Academic literature on the topic 'Benthivore Fische'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Benthivore Fische.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Benthivore Fische"

1

Wanink, Jan, Frans Witte, and Mary Kishe-Machumu. "Dietary shift in benthivorous cichlids after the ecological changes in Lake Victoria." Animal Biology 58, no. 4 (2008): 401–17. http://dx.doi.org/10.1163/157075608x383700.

Full text
Abstract:
AbstractCichlid fishes of Lake Victoria are well known for their trophic specializations. In our study area, the sub-littoral waters of the Mwanza Gulf (Tanzania), at least 12 trophic groups coexisted in the 1970s. After the Nile perch upsurge and eutrophication in the 1980s, most cichlids disappeared from the area. During the 1990s, heavy exploitation of Nile perch reduced the abundance of this predator. Subsequently, some cichlid species, mainly zooplanktivores and small benthivores, recovered. To establish their ecological role in the changed environment, among other factors we studied their diet. Stomach contents of fish caught before and after the ecological changes were compared. The small benthivores shifted from a diet dominated by detritus and phytoplankton, supplemented with small quantities of midge larvae and zooplankton, to a diet of invertebrate preys of larger sizes. Currently, the diet includes zooplankton, midge larvae, shrimps and molluscs, and a very small amount of detritus and phytoplankton. Apparently, the recovering benthivores have a more carnivorous than a herbivorous diet. Concomitantly, the ratio of intestine length to standard length of the benthivores decreased with 30% and the average stomach fullness decreased as well. The observed dietary shifts may be due to (1) the changed availability of food types and a decline of the nutritious quality of detritus and phytoplankton due to the strong increase of cyanobacteria in the lake, (2) the decline of the former trophic specialists, and (3) the reduced water clarity. The diet of the former detritivores is currently very similar to that of the zooplanktivores. Consequently, if diet plays a role in the relatively slow recovery of the small benthivores compared to the zooplanktivores, this would only hold if they are relatively poorly adapted to their new diet.
APA, Harvard, Vancouver, ISO, and other styles
2

Martinetto, Paulina, Pablo Ribeiro, and Oscar Iribarne. "Changes in distribution and abundance of juvenile fishes in intertidal soft sediment areas dominated by the burrowing crab Chasmagnathus granulatus." Marine and Freshwater Research 58, no. 2 (2007): 194. http://dx.doi.org/10.1071/mf06079.

Full text
Abstract:
Intertidal estuarine areas located between southern Brazil and the northern Argentinean Patagonia are characterised by extended beds of the burrowing crab Chasmagnathus granulatus. Their activity leads to profound changes in the structure, quality and dynamics of sediments, which affect the entire benthic community and create a patchy distribution of resources for other species. In this study, the differences in habitat use by juvenile fishes above soft sediments inhabited by C. granulatus were evaluated. Adjacent areas with (‘crab beds’) and without crab burrows in intertidal mudflats of the Mar Chiquita Coastal Lagoon (37°32'S, 57°19'W) were sampled seasonally from 2000 to 2002. There were more fish species in crab-bed areas. Abundances of benthivorous and planktivorous fishes were also higher in crab beds during flood tide; however, during ebb tide, planktivorous fishes were more abundant outside crab-bed areas, whereas benthivores did not vary between areas. The present study demonstrated that species composition and abundance of juvenile fishes can be affected by the presence of bioturbator species such as C. granulatus.
APA, Harvard, Vancouver, ISO, and other styles
3

Johnston, T. A., A. D. Ehrman, G. L. Hamilton, B. K. Nugent, P. A. Cott, and J. M. Gunn. "Plenty of room at the bottom: niche variation and segregation in large-bodied benthivores of boreal lakes." Canadian Journal of Fisheries and Aquatic Sciences 76, no. 8 (August 2019): 1411–22. http://dx.doi.org/10.1139/cjfas-2018-0180.

Full text
Abstract:
Realized trophic niches of aquatic consumers are expected to reflect the particular abiotic and biotic conditions of the ecosystems they occupy. We examined patterns in the position, size, and shape of trophic niches of two common benthivorous fishes, white sucker (Catostomus commersonii) and lake whitefish (Coregonus clupeaformis), across boreal lakes using a stable isotope approach. In sympatry, white sucker niche positions reflected greater benthic reliance (higher δ13C) and lower trophic elevation (lower δ15N) compared with lake whitefish, and white sucker niche sizes (dispersion in δ13C–δ15N space) were also larger. Niche sizes of both species increased with maximum depth of lakes. Separation of trophic niche positions of the two species increased with increasing water clarity, but their niche sizes did not increase with increasing separation in their niche positions. White sucker occupied a niche position with slightly greater pelagic reliance and trophic elevation and had smaller trophic niches in the absence than in the presence of lake whitefish. Trophic niches of these benthivores appear to be shaped by both environmental factors and interspecific interactions.
APA, Harvard, Vancouver, ISO, and other styles
4

Konkle, Blake R., Nicholas C. Collins, and Robert L. Baker. "Use of Artificial Substrates to Estimate Prey Resources available to a Visually Feeding Benthivorous Fish." Canadian Journal of Fisheries and Aquatic Sciences 47, no. 4 (April 1, 1990): 789–93. http://dx.doi.org/10.1139/f90-091.

Full text
Abstract:
Empirically derived estimates of prey resources using conventional sampling methods are generally poor indices of actual food available to visually feeding benthivorous fish. We preferentially sampled the most active fraction of the benthos (presumably that most detectable by fish) utilizing short-term (4 d) colonization of artificial substrates, and used colonist biomass to explain temporal variation in stomach contents of bluegill sunfish (Lepomis macrochirus) in Lake Opinicon, Ontario. Simple linear regressions showed that total biomass of colonists explained 75% of the variance in the biomass of stomach contents. Independent variables using a limited taxonomic range or size range of colonists explained less variance in stomach contents. The convenience and simplicity of this methodology, and its ability to explain within-lake variation in food exploitation by visual benthivores, suggest that artificial substrate colonization could be useful for surveys of prey availability to benthivorous fishes.
APA, Harvard, Vancouver, ISO, and other styles
5

Suratno, Suratno, Muhammad Reza Cordova, and Silke Arinda. "Kandungan Merkuri dalam Ikan Konsumsi di Wilayah Bantul dan Yogyakarta." Oseanologi dan Limnologi di Indonesia 2, no. 1 (May 5, 2017): 15. http://dx.doi.org/10.14203/oldi.2017.v2i1.6.

Full text
Abstract:
<strong>Mercury Content in Commercial Fishes of Bantul Areas and Yogyakarta. </strong> Mercury Content in Commercial Fishes of Bantul Areas and Yogyakarta Fish is an important energy source for the body and has many functions for human health. Hence, the fish are highly favored for consumption by the public. However, the fish has the ability to accumulate heavy metals. One type of dangerous heavy metals and can accumulate in fish is mercury because it has high toxicity at low concentrations. The presence of contaminants from anthropogenic activities that are not processed previously, makes the fish a potential hoarder for heavy metals. This study examined the concentration of mercury in freshwater fish and saltwater fish consumed by the people of Bantul areas and Yogyakarta. Fish samples were collected on 29–30 August 2015 from Prawirotaman Market, supermarket, Embankment on the River Code, and purchased from fishermen in Depok Beach. Analysis of mercury concentrations in fish was done using mercury analyzer NIC MA-3000. The results indicated that the fish with the eating habits of benthivore and planktivore accumulated higher mercury than omninore and carnivore fish. The concentration of mercury in the fish examined does not exceed the threshold of the WHO standard, BPOM-RI, and European Union standards. However, the people need to be alert on mercury bioaccumulative properties, especially when consuming the fish having accumulated mercury continuously for a long time.
APA, Harvard, Vancouver, ISO, and other styles
6

Genin, Amatzia, Liraz Levy, Galit Sharon, Dionysios E. Raitsos, and Arik Diamant. "Rapid onsets of warming events trigger mass mortality of coral reef fish." Proceedings of the National Academy of Sciences 117, no. 41 (September 21, 2020): 25378–85. http://dx.doi.org/10.1073/pnas.2009748117.

Full text
Abstract:
Our study reveals a hitherto overlooked ecological threat of climate change. Studies of warming events in the ocean have typically focused on the events’ maximum temperature and duration as the cause of devastating disturbances in coral reefs, kelp forests, and rocky shores. In this study, however, we found that the rate of onset (Ronset), rather than the peak, was the likely trigger of mass mortality of coral reef fishes in the Red Sea. Following a steep rise in water temperature (4.2 °C in 2.5 d), thermally stressed fish belonging to dozens of species became fatally infected byStreptococcus iniae. Piscivores and benthivores were disproportionately impacted whereas zooplanktivores were spared. Mortality rates peaked 2 wk later, coinciding with a second warming event with extreme Ronset. The epizootic lasted ∼2 mo, extending beyond the warming events through the consumption of pathogen-laden carcasses by uninfected fish. The warming was widespread, with an evident decline in wind speed, barometric pressure, and latent heat flux. A reassessment of past reports suggests that steep Ronsetwas also the probable trigger of mass mortalities of wild fish elsewhere. If the ongoing increase in the frequency and intensity of marine heat waves is associated with a corresponding increase in the frequency of extreme Ronset, calamities inflicted on coral reefs by the warming oceans may extend far beyond coral bleaching.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Yiou, Steven P. Newman, William D. K. Reid, and Nicholas V. C. Polunin. "Fish stable isotope community structure of a Bahamian coral reef." Marine Biology 166, no. 12 (November 11, 2019). http://dx.doi.org/10.1007/s00227-019-3599-9.

Full text
Abstract:
Abstract Stable isotopes have provided important insight into the trophic structure and interaction in many ecosystems, but to date have scarcely been applied to the complex food webs of coral reefs. We sampled white muscle tissues from the fish species composing 80% of the biomass in the 4–512 g body mass range at Cape Eleuthera (the Bahamas) in order to examine isotopic niches characterised by δ13C and δ15N data and explore whether fish body size is a driver of trophic position based on δ15N. We found the planktivore isotopic niche was distinct from those of the other trophic guilds suggesting the unique isotopic baseline of pelagic production sources. Other trophic guilds showed some level of overlap among them especially in the δ13C value which is attributable to source omnivory. Surprising features of the isotopic niches included the benthivore Halichoeres pictus, herbivores Acanthurus coeruleus and Coryphopterus personatus and omnivore Thalassoma bifasciatum being close to the planktivore guild, while the piscivore Aulostomus maculatus came within the omnivore and herbivore ellipses. These characterisations contradicted the simple trophic categories normally assigned to these species. δ15N tended to increase with body mass in most species, and at community level, the linear δ15N–log2 body mass relationship pointing to a mean predator–prey mass ratio of 1047:1 and a relatively long food chain compared with studies in other aquatic systems. This first demonstration of a positive δ15N–body mass relationship in a coral reef fish community suggested that the Cape Eleuthera coral reef food web was likely supported by one main pathway and bigger reef fishes tended to feed at higher trophic position. Such finding is similar to other marine ecosystems (e.g. North Sea).
APA, Harvard, Vancouver, ISO, and other styles
8

Hodge, J. R., Y. Song, M. A. Wightman, A. Milkey, B. Tran, A. Štajner, A. S. Roberts, C. R. Hemingson, P. C. Wainwright, and S. A. Price. "Constraints on the Ecomorphological Convergence of Zooplanktivorous Butterflyfishes." Integrative Organismal Biology 3, no. 1 (January 1, 2021). http://dx.doi.org/10.1093/iob/obab014.

Full text
Abstract:
Synopsis Whether distantly related organisms evolve similar strategies to meet the demands of a shared ecological niche depends on their evolutionary history and the nature of form–function relationships. In fishes, the visual identification and consumption of microscopic zooplankters, selective zooplanktivory, is a distinct type of foraging often associated with a suite of morphological specializations. Previous work has identified inconsistencies in the trajectory and magnitude of morphological change following transitions to selective zooplanktivory, alluding to the diversity and importance of ancestral effects. Here we investigate whether transitions to selective zooplanktivory have influenced the morphological evolution of marine butterflyfishes (family Chaetodontidae), a group of small-prey specialists well known for several types of high-precision benthivory. Using Bayesian ancestral state estimation, we inferred the recent evolution of zooplanktivory among benthivorous ancestors that hunted small invertebrates and browsed by picking or scraping coral polyps. Traits related to the capture of prey appear to be functionally versatile, with little morphological distinction between species with benthivorous and planktivorous foraging modes. In contrast, multiple traits related to prey detection or swimming performance are evolving toward novel, zooplanktivore-specific optima. Despite a relatively short evolutionary history, general morphological indistinctiveness, and evidence of constraint on the evolution of body size, convergent evolution has closed a near significant amount of the morphological distance between zooplanktivorous species. Overall, our findings describe the extent to which the functional demands associated with selective zooplanktivory have led to generalizable morphological features among butterflyfishes and highlight the importance of ancestral effects in shaping patterns of morphological convergence.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Benthivore Fische"

1

Hellmann, Claudia. "Die Bedeutung invertebrater Prädation in Fließgewässernahrungsnetzen unter Berücksichtigung des Einflusses benthivorer Fische." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-60815.

Full text
Abstract:
Biomanipulation im Sinne einer top-down Steuerung des Nahrungsnetzes wurde in Standgewässern intensiv erforscht und wird als Mittel zur Verbesserung der Wasserqualität bzw. Verringerung der Eutrophierungserscheinungen eingesetzt. Ebenso könnte die Idee der Biomanipulation genutzt werden, um die Eutrophierung in kleinen Fließgewässern zu verringern. Eine Förderung benthischer herbivorer Schlüsselorganismen (z.B. Eintagsfliegenlarven) durch die Reduzierung des Fischfraßdruckes könnte helfen, Algenmassenentwicklungen zu vermeiden. Studien zur Biomanipulation von Nahrungsnetzen in Standgewässern zeigten allerdings eine zunehmende Entwicklung von planktischen invertebraten Räubern bei Abwesenheit planktivorer Fische. Die Bedeutung des Fraßdruckes invertebrater Räuber in fischfreien Fließgewässernahrungsnetzen ist dagegen noch unbekannt. Aufgrund von letalen und subletalen Fischeffekten könnte die Konsumtion räuberischer Invertebraten bei Fischabwesenheit so stark gefördert werden, dass das Ziel der Biomanipulation verfehlt wird. Invertebrate Räuber haben insgesamt einen relativ hohen Anteil an der Biomasse der Benthosgemeinschaft in Fließgewässernahrungsnetzen. Sie könnten somit potentiell einen ähnlichen Fraßdruck wie vertebrate Räuber (z.B. benthivore Fische) auf die unteren trophischen Ebenen ausüben. Auch der Anteil der Omnivorie ist in Fließgewässernahrungsnetzen hoch. Ziel dieser Arbeit war es deshalb, die Bedeutung invertebrater Prädation im Nahrungsnetz eines kleinen Fließgewässers (Gauernitzbach) unter Berücksichtigung der obligaten Räuber sowie des räuberischen Potentials Omnivorer abzuschätzen. Außerdem wurde der Einfluss benthivorer Fische auf die Populationsentwicklung und das Ernährungsverhalten der wichtigsten invertebraten Räuber und Omnivoren untersucht. Dazu wurde ein Bachabschnitt, der mit benthivoren Fischen (Gobio gobio, Barbatula barbatula) besetzt war, mit einem fischfreien Abschnitt über zwei Jahre verglichen. Nach der Identifizierung wichtiger Räuber- und Omnivorenarten anhand ihrer Biomasse und ihrer trophischen Positionen mittels Isotopenanalyse wurde ihr Gesamtfraßdruck abgeschätzt. Invertebrate Prädatoren im Nahrungsnetz des Gauernitzbaches waren Rhyacophila fasciata und Plectrocnemia conspersa (Trichoptera), Isoperla grammatica (Plecoptera) sowie Dugesia gonocephala (Turbellaria). Wichtige Omnivore aufgrund ihrer hohen Biomassen waren Gammarus pulex (Amphipoda) und Hydropsyche spp. (Trichoptera). Anhand eines Mischungsmodells (ISOSOURCE), das auf der Basis der stabilen Isotopensignaturen d13C und d15N die einzelnen Ressourcenanteile einer gemischten Signatur berechnet, konnte das ausgeprägte räuberische Potential der Omnivoren gezeigt werden, da sie einen hohen tierischen Anteil in der Nahrung aufwiesen (20-90 %). Im Nahrungsnetz des Gauernitzbaches waren Omnivore als Räuber damit ebenso bedeutsam wie obligat räuberische Invertebrate. Der Gesamtfraßdruck der invertebraten Räuber und Omnivoren auf die Beuteorganismen (bis 16 g TM m-2 a-1) in der Fischstrecke war höher als der Fraßdruck der benthivoren Fische (~3 g TM m-2 a-1). Dieser Unterschied lag hauptsächlich in höheren täglichen Konsumtionsraten bei ähnlich hohen Biomassen der Invertebraten begründet. Durch die Analyse der stabilen Isotope von Kohlenstoff und Stickstoff konnten die trophischen Beziehungen im Nahrungsnetz des Gauernitzbaches identifiziert werden. Dabei stellten allochthone Kohlenstoffquellen im Frühjahr und Herbst die bedeutendste Ressource für die Primärkonsumenten dar, während autochthone Ressourcen nur im Frühjahr für wenige Herbivore relevant waren. Dies spiegelte sich ebenso in der Nahrung der Omnivoren wider, die neben Organismen hauptsächlich Detritus nutzten. Ebenso zeigten die invertebraten Räuber eine deutliche Abhängigkeit vom allochthonen Kohlenstoff über die Nutzung der Primärkonsumenten. Letale Effekte der Fische auf die räuberischen und omnivoren Populationen im Gauernitzbach fanden hauptsächlich in Abhängigkeit von den bewohnten Habitaten statt. Die Pool-Arten (P. conspersa, D. gonocephala, G. pulex) entwickelten geringere Biomassen in der Fischstrecke, während die Biomassen riffle-bewohnender Invertebraten (R. fasciata, I. grammatica, Hydropsyche spp.) nicht deutlich reduziert wurden. Dabei waren allerdings meist hohe Biomassen in der Fischstrecke weniger stark ausgeprägt als in der fischfreien Strecke. Die Adulten der untersuchten Arten wurden oft stärker letal beeinflusst als die Juvenilstadien. So war die Emergenzproduktion der räuberischen Köcherfliegen und die Abundanz großer und eiertragender Weibchen von G. pulex in der Fischstrecke deutlich verringert. Subletale Effekte der Fische traten im Gauernitzbach in Abhängigkeit von den Ernährungstypen auf. Während die adulten räuberischen Köcherfliegenarten R. fasciata und P. conspersa keine negative Beeinflussung der Fitness und Größe zeigten, emergierte die omnivore Köcherfliege H. instabilis in der Fischstrecke kleiner als in der fischfreien. Außerdem unterschieden sich die Antworten der omnivoren Arten vermutlich aufgrund ihrer unterschiedlichen Lebenszyklen. G. pulex zeigte als ausschließlich aquatisch lebende Art keine subletalen Kosten (unveränderte Fitness) bei Fischanwesenheit wie dies für die omnivore merolimnische Insektenart H. instabilis beobachtet wurde. Die mittlere Fitness der Populationen (gemessen an der Eiproduktion pro Zeit- und Flächeneinheit) war für alle untersuchten invertebraten Räuber und Omnivoren bei Fischanwesenheit deutlich geringer als in der fischfreien Strecke. Für die Räuber (R. fasciata, P. conspersa) und G. pulex waren vermutlich letale Fischeffekte für den geringen Reproduktionserfolg verantwortlich. Dagegen wurde die Fitness der Population von H. instabilis durch die Kombination aus der geringeren individuellen Körpergröße (subletal) und den schwachen letalen Effekten auf die Emergenz reduziert. Der Einfluss der Fische auf die räuberischen Larven von R. fasciata und P. conspersa resultierte in einem Wechsel der Beutezusammensetzung, nicht in der Reduzierung der täglichen Fraßaktivität. Dies war vermutlich auf eine Aktivitätsänderung des Räubers R. fasciata bzw. auf die veränderte Beuteverfügbarkeit für P. conspersa unter Fischeinfluss zurückzuführen. Eine grundsätzliche Verringerung der Fraßaktivität oder der tierischen Anteile in der Nahrung der omnivoren Arten unter dem Einfluss benthivorer Fische wurde nicht festgestellt. Dagegen änderten sich die Relationen der Ressourcen Omnivorer zueinander, so konnte in der fischfreien Strecke eine flexiblere Ressourcennutzung nachgewiesen werden. Die jährliche Gesamtkonsumtion der räuberischen und omnivoren Invertebraten wurde durch die Anwesenheit der benthivoren Fische um 20-50 % reduziert, wofür hauptsächlich fischinduzierte Biomasseänderungen verantwortlich waren. In der fischfreien Strecke konnte dagegen die erhöhte Konsumtion der Invertebraten den fehlenden Fischfraßdruck mehr als kompensieren. Allerdings änderte sich die beutespezifische Konsumtion der Räuber in der fischfreien Strecke durch den verhaltensinduzierten Wechsel in der Beutezusammensetzung. Damit fand ein erhöhter Fraßdruck auf detritusfressende Arten (z.B. Diptera) statt, während die vermuteten Schlüsselarten einer potentiellen Biomanipulation (grazende Eintagsfliegen) in der fischfreien Strecke relativ unbeeinflusst blieben. Da die invertebrate Prädation in Fließgewässern sehr bedeutend sein kann, ist Biomanipulation nur unter Berücksichtigung aller Populationen räuberischer Invertebraten möglich. Nur durch Einstellung einer optimalen (relativ hohen) Biomasse geeigneter benthivorer Fischarten kann eine ausreichende Hemmung der invertebraten Räuber erreicht werden, so dass grazende Arten indirekt profitieren
Biomanipulation (top-down control of the food webs) in lakes was intensively studied and can today be regarded as an important tool for improvement of the water quality and eutrophication. Similarly, the idea of biomanipulation can be used to reduce eutrophication phenomena in streams. The enhancement of benthic herbivorous key species (e.g. mayflies) by reduction of fish predation pressure could prevent exploding benthic algae biomass. Studies dealing with trophic cascades in lakes suggested that biomass of planktic invertebrate predators is increasing in the absence of planktivorous fish. But until now the importance of invertebrate predation pressure in fishless stream food webs is hardly known. Due to lethal and sublethal fish effects the consumption of predatory invertebrates could be enhanced by the absence of fish to such an extent that biomanipulation could be off target. In general, the proportion of invertebrate predators to the biomass of the benthic community in stream food webs is relatively high. Therefore, invertebrate predation on benthic prey can be as important as vertebrate predation (e.g. by benthivorous fish). Furthermore, omnivory occurs frequently in streams. Therefore, the aim of this thesis was to assess the importance of invertebrate predation in a food web of a small stream (Gauernitzbach) including the obligatory predators as well as the predatory potential of omnivores. Furthermore, the impact of benthivorous fish on population dynamics and feeding behaviour of the most important predators and omnivores was studied. Therefore, a reach stocked with benthivorous fish (Gobio gobio, Barbatula barbatula) was compared with an upstream fishless reach over a two-year period. After identification of important predators and omnivores based on their biomass and trophic position by stable isotope analyses their total consumption was estimated. Rhyacophila fasciata and Plectrocnemia conspersa (Trichoptera), Isoperla grammatica (Plecoptera) as well as Dugesia gonocephala (Turbellaria) were the invertebrate predators in the food web of Gauernitzbach. Because of their high biomasses the most important omnivores were Gammarus pulex (Amphipoda) and Hydropsyche spp. (Trichoptera). Using a mixing model (ISOSOURCE) that estimates the proportions of single resources on a mixed signature on the basis of the stable 13C and 15N isotopes, the predatory potential of both omnivores was pronounced by a high animal food proportion (20-90%). In this stream food web the predation impact of omnivores was comparable to this of obligatory predacous invertebrates. The total invertebrate predation pressure (up to 16 g TM m-2 a-1) in the fish reach was higher than the vertebrate predation pressure (~3 g TM m-2 a-1) mainly caused by the higher daily consumption rates and similar biomass compared to fish. Using stable isotope analyses of carbon and nitrogen the trophic pathways in the food web of Gauernitzbach could be identified. The most important resources for primary consumers in spring and autumn were allochthonous carbon sources. Autochtnonous carbon sources were only utilized by a few herbivores in spring. This was also reflected in the food of omnivores which assimilated mainly detritus beside animal material. Similarly, the predators depended distinctly on the allochthonous pathway by feeding primary consumers. Lethal fish effects on the predatory and omnivorous invertebrate populations were mainly depended on their preferred habitats. Pool-dwelling species (P. conspersa, D. gonocephala, G. pulex) showed decreased biomass in the presence of fish. Contrary, the biomass of riffle-dwelling invertebrates (R. fasciata, I. grammatica, Hydropsyche spp.) was not significantly reduced in the fish reach. Thereby, the highest biomass values in the fish reach could not reach the same level as in the fishless reach. Adults of the investigated species were influenced more lethal than the young stages. Hence, the emergence production of the predatory caddisflies and the abundance of the biggest and gravid females of G. pulex were reduced in the fish reach. Sublethal fish effects existed in dependence on the feeding groups of the invertebrates in Gauernitzbach. Whereas the adult predatory caddisflies R. fasciata and P. conspersa did not show disadvantages in fitness and size, the omnivorous caddisfly H. instabilis emerged with smaller size in the fish reach than in the fishless reach. Different responses of both omnivorous species were observed because of their different life cycles. The exclusively aquatic living G. pulex was not influenced sublethal by fish as the merolimnic insect species H. instabilis. The average fitness of population (measured as egg production per unit time and space) of the studied invertebrate predators and omnivores was distinctly reduced in the fish reach compared to the fishless reach. Probably, lethal fish effects were mainly responsible for the low reproductive success of the predatory species (R. fasciata, P. conspersa) and G. pulex. In contrast, the reduction of population fitness of H. instabilis was caused by the reduced individual adult size (sublethal effect) in combination with the weak lethal effect on emergence. The impact of fish on the feeding behaviour of the predatory larvae of R. fasciata and P. conspersa resulted in a switched prey composition, whereas a reduction in the daily feeding activity was not observed. That was supposed because of changes in the activity pattern by the predator R. fasciata or the changed prey availability for P. conspersa in the fish reach. A general reduction in feeding activity or animal food proportion of the omnivores was not assessed in the presence of fish. In contrast, the relations between the resources switched to a more variable utilisation in the fishless reach. The annual total consumption of invertebrate predators and omnivores was decreased by 20-50% in the fish reach, mainly caused by fish induced biomass reduction. The missing fish consumption could be at least balanced by higher invertebrate consumption in the fishless reach. Contrary, the prey specific consumption of invertebrate predators changed by behavioural-induced switch in the prey composition between the stream reaches. Therefore, a higher predation pressure on detritus feeding species (e.g Diptera) was found in the fishless reach, but not on the supposed key species of the potential biomanipulation (e.g. grazing mayflies). Due to the high importance of invertebrate predation in stream food webs, the aim of biomanipulation can only be reached by considering the populations of predatory invertebrates. Controlling the biomass of suitable benthivorous fish to an optimum (relatively high) level could sufficiently reduce the impact of invertebrate predators leading to an indirect enhancement of grazing species
APA, Harvard, Vancouver, ISO, and other styles
2

Winkelmann, Carola. "Predation effects of benthivorous fish on stream food webs – a large scale and long term field experiment." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1219311896723-68232.

Full text
Abstract:
It is a widely accepted assumption that fish predation controls structure and functioning of aquatic food webs. In the past, however, a large part of effort was concentrated on lakes and reservoirs. Thus, the knowledge about stream ecosystems is much more rudimentary than that for lakes in this respect. The aim of this thesis, therefore, was to describe and assess the effects of fish predation in natural stream ecosystems. For that purpose a reach scale field experiment was set up using an experimental stretch with benthivorous fish and a fishless reference stretch. A wide range of effects of the fish predators on their stream invertebrates prey was studied. To discriminate between lethal and sublethal predation effects, measuring the physiological status of the organisms seemed promising. However, before it was possible to decide whether or not environmental stress, such as predation, might affect the physiological status, the internal control as well as the seasonal and species-specific variability of the energy amount stored had to be assessed. Thus, the concentration and seasonal dynamics of the major energy storage components triglycerides and glycogen were measured in two species of mayflies (Rhithrogena semicolorata and Ephemera danica) with contrasting life cycle strategies. E. danica is a burrowing, semivoltine collector-gatherer, R. semicolorata is univoltine and scrapes periphyton from stones. Although triglycerides are the major energy reserve in both species throughout the whole larval development (&gt; 84 % of total energy storage) their seasonal dynamic differed considerably. In R. semicolorata the triglyceride concentration declined during the last weeks prior to emergence in both sexes. The same pattern was found in female larvae of E. danica, but not in male E. danica. It is suggested that females use triglycerides in the last larval stages for egg maturation, which is completed in the last larval instar. In male E. danica the triglyceride concentrations remained high until emergence, presumably due to their high energy demands as adults for their swarming flights and mating. The difference in seasonal variation of triglycerides between E. danica and R. semicolorata shows the influence of environmental factors on the dynamics of storage components. E. danica lived in a very stable environment (within the substratum). Therefore the dynamic of energy storage components was optimised with respect to maximal reproduction. R. semicolorata on the other hand, suffered from hostile environmental factors such as predation or food limitation due to low periphyton biomass after leaf sprout and following light limitation in spring. Consequently, the concentration of storage components decreased during spring. One conclusion from this study was that the measurement of storage components might reveal sublethal predation effects. However, season and sex of the organisms are important factors as well and have to be considered in the sampling design. To analyse sublethal predation effects behavioural changes due to the presence of benthivorous fish were measured. Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or may even be a direct escape reaction after a predator encounter. While the control of drift activity by predators has received considerable interest from many researchers, it remains still unclear whether predators reduce or increase drift activity. Drift activity of stream invertebrates was influenced significantly by the presence or absence the two benthivorous fish species gudgeon (Gobio gobio) and stone loach (Barbatula barbatula). Contrary to previous studies gudgeon and stone loach reduced invertebrate drift density and drift activity of Baetis rhodani rather than inducing higher night-time drift. Further, species composition of the invertebrate drift differed significantly between the two stretches. A further conclusion from this study is therefore that drift is not generally a mechanism of active escape from benthos-feeding fish, as previously assumed. In addition, the reduced drift activity in the fish stretch might result in a compensation of the consumptive losses due to fish predation. Thus, in this study design the effects of fish predation on invertebrate community might be underestimated. To detect predation effects on the food web structure the reactions of the grazing mayfly Rhithrogena semicolorata and the shredding amphipod Gammarus pulex to strong predation by benthivorous fish were compared. It has been hypothesised that shredders are generally less vulnerable to fish predation and therefore less likely to be predation-controlled than grazers, because the latter are visible to the predators during their feeding on stone surfaces, while shredders may hide between leaves during foraging. Biomass of G. pulex was significantly reduced in the fish stretch while that of R. semicolorata was not. Since approximately 91 % of the annual production of G. pulex but only 12 % of R. semicolorata production was consumed by benthivorous gudgeon, the observed difference of G. pulex biomass between the fish and reference reach is likely due to a lethal predation effect. However, no sublethal predation effects such as reduced concentration of storage components (triglycerides, glycogen) or reduced reproductive success were observed for both species. Hence, in contrast to the initial hypothesis, in the studied stream the shredder was top-down-controlled, while the grazer was not. It is concluded that top-down control depends on the ecological characteristics of a specific predator-prey pair rather than on trophic guild of the prey. To assess the predation effects on the life history of merolimnic insects and its consequences on fecundity the larval development and emergence of R. semicolorata was studied. It was possible to show lethal and sublethal effects of predation by benthivorous fish (Gobio gobio, Barbatula barbatula). Predation consequently resulted in changes of larval development and population fitness. The presence of two benthivorous fish species (gudgeon and stone loach) led to slower larval development and a delayed emergence. However, no differences in the adult size and fecundity between the fish reach and the reference were observed. Nevertheless, the longer time spent in the larval phase resulted in a higher mortality and therefore in a lower mean population fitness. The presence of gudgeon alone, however, did not seem to influence larval development, growth or time of emergence and consequently fecundity. Further, strong lethal impact of gudgeon could not be detected. Thus, the population fitness measured as the product of adult density and egg number was not reduced by gudgeon alone. It is assumed that the stronger lethal impact in the combined fish experiment is caused mainly by stone loach because the proportion of mayfly consumption by stone loach to mayfly production shortly before emergence was higher than the proportion related to gudgeon. Thus another conclusion is that 1) the impact of predation seems to differ for the fish species and 2) lethal effects have a stronger impact on the population survival than life history changes. Combining the results mentioned above leads to the assumption that predation by benthivorous fish has the potential to shape invertebrate communities and food webs in streams. It was possible to show reductions of benthic densities and mean population fitness. The strength of trophic interactions seemed to be specific for the single predator-prey pairs here. Finally, it can be stated that contrary to previous assumptions consumption of the fish predators seemed to be more important for the prey populations than sublethal predation effects.
APA, Harvard, Vancouver, ISO, and other styles
3

Winkelmann, Carola. "Predation effects of benthivorous fish on stream food webs – a large scale and long term field experiment." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23819.

Full text
Abstract:
It is a widely accepted assumption that fish predation controls structure and functioning of aquatic food webs. In the past, however, a large part of effort was concentrated on lakes and reservoirs. Thus, the knowledge about stream ecosystems is much more rudimentary than that for lakes in this respect. The aim of this thesis, therefore, was to describe and assess the effects of fish predation in natural stream ecosystems. For that purpose a reach scale field experiment was set up using an experimental stretch with benthivorous fish and a fishless reference stretch. A wide range of effects of the fish predators on their stream invertebrates prey was studied. To discriminate between lethal and sublethal predation effects, measuring the physiological status of the organisms seemed promising. However, before it was possible to decide whether or not environmental stress, such as predation, might affect the physiological status, the internal control as well as the seasonal and species-specific variability of the energy amount stored had to be assessed. Thus, the concentration and seasonal dynamics of the major energy storage components triglycerides and glycogen were measured in two species of mayflies (Rhithrogena semicolorata and Ephemera danica) with contrasting life cycle strategies. E. danica is a burrowing, semivoltine collector-gatherer, R. semicolorata is univoltine and scrapes periphyton from stones. Although triglycerides are the major energy reserve in both species throughout the whole larval development (&gt; 84 % of total energy storage) their seasonal dynamic differed considerably. In R. semicolorata the triglyceride concentration declined during the last weeks prior to emergence in both sexes. The same pattern was found in female larvae of E. danica, but not in male E. danica. It is suggested that females use triglycerides in the last larval stages for egg maturation, which is completed in the last larval instar. In male E. danica the triglyceride concentrations remained high until emergence, presumably due to their high energy demands as adults for their swarming flights and mating. The difference in seasonal variation of triglycerides between E. danica and R. semicolorata shows the influence of environmental factors on the dynamics of storage components. E. danica lived in a very stable environment (within the substratum). Therefore the dynamic of energy storage components was optimised with respect to maximal reproduction. R. semicolorata on the other hand, suffered from hostile environmental factors such as predation or food limitation due to low periphyton biomass after leaf sprout and following light limitation in spring. Consequently, the concentration of storage components decreased during spring. One conclusion from this study was that the measurement of storage components might reveal sublethal predation effects. However, season and sex of the organisms are important factors as well and have to be considered in the sampling design. To analyse sublethal predation effects behavioural changes due to the presence of benthivorous fish were measured. Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or may even be a direct escape reaction after a predator encounter. While the control of drift activity by predators has received considerable interest from many researchers, it remains still unclear whether predators reduce or increase drift activity. Drift activity of stream invertebrates was influenced significantly by the presence or absence the two benthivorous fish species gudgeon (Gobio gobio) and stone loach (Barbatula barbatula). Contrary to previous studies gudgeon and stone loach reduced invertebrate drift density and drift activity of Baetis rhodani rather than inducing higher night-time drift. Further, species composition of the invertebrate drift differed significantly between the two stretches. A further conclusion from this study is therefore that drift is not generally a mechanism of active escape from benthos-feeding fish, as previously assumed. In addition, the reduced drift activity in the fish stretch might result in a compensation of the consumptive losses due to fish predation. Thus, in this study design the effects of fish predation on invertebrate community might be underestimated. To detect predation effects on the food web structure the reactions of the grazing mayfly Rhithrogena semicolorata and the shredding amphipod Gammarus pulex to strong predation by benthivorous fish were compared. It has been hypothesised that shredders are generally less vulnerable to fish predation and therefore less likely to be predation-controlled than grazers, because the latter are visible to the predators during their feeding on stone surfaces, while shredders may hide between leaves during foraging. Biomass of G. pulex was significantly reduced in the fish stretch while that of R. semicolorata was not. Since approximately 91 % of the annual production of G. pulex but only 12 % of R. semicolorata production was consumed by benthivorous gudgeon, the observed difference of G. pulex biomass between the fish and reference reach is likely due to a lethal predation effect. However, no sublethal predation effects such as reduced concentration of storage components (triglycerides, glycogen) or reduced reproductive success were observed for both species. Hence, in contrast to the initial hypothesis, in the studied stream the shredder was top-down-controlled, while the grazer was not. It is concluded that top-down control depends on the ecological characteristics of a specific predator-prey pair rather than on trophic guild of the prey. To assess the predation effects on the life history of merolimnic insects and its consequences on fecundity the larval development and emergence of R. semicolorata was studied. It was possible to show lethal and sublethal effects of predation by benthivorous fish (Gobio gobio, Barbatula barbatula). Predation consequently resulted in changes of larval development and population fitness. The presence of two benthivorous fish species (gudgeon and stone loach) led to slower larval development and a delayed emergence. However, no differences in the adult size and fecundity between the fish reach and the reference were observed. Nevertheless, the longer time spent in the larval phase resulted in a higher mortality and therefore in a lower mean population fitness. The presence of gudgeon alone, however, did not seem to influence larval development, growth or time of emergence and consequently fecundity. Further, strong lethal impact of gudgeon could not be detected. Thus, the population fitness measured as the product of adult density and egg number was not reduced by gudgeon alone. It is assumed that the stronger lethal impact in the combined fish experiment is caused mainly by stone loach because the proportion of mayfly consumption by stone loach to mayfly production shortly before emergence was higher than the proportion related to gudgeon. Thus another conclusion is that 1) the impact of predation seems to differ for the fish species and 2) lethal effects have a stronger impact on the population survival than life history changes. Combining the results mentioned above leads to the assumption that predation by benthivorous fish has the potential to shape invertebrate communities and food webs in streams. It was possible to show reductions of benthic densities and mean population fitness. The strength of trophic interactions seemed to be specific for the single predator-prey pairs here. Finally, it can be stated that contrary to previous assumptions consumption of the fish predators seemed to be more important for the prey populations than sublethal predation effects.
APA, Harvard, Vancouver, ISO, and other styles
4

Worischka, Susanne. "Selective predators in complex communities – mechanisms and consequences of benthic fish predation in small temperate streams." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-170972.

Full text
Abstract:
The prey consumption by benthivorous fish predators can have profound top-down effects in stream food webs. To analyse this effects in small temperate stream ecosystems, a long-term field experiment was conducted in two streams in South-eastern Germany, Gauernitzbach and Tännichtgrundbach, from 2004 to 2011. The densities of two small-bodied benthivorous fish species, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), were manipulated following a Before-After-Control-Impact design. The top predator regime affected the benthic community composition of the streams mainly in pools, whereas the total benthic invertebrate biomass was not affected in any mesohabitat. The present work describes a causal analysis of the observed food web effects using additional field analyses and laboratory experiments, with a special focus on the habitat use and foraging behaviour of the fish as top predators. The probably most important of the analysed mechanisms was mesohabitat-specific predation by the fish. Three 24-h field video surveys combined with benthic invertebrate sampling showed that constraints in habitat use, especially for gudgeon, induced a differential predator-prey habitat overlap which resulted in a higher predation risk for the invertebrate prey in pools than in riffles. Another important mechanism was selective predation of both fish species. Their prey selectivity was largely explained by a small number of prey variables being connected to the partly non-visual foraging mode of these benthic predators. Besides the traits body size and feeding type, long-term mean abundance played a central role, small and highly abundant invertebrates, grazers and sediment feeders being preferred by gudgeon and stone loach. The preference for small and abundant prey taxa (chironomids) exceeded purely opportunistic feeding and probably facilitated resource partitioning between the two fish species having very similar diets. In addition to active selectivity, different predator avoidance strategies of the invertebrates analysed in laboratory experiments explained the passive selectivity of the fish predators for certain prey taxa in the streams. This could be shown for two abundant taxa being consumed by the fish predators in very different quantities, Gammarus pulex and Hydropsyche instabilis. These three mechanisms, although probably interacting with several other factors, could explain a large part of the effects the top-down food web manipulation had on the benthic community, especially the observed high degree of mesohabitat and species specificity. Confirming this, quantitative characteristics of predation food webs, for instance the importance of intraguild predation, differed markedly between pool and riffle mesohabitats. From the results of this study it can be concluded that the benthivorous fish affected benthic community structure mainly by mesohabitat-specific and selective predation. A manipulation of this (native) top predator type therefore will probably have such rather subtle but not catastrophic consequences in ecosystems with a high biotic diversity and a rich natural habitat structure and connectivity.
APA, Harvard, Vancouver, ISO, and other styles
5

Schneider, Jana. "Biomanipulation for eutrophication control in running waters." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-198843.

Full text
Abstract:
A good ecological status of streams and rivers is crucial for maintaining ecological functionality of running waters. Worldwide eutrophication threatens to change structure and function of freshwater ecosystems (Dodds et al., 2008). To reduce the symptoms of eutrophication in streams and rivers an additional approach, besides the reduction of external nutrient inputs from catchment areas, is needed. Therefore the goal has been set to transfer the approach of biomanipulation, which is widely accepted as tool in water quality management in lakes and reservoirs, to streams. The objective of this study was accordingly to analyse and evaluate some crucial preconditions for top-down control of stream food webs. For that purpose the present thesis examined effects of fish predation (stone loach and gudgeon) on grazer-periphyton interaction in small streams by assessing predator avoidance by benthic grazers, effects of benthic grazers on periphyton community composition during fish presence/absence and the possibility of top-down control on algal biomass by benthivorous fish.
APA, Harvard, Vancouver, ISO, and other styles
6

Worischka, Susanne. "Selective predators in complex communities – mechanisms and consequences of benthic fish predation in small temperate streams." Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28751.

Full text
Abstract:
The prey consumption by benthivorous fish predators can have profound top-down effects in stream food webs. To analyse this effects in small temperate stream ecosystems, a long-term field experiment was conducted in two streams in South-eastern Germany, Gauernitzbach and Tännichtgrundbach, from 2004 to 2011. The densities of two small-bodied benthivorous fish species, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), were manipulated following a Before-After-Control-Impact design. The top predator regime affected the benthic community composition of the streams mainly in pools, whereas the total benthic invertebrate biomass was not affected in any mesohabitat. The present work describes a causal analysis of the observed food web effects using additional field analyses and laboratory experiments, with a special focus on the habitat use and foraging behaviour of the fish as top predators. The probably most important of the analysed mechanisms was mesohabitat-specific predation by the fish. Three 24-h field video surveys combined with benthic invertebrate sampling showed that constraints in habitat use, especially for gudgeon, induced a differential predator-prey habitat overlap which resulted in a higher predation risk for the invertebrate prey in pools than in riffles. Another important mechanism was selective predation of both fish species. Their prey selectivity was largely explained by a small number of prey variables being connected to the partly non-visual foraging mode of these benthic predators. Besides the traits body size and feeding type, long-term mean abundance played a central role, small and highly abundant invertebrates, grazers and sediment feeders being preferred by gudgeon and stone loach. The preference for small and abundant prey taxa (chironomids) exceeded purely opportunistic feeding and probably facilitated resource partitioning between the two fish species having very similar diets. In addition to active selectivity, different predator avoidance strategies of the invertebrates analysed in laboratory experiments explained the passive selectivity of the fish predators for certain prey taxa in the streams. This could be shown for two abundant taxa being consumed by the fish predators in very different quantities, Gammarus pulex and Hydropsyche instabilis. These three mechanisms, although probably interacting with several other factors, could explain a large part of the effects the top-down food web manipulation had on the benthic community, especially the observed high degree of mesohabitat and species specificity. Confirming this, quantitative characteristics of predation food webs, for instance the importance of intraguild predation, differed markedly between pool and riffle mesohabitats. From the results of this study it can be concluded that the benthivorous fish affected benthic community structure mainly by mesohabitat-specific and selective predation. A manipulation of this (native) top predator type therefore will probably have such rather subtle but not catastrophic consequences in ecosystems with a high biotic diversity and a rich natural habitat structure and connectivity.
APA, Harvard, Vancouver, ISO, and other styles
7

Schneider, Jana. "Biomanipulation for eutrophication control in running waters: Top-down effects on benthic key stone grazers." Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A29273.

Full text
Abstract:
A good ecological status of streams and rivers is crucial for maintaining ecological functionality of running waters. Worldwide eutrophication threatens to change structure and function of freshwater ecosystems (Dodds et al., 2008). To reduce the symptoms of eutrophication in streams and rivers an additional approach, besides the reduction of external nutrient inputs from catchment areas, is needed. Therefore the goal has been set to transfer the approach of biomanipulation, which is widely accepted as tool in water quality management in lakes and reservoirs, to streams. The objective of this study was accordingly to analyse and evaluate some crucial preconditions for top-down control of stream food webs. For that purpose the present thesis examined effects of fish predation (stone loach and gudgeon) on grazer-periphyton interaction in small streams by assessing predator avoidance by benthic grazers, effects of benthic grazers on periphyton community composition during fish presence/absence and the possibility of top-down control on algal biomass by benthivorous fish.
APA, Harvard, Vancouver, ISO, and other styles
8

Hellmann, Claudia [Verfasser]. "Die Bedeutung invertebrater Prädation in Fließgewässernahrungsnetzen unter Berücksichtigung des Einflusses benthivorer Fische / vorgelegt von Claudia Hellmann." 2010. http://d-nb.info/100965103X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography