquests microorganismes. Llavors, es tracta en definitiva d'un altre pas cap a la integració de models matemàtics sobre la fotosíntesi a nivell cel·lular i a escala de cultiu. En primer lloc, per a comprendre com es comporta un cultiu de bacteris fotosintètics, és fonamental predir la distribució del camp de llum al llarg del perfil del bioreactor, tant a nivell d'intensitat total, com pel que fa a la seua distribució de flux de fotons. La distribució de longituds d'ona present en el medi és important ja que molts processos de la fotosíntesi estan regulats per certes longituds d'ona i, per tant, estan modulats per la distribució espectral - el color - de la llum. Aprofitant les propietats inherents òptiques del cultiu, es va desenvolupar un model matemàtic basat en el concepte de camp auto-consistent. Aquest algoritme, batejat en la corresponent publicació com Auto-consistent Field Approximation Algorithm (AFA), proporciona una predicció del camp lumínic, incloent l'evolució espectral del mateix al llarg del camí òptic, per a cultius aclimatats a diferents valors de radiació. Aquesta investigació es va publicar a la revista Algal Research mitjançant l'article titulat "Light distribution and espectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors", en què es valida l'algoritme amb dades experimentals de dues soques d'estudi de la cianobacteri Synechocystis. Si bé els resultats van ser satisfactoris, l'ús de la llei de Lambert-Beer amb un valor constant d'atenuació no permet modelitzar la part del camp de llum amb menys intensitat, on el coeficient d'atenuació deixa de ser constant i el comportament es desvia del exponencial. Per això, es va decidir modelitzar el camp de llum amb una funció que generalitza el cas exponencial mitjançant l'ús de càlcul fraccionari. Es va emprar una funció de Mittag-Leffler que complia amb els requisits formals i oferia un ajust de les dades millor a l'obtingut mitjançant la llei de Lambert-Beer. Com una troballa notable, es va determinar que el valor d'aquest paràmetre, que caracteritza la funció de Mittag-Leffler, era el mateix per a les dades empíriques de les dues soques estudiades. Aquest treball es va publicar en la contribució anomenada "Estimation of the light field inside Photosynthetic microorganisme cultures through Mittag-Leffler functions at depleted light conditions" a la revista Journal of Quantitative Spectroscopy & Radiative Transfer. Després, es va procedir a utilitzar sengles treballs d'investigació per calcular el camp de llum en un cultiu de Synechocystis i relacionar-lo amb la seua productivitat màxima. En concret s'ha estudiat, com a indicador del rendiment de la fotosíntesi, la producció d'oxigen i els mecanismes respiratoris associats a diferents intensitats de llum. Aquesta investigació està en la seua fase final i s'està ultimant l'escriptura de l'article per enviar-lo a una revista científica pròximament. Dit manuscrit es titula "Experimental characterisation of Synechocystis sp. PCC 6803 cultures productivity up on light conditions". Finalment, s'està desenvolupant una quarta contribució titulada "Individual pigment contribution to overall in vivo absorption in Synechocystis sp. PCC 6803 cells". Aquesta recerca estudia la quantitat de llum absorbida pels cromòfors de Synechocystis en funció del tipus d'il·luminació utilitzada i calcula la concentració de pigments presents en la cèl·lula.
Fuente Herraiz, D. (2018). Contribution to the modelling of the light field distribution within Synechocystis sp. PCC 6803 cultures and its influence on cellular photosynthesis processes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106362
TESIS
Byeon, Joong-Hyeok. "ULTRASHORT LASER PULSE PROPAGATION IN WATER." 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2008-08-60.
Full textΜανουσίδης, Ιωάννης. "Μελέτη της απορρόφησης του φωτός από το ανθρώπινο δέρμα με σκοπό τη μέτρηση βιολογικών συντελεστών." Thesis, 2009. http://nemertes.lis.upatras.gr/jspui/handle/10889/2550.
Full textOver recent years, non-invasive methods of diagnosis and treatment are gaining ground against the traditional invasive methods. In this thesis, an integrated review of the transfer of optical radiation into human skin and primarily light absorption through human skin is presented, aiming at measuring biological information, such as concentrations of certain substances in the human body, whose calculation can lead to useful diagnostic conclusions. The method of Pulse Oximetry, which is widely used for monitoring arterial oxygen saturation and heart rate of a patient, is also presented. By measuring the absorption of light at two different wavelengths, one red (660 nm) and one near-infrared (940 nm), and isolating its AC component, which is a result of the variations in the volume of arterial blood, we can calculate the oxygen saturation using the Beer-Lambert law, by estimating the concentrations of oxyhemoglobin and reduced hemoglobin. Moreover, the implementation of a single chip portable pulse oximeter using the ultra low power capability of the MSP430 is demonstrated.
Book chapters on the topic "Beer-Lambert"
Arndt, T. "Lambert-Beer-Gesetz." In Springer Reference Medizin, 1432–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_1822.
Full textArndt, T. "Lambert-Beer-Gesetz." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_1822-1.
Full textGooch, Jan W. "Beer-Bouguer Law (Beer-Lambert Law)." In Encyclopedic Dictionary of Polymers, 72. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1178.
Full textRodger, Alison. "Beer-Lambert Law Derivation." In Encyclopedia of Biophysics, 184–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_783.
Full textRodger, Alison. "Concentration Determination Using Beer-Lambert Law." In Encyclopedia of Biophysics, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_775-1.
Full textRodger, Alison. "Concentration Determination Using Beer-Lambert Law." In Encyclopedia of Biophysics, 360–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_775.
Full textRodger, Alison. "Protein Concentration Determination Using Dyes and Beer-Lambert Law." In Encyclopedia of Biophysics, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_774-1.
Full textRodger, Alison. "Absorption Spectroscopy, the Beer-Lambert Law, and Transition Polarizations." In Encyclopedia of Biophysics, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_782-1.
Full textRodger, Alison. "Protein Concentration Determination Using Dyes and Beer-Lambert Law." In Encyclopedia of Biophysics, 1965–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_774.
Full textPisano, Antonio. "Light, Air Pollution, and Pulse Oximetry: The Beer-Lambert Law." In Physics for Anesthesiologists, 117–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57330-4_13.
Full textConference papers on the topic "Beer-Lambert"
Baker, Wesley B., Ashwin B. Parthasarathy, David R. Busch, Rickson C. Mesquita, Joel H. Greenberg, and A. G. Yodh. "Modified Beer-Lambert law for blood flow." In SPIE BiOS, edited by Bruce J. Tromberg, Arjun G. Yodh, Eva M. Sevick-Muraca, and Robert R. Alfano. SPIE, 2015. http://dx.doi.org/10.1117/12.2080185.
Full textDicaire, Isabelle, Sanghoon Chin, and Luc Thévenaz. "Structural slow light can enhance Beer-Lambert absorption." In Slow and Fast Light. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sl.2011.slwc2.
Full textAllen, Euan J., Javier Sabines-Chesterking, Patrick M. Birchall, Alex McMillan, Siddarth K. Joshi, and Jonathan C. F. Matthews. "Quantum Sensing of Absorbance and the Beer-Lambert Law." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872681.
Full textAllen, Euan J., Javier Sabines-Chesterking, Patrick M. Birchall, Siddarth K. Joshi, Alex McMillan, and Jonathan C. F. Matthews. "Quantum Sensing of Absorbance and the Beer-Lambert Law." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.m5a.28.
Full textChin, S., I. Dicaire, J. C. Beugnot, S. F. Mafang, M. G. Herraez, and Luc Thévenaz. "Material slow light does not enhance Beer-Lambert absorption." In Slow and Fast Light. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/sl.2009.sma3.
Full textSinko, John E., Benjamin I. Oh, Hans-Albert Eckel, and Stefan Scharring. "The Bouguer-Lambert-Beer Absorption Law and Non-Planar Geometries." In BEAMED ENERGY PROPULSION: Seventh International Symposium. AIP, 2011. http://dx.doi.org/10.1063/1.3657031.
Full textXiong, Jiaying, Peixian Zhuang, and Yanan Zhang. "An Efficient Underwater Image Enhancement Model With Extensive Beer-Lambert Law." In 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. http://dx.doi.org/10.1109/icip40778.2020.9191131.
Full textCaredda, Charly, Laurent Mahieu-Williame, Raphaël Sablong, Michaël Sdika, Jacques Guyotat, and Bruno Montcel. "Pixel-wise modified Beer-Lambert model for intraoperative functional brain mapping." In Preclinical and Clinical Optical Diagnostics, edited by J. Quincy Brown and Ton G. van Leeuwen. SPIE, 2019. http://dx.doi.org/10.1117/12.2527045.
Full textZhang, Yan, Shisheng Zhou, Bing Feng, and Congjun Cao. "Color matching model in view of Lambert-Beer law in gravure." In 2014 IEEE 9th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2014. http://dx.doi.org/10.1109/iciea.2014.6931482.
Full textSellerer, Thorsten, Sebastian Ehn, Korbinian Mechlem, Franz Pfeiffer, Julia Herzen, and Peter B. Noel. "A polychromatic adaption of the Beer-Lambert model for spectral decomposition." In SPIE Medical Imaging, edited by Thomas G. Flohr, Joseph Y. Lo, and Taly Gilat Schmidt. SPIE, 2017. http://dx.doi.org/10.1117/12.2255527.
Full textReports on the topic "Beer-Lambert"
Frankel, Ari. Convergence of the Beer-Lambert-Bouguer Law in Discrete Particulate Media. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1212631.
Full text