Academic literature on the topic 'Benzène (C6H6)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Benzène (C6H6).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Benzène (C6H6)"

1

Chaudhuri, Chanchal, Chih-Che Wu, Jyh-Chiang Jiang, and Huan-Cheng Chang. "Comparative Studies of H+(C6H6)(H2O)1,2 and H+(C5H5N)(H2O)1,2 by DFT Calculations and IR Spectroscopy." Australian Journal of Chemistry 57, no. 12 (2004): 1153. http://dx.doi.org/10.1071/ch04082.

Full text
Abstract:
Protonated benzene–water and pyridine–water complexes have been investigated by density functional theory (DFT) calculations and infrared (IR) spectroscopy. The calculations performed at the B3LYP/6–31+G* level predict that there exist several stable isomers for H+(C6H6)(H2O)1,2 with two distinct ion cores, C6H7+ and H3O+. In contrast, only the C5H5NH+-centred form can be found for H+(C5H5N)(H2O)1,2, arising from the higher proton affinity of pyridine compared to that of benzene and water. Vibrational predissociation spectroscopic measurements of H+(C6H6)(H2O)2 and H+(C5H5N)(H2O)2 support the predictions.
APA, Harvard, Vancouver, ISO, and other styles
2

Brownridge, Scott, Jack Passmore, and Xiaoping Sun. "The electrophilic substitution reaction of the dithionitronium cation [SNS]+ with benzene." Canadian Journal of Chemistry 76, no. 8 (August 1, 1998): 1220–31. http://dx.doi.org/10.1139/v98-148.

Full text
Abstract:
The compound [SNS]+([SNS][AsF6]) reacts with benzene in liquid sulfur dioxide to give orange-, blue-, and then purple-colored solutions. The assignment of the orange color to a molecule-ion charge-transfer complex [C6H6·SNS]+ is supported by the linear dependence of the ionization potential of the arenes (C6H6, C6HMe5, C6H5But, C6HMe5) and the energy of the charge-transfer absorption of freshly prepared arene-[SNS][AsF6] mixtures in liquid SO2 solution. Variable-temperature multinuclear NMR studies of the reactions of [SNS][AsF6] and [SNS][Sb2F11] with benzene are consistent with the blue color being due to a sulfur protonated substitution product [C6H5(S2N)H]+, providing the first example of a CH electrophilic substitution reaction of SNS+. The geometries calculated at the RHF/6-31G' level for [C6H5(SNS)H]+, the isomeric [C6H5NSSH]+, and [C6H5N(S)SH]+, together with NMR data, support [C6H5(SNS)H]+(i.e., suggest S, not N, is attached to the ring) as the structure of the cation. The electrophilic aromatic substitution reaction of [SNS]+ and benzene is also supported by NMR studies of [SNS][AsF6] and other arenes (e.g., C6HMe5) in SO2 solution. The UV-visible spectrum of [SNS]+ ([SNS][AsF6]) in liquid SO2 is reported, and the absorption ( lamda = 406 nm, epsilon = 80) responsible for the yellow color is assigned to the [SNS]+ HOMO-LUMO transition. Evidence is also presented for the formation of a molecule-ion charge-transfer complex between 5-methyl-1,3,2,4-dithiadiazolium and hexamethylbenzene in liquid SO2, the first dithiadiazolium charge-transfer complex.Key words: UV-visible, charge transfer, dithionitronium, benzene, electrophilic substitution.
APA, Harvard, Vancouver, ISO, and other styles
3

Hossain, M. I., D. Debnath, M. Younis, M. A. Bari, and M. A. J. Miah. "Synthesis and Characterization of Poly(aryleneethynylene)s and Their Corresponding Platinum-Linked Polymers." Journal of Scientific Research 3, no. 3 (August 29, 2011): 587–97. http://dx.doi.org/10.3329/jsr.v3i3.7293.

Full text
Abstract:
A series of thermally stable organic polymers [poly(2,5-diethynylpyridine] (5), [poly(1,4- diethynyl benzene)] (6), [poly(2,5-dialkyl-p-phenyleneethynylene)] (7), and [poly(p,p-diethynylbiphenyl)] (8), were synthesized by the reaction between diterminal aryleneethynylene, [HCCArCCH] {Ar = C5H5N (1); Ar = C6H6 (2); Ar = C6H4(CH3)2 (3); Ar = C6H4-C6H4 (4)} and CuCl in pyridine by Hay’s oxidative coupling method. Then the organometallic polymers [Ph (PnBu3)2Pt-C≡C-(Ar-C≡C-C≡C)n-Pt((PnBu3)2Ph] {Ar = C5H5N (9); Ar = C6H6 (10); Ar = C6H4(CH3)2 (11); Ar = C6H4-C6H4 (12)} were synthesized by the reaction of organic polymers 5, 6, 7 and 8 with metal precursor (PnBu3)2 PtPhCl in diethylisopropileamine with good yield. These metal-linked polymers were characterized by IR, 1H-NMR, 13C-NMR and 31P-NMR spectra. Finally the molecular weight of the organometallic polymers (9, 10, 11 and 12) was determined by gel permeation chromatography (GPC). It is clearly observed from GPC that the polymers were synthesized with different degree of polymerization. Keywords: Organometallic polymers; Hay’s Oxidative coupling; GPC. © 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: 10.3329/jsr.v3i3.7293 J. Sci. Res. 3 (3), 587-597 (2011)
APA, Harvard, Vancouver, ISO, and other styles
4

Brune, Hans-Albert, Reinhard Hemmer, Josef Unsin, Konrad Holl, and Ulf Thewalt. "Molekülstruktur von {[P(C6H5)3]2RhOH}2· 2 C6H6 / The Molecular Structure of {[P(C6H5)3]2RhOH}2· 2 C6H6." Zeitschrift für Naturforschung B 43, no. 4 (April 1, 1988): 487–90. http://dx.doi.org/10.1515/znb-1988-0418.

Full text
Abstract:
AbstractThe dinuclear Rhodium(I) complex Bis(μ-hydroxo)bis(bistriphenylphosphane-rhodium) forms during the HRh(PPh3)2 catalyzed hydrogenation of Schiff bases by isopropanol. It can be isolated from benzene solution as a crystalline solvate of composition {[P(C6H5)3]2RhOH}2·2 C6H6 (1). The complex contains a four-membered ring with bridging hydroxo groups. Crystals of 1 are triclinic, space group P1̄ with a = 12.570(3), b = 12.850(4), c = 13.982(3) Å, α = 116.23(3), β = 115.08(3), γ = 90.89(3)°, and Z = 1.
APA, Harvard, Vancouver, ISO, and other styles
5

Chrostowska, Anna, Genevieve Pfister-Guillouzo, Françoise Gracian, and Curt Wentrup. "Pitfalls in the Photoelectron Spectroscopic Investigations of Benzyne. Photoelectron Spectrum of Cyclopentadienylideneketene." Australian Journal of Chemistry 63, no. 7 (2010): 1084. http://dx.doi.org/10.1071/ch09641.

Full text
Abstract:
The 9.24 eV ionization energy often quoted in photoelectron spectroscopic investigations of benzyne is not due to benzyne 1 but to benzene, C6H6. The 8.9 eV ionization is not due to benzyne either but to cyclopentadienylideneketene 12 when a 10.2 eV band is also present, or to biphenylene 5 when a 7.6 eV band is simultaneously present. Cyclopentadienylideneketene 12 has been generated by flash vacuum thermolysis of four different precursors, which permit a linking of infrared, mass, and photoelectron spectroscopic observations.
APA, Harvard, Vancouver, ISO, and other styles
6

Herberhold, Max, Thomas Hofmann, Stefanie Weinberger, and Bernd Wrackmeyer. "Silyl Derivatives of the Mixed Sandwiches Cyclopentadienyl Manganese Benzene and Cyclopentadienyl Manganese Biphenyl, CpMn(C6H6) and CpMn(C6H5-Ph)." Zeitschrift für Naturforschung B 52, no. 9 (September 1, 1997): 1037–42. http://dx.doi.org/10.1515/znb-1997-0903.

Full text
Abstract:
Mixed manganese sandwich complexes containing a silyl-substituted cyclopentadienyl ring, e. g. (η5 - C5H4 - R)Mn(η6- C6H6) (3a - c) and (η5- C5H4 - R)Mn(η6- C6H5 - Ph) (4a - c); (R = SiMe3 (a), Si2Me5 (b) and SiMe2tBu (c)), were obtained in low yield via intermediates {(η5 - C5H4 - R)MnCl} and their reaction with phenyl Grignard reagents. Use of the 4-trimethylsilyl-phenyl magnesium halide in the reaction with the intermediate {CpMnCl} led to complexes with silylsubstituted arene rings, CpMn(η6 - C6H5 - R′) (5a) and CpMn(η6 -R′ - C6H5 - C6H5 - R′) (6a); (R′ = SiMe3 (a)). Dilithiation of CpMn6H6) (1) and subsequent reaction with a chlorosilane gave (η5-C5H4 - R)Mn(η6 - C6H5 - R′) (7a,b); (R = R′ = SiMe3 (a), Si2Me5 (b)). A cyclophane 8 in which five- and six-membered ring are linked through a -Me2Si-SiMe2- bridge was obtained using 1,2-dichloro-tetramethyldisilane. The mixed manganese sandw ich complexes were thoroughly characterized by 1H , 13C, 29Si and 55Mn NMR spectroscopy. The 55Mn spectra can be used to detect low-yield side-products.
APA, Harvard, Vancouver, ISO, and other styles
7

Ghiasi, Reza, Saeedeh Hashemian, and Oranoos Irajee. "Structure and Bonding of Ni(C6H4-nFn)(CO)2(C6H4=benzyne, n=1-4) Complexes." Journal of the Korean Chemical Society 55, no. 2 (April 20, 2011): 183–88. http://dx.doi.org/10.5012/jkcs.2011.55.2.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jones, P. G. "Benzoato(triphenylphosphine)gold(I) benzene solvate, [Au(C7H5O2){P(C6H5)3}].C6H6." Acta Crystallographica Section C Crystal Structure Communications 41, no. 6 (June 15, 1985): 905–6. http://dx.doi.org/10.1107/s0108270185005947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gotch, Albert J., R. Nathan Pribble, Frederick A. Ensminger, and Timothy S. Zwier. "The Spectroscopy and Photophysics of π Hydrogen-Bonded Complexes: Benzene–CHCl3." Laser Chemistry 13, no. 3-4 (January 1, 1994): 187–205. http://dx.doi.org/10.1155/1994/41604.

Full text
Abstract:
A vibronic level study of the spectroscopy and photophysics of the C6H6–CHCl3 complex has been carried out using a combination of laser-induced fluorescence and resonant two-photon ionization (R2PI). In C6H6-CHCl3, the S1–S0 origin remains forbidden while the 1610 transition is weakly induced. Neither 610 nor 1610 are split by the presence of the CHCl3 molecule. On this basis, a C3vstructure is deduced for the complex, placing CHCl3 on the six-fold axis of benzene. The large blue-shift of the complex’s absorption relative to benzene (+178 cm–1) and the efficient fragmentation of the complex following one-color R2PI reflect a hydrogen-bonded orientation for CHCl3 relative to benzene’ π cloud. Dispersed fluorescence scans place a firm upper bound on the ground state binding energy of the complex of 2,024 cm–1. Both the 61and 61 11 levels do not dissociate on the time-scale of the S1 fluorescence and show evidence of extensive state mixing with van der Waals’ levels primarily built on the 00 level of benzene. The C6H6–(CHCl3)2 cluster shows extensive intermolecular structure beginning at +84 cm–1, a strong origin transition, and splitting of 61. A structure which places both CHCl3 molecules on the same side of the benzene ring is suggested on this basis. The vibronic level scheme used to deduce the structure of C6H6–CHCl3 is tested against previous data on other C6H6–X complexes. The scheme is found to be capable, in favorable cases, of deducing the structures of C6H6–X complexes based purely on vibronic level data. Finally, the results on C6H6–CHCl3 are compared with those on C6H6–HCl and C6H6-H2O to evaluate the characteristics of the n hydrogen bond.
APA, Harvard, Vancouver, ISO, and other styles
10

Bock, Hans, Claudia Arad, Christian Näther, Ilka Göbel, and Andreas John. "Strukturen ladungsgestörter oder räumlich überfüllter Moleküle, 108 [1] Strukturänderungen bei der Zweifach-Reduktion von Tetraphenyl-p-chinodimethan zu seinem Dianion / Structures of Charge-Perturbed or Sterically Overcrowded Molecules, 108 [1] Structural Changes of Tetraphenyl-p-quinodim ethane on Twofold Reduction to its Dianion." Zeitschrift für Naturforschung B 51, no. 10 (October 1, 1996): 1391–99. http://dx.doi.org/10.1515/znb-1996-1004.

Full text
Abstract:
The two-electron reduction of tetraphenyl-p-quinodimethane M via its radical anion M⊖ to its dianion M⊖⊖ is explored both by cyclovoltammetry and ESR/ENDOR spectroscopy. Contact of the diglyme solution with added 15-crown-5 under aprotic conditions with a sodium metal mirror yields black crystals of a solvent-separated contact ion triple [M⊖⊖][Na⊕(OCH2CH2)5(H3CO(CH2CH2O)2CH3)]2. The two-electron-insertion into the pquinodimethane derivative R2C⊖=C(HC=CH)2C=CR2 changes its structure drastically to that of a twofold carbanion substituted benzene, R2C⊖ -(C6H4)- ⊖CR2. MNDO calculations provide a rationale for both the tremendous solvation of a Na⊕ center coordinated to seven oxygen centers of 15-crown-5 and of one diglyme molecule and the structural changes as well as the charge distribution in the unique Tetraphenyl-p-quinodimethane dianion (H5C6)2C⊖-(C6H4)- ⊖C(C6H5)2, in which the two negative charges are largely localized at the carbanion center of the benzene -substituents.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Benzène (C6H6)"

1

Jeanjean, Maxime. "Pollution atmosphérique et déclenchement de poussées de sclérose en plaques, investigation au niveau individuel." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1B003.

Full text
Abstract:
La sclérose en plaques (SEP) est une maladie neuro-inflammatoire du système nerveux central. Les causes sont multifactorielles impliquant à la fois une prédisposition génétique et l'influence de facteurs environnementaux. Dans environ 85% des cas, les patients sont atteints de poussées correspondants à la survenue de signes neurologiques, suivis d'une phase de rémission partielle ou totale. De nombreux travaux avancent l'hypothèse selon laquelle le taux de poussées varie au gré des saisons, survenant plus fréquemment au printemps et en été. Cette fluctuation temporelle a soulevé la question de l'influence de paramètres dépendants de la saison tels que l'ensoleillement et le statut en vitamine D, le niveau de mélatonine ou encore la pollution atmosphérique. Etant donné cette variation de la pollution de l'air, nous avons cherché à explorer l'impact à court terme des particules fines (PM10), benzène (C6H6), dioxyde d'azote (NO2), monoxyde de carbone (CO) et de l'ozone troposphérique (O3), sur le risque de déclenchement de poussée, indépendamment des saisons "chaude" (1er avril au 30 septembre) et "froide" (1er octobre au 31 mars). Ce travail s'est appuyé sur les données de patients issus du réseau ville-hôpital alSacEP. Nous avons sélectionné 424 patients atteints de SEP à début rémittent et ayant connu un total de 1 783 poussées (2000-2009). Les niveaux journaliers de pollution, produits grâce au modèle physique déterministe ADMS-Urban, ont été modélisés sur une base horaire pour chaque IRIS de la communauté urbaine de Strasbourg par l'actuelle AASQUA ATMO Grand Est. De plus, une enquête individuelle menée dans le cadre de cette étude auprès de l'ensemble des patients (PT) a permis de collecter (par questionnaire téléphonique ou auto-questionnaire sur internet) des informations personnelles socio-économiques (SES) et du mode de vie pour 188 d'entre eux (PS). Enfin, le niveau SES des IRIS a été estimé à l’aide d’un indice de défaveur social - construit à partir des données du recensement de l’INSEE. Nous avons observé une influence saisonnière délétère à court terme de la pollution (3 jours précédant la poussée) sur le risque de poussée en PT, notamment de l'O3 en saison "chaude" et des PM10 et NO2 en saison "froide". Nos résultats suggèrent également que le contexte SES puisse exacerber ces associations, notamment chez les patients résidant dans les quartiers défavorisés lors d'exposition aux PM10, NO2, C6H6 et CO ("froide") et ceux résidant dans les quartiers favorisés et défavorisés lors de l'exposition à l'O3 ("chaude"). Enfin, nous avons observé chez la PS que le niveau d'éducation faible, le revenu familial moyen, la consommation de cigarette et le manque d'activité physique régulière sont les catégories SES et du mode de vie les plus associées avec le risque de poussée lors de l'exposition à la pollution de l'air. Ce travail montre la nécessité d'étudier les expositions environnementales au cours de la SEP selon une approche holistique intégrant des facteurs individuels et contextuels
Multiple sclerosis (MS) is a neuro-inflammatory disease of the central nervous system (CNS). Causes are multifactorial enrolling both genetic predisposition and influence of environmental factors. In 85% of cases, patients experience relapse corresponding to the occurrence of neurologic signs, followed by a phase of partial or total remission. Several studies put forth the hypothesis that relapses rate varies across season, mainly occurring during spring and summer. This temporal fluctuation raised the question of season-dependent parameters influence such as sunlight exposure and vitamin D, melatonin level or ambient air pollution. Considering this variation of air pollution, we explored the short-term impact of fine particles (PM10), benzene (C6H6), nitrogen dioxide (NO2), carbon monoxide (CO) and ground-level ozone (O3), on the risk of relapse triggering, separately for "cold" (i.e., October-March) and "hot" (April-September) season. This work has drawn from data of patients provided by the alSacEP network. We included 424 patients affected with remitting MS onset who experienced 1,783 relapses over the 2000-2009 period. Daily level of air pollution was modeled through ADMS-Urban software at the census block scale of the Strasbourg metropolitan area (AASQA ATMO Grand Est). Furthermore, an individual survey was conducted among all the patients (PT) in order to collect individual socioeconomic (SES) and lifestyle features. Finally, the census block SES position was estimated using a composite deprivation index - created from the INSEE census data. A short-term (3 days preceding the relapse) seasonal adverse effect was observed in PT, in particular during exposure to O3 in "hot" season and PM10 and NO2 in "cold" season. Results also suggest that the SES context might exacerbate these associations, in particular among patients who were living in deprived neighborhood with exposure to PM10, NO2, C6H6 and CO ("cold) and those who were living in most well-of and deprived places with exposure to O3 ("hot"). Finally, we observed among Ps that low education level, average family income, smoking and lack of physical activity are more associated with the risk of relapse triggering when patients were exposed to air pollution. This work shows the need to investigate environmental exposure such as air pollution along the SEP course using a holistic approach integrating individual and contextual factors
APA, Harvard, Vancouver, ISO, and other styles
2

Strandqvist, Carl. "The Functionalization of Epitaxial Graphene on SiC with Nanoparticles towards Biosensing Capabilities." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120502.

Full text
Abstract:
Graphene has been shown to be very powerful as a transducer in many biosensor applications due to its high sensitivity. This enables smaller surfaces and therefore less material consumption when producing sensors and concequently cheaper and more portable sensors compared to the commercially available sensors today. The electrical properties of graphene are very sensitive to gas exposure why presence of molecules or small changes in concentration could easily be detected when using graphene as a sensing layer. Graphene is sensitive towards many molecules and in order to detect and possibly identify gas molecules the surface needs to be functionalized. The intention of this project was to use nanoparticles (NPs) to further increase sensitivity and specificity towards selected molecules and also enable biofunctionalization of the NPs, and by that tune the electrical properties of the graphene. This study proposes the use of Fe3O4 and TiO2 NPs to enable sensitive detection of volatile gases and possibly further functionalization of the NPs using biomolecules as a detecting agent in a liquid-phasebiosensor application. The interaction between graphene and NPs have been investigated using several surface charactarization methods and electrical measurements for detection of gaseous molecules and also molecules in a liquid solution. The characterizing methods used are XPS, AFM with surface-potential mapping and Raman spectroscopy with reflectance mapping in order to investigate the NPs interaction with the graphene surface. Sensors where manufactured for gas-phase detection of CO, formaldehyde, benzene and NH3 specifically and display differences in sensitivity and behavior of the Fe3O4 and TiO2 NPs respectively. For liquid measurements the difference in behavior in two buffers was investigated using an in-house flow-cell setup. The surface charecterizing measurements indicated that just a small difference could be found between the two NPs, however a significant change in sensor response could be detected as a function of coverage. The liquid and gas-phase measurements rendered information on differences in sensitivity between the NPs and between analytes where TiO2 showed a higher level of sensitivity towards most of the gases investigated. Both Fe3O4 and TiO2 NP coated graphene showed capability to detect formaldehyde and benzene down to 50 ppb and 5 ppb respectively. The sensitive gas detection could help protecting individuals being exposed to a hazardous level of volatile gases if concentrations increase rapidly or at a long term exposure with lower concentrations, improving saftey and health where these gases are present.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Benzène (C6H6)"

1

Irvine, William M. "Benzene (C6H6)." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_1826-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hirota, E., K. Kuchitsu, T. Steimle, J. Vogt, and N. Vogt. "69 C6H6 Benzene." In Molecules Containing Three or Four Carbon Atoms and Molecules Containing Five or More Carbon Atoms, 238–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41504-3_200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hirota, E., K. Kuchitsu, T. Steimle, J. Vogt, and N. Vogt. "70 C6H6+ Benzene (1+)ion." In Molecules Containing Three or Four Carbon Atoms and Molecules Containing Five or More Carbon Atoms, 240. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41504-3_201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cibulka, I., L. Hnědkovský, J. C. Fontaine, K. Sosnkowska-Kehiaian, and H. V. Kehiaian. "Volumetric Properties of the Mixture Hexafluorobenzene C6F6 + C6H6 Benzene (LB0328, VMSD1211)." In Binary Liquid Systems of Nonelectrolytes, 5293–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-73584-7_1507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cibulka, I., L. Hnědkovský, J. C. Fontaine, K. Sosnkowska-Kehiaian, and H. V. Kehiaian. "Volumetric Properties of the Mixture Hexafluorobenzene C6F6 + C6H6 Benzene (LB1448, VMSD1211)." In Binary Liquid Systems of Nonelectrolytes, 5296–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-73584-7_1508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cibulka, I., L. Hnědkovský, J. C. Fontaine, K. Sosnkowska-Kehiaian, and H. V. Kehiaian. "Volumetric Properties of the Mixture Hexafluorobenzene C6F6 + C6H6 Benzene (LB1976, VMSD1141)." In Binary Liquid Systems of Nonelectrolytes, 5299–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-73584-7_1509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hirota, E., K. Kuchitsu, T. Steimle, J. Vogt, and N. Vogt. "54 C6H4 1,2-Benzyne." In Molecules Containing Three or Four Carbon Atoms and Molecules Containing Five or More Carbon Atoms, 221–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41504-3_185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cibulka, I., L. Hnědkovský, J. C. Fontaine, K. Sosnkowska-Kehiaian, and H. V. Kehiaian. "Volumetric Properties of the Mixture Ethanenitrile C2H3N + C6H6 Benzene (LB2714, VMSD1111)." In Binary Liquid Systems of Nonelectrolytes, 469–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-73584-7_103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cibulka, I., L. Hnědkovský, J. C. Fontaine, K. Sosnkowska-Kehiaian, and H. V. Kehiaian. "Volumetric Properties of the Mixture Ethanenitrile C2H3N + C6H6 Benzene (LB0132, VMSD1111)." In Binary Liquid Systems of Nonelectrolytes, 472–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-73584-7_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cibulka, I., L. Hnědkovský, J. C. Fontaine, K. Sosnkowska-Kehiaian, and H. V. Kehiaian. "Volumetric Properties of the Mixture Ethanenitrile C2H3N + C6H6 Benzene (LB2871, VMSD1111)." In Binary Liquid Systems of Nonelectrolytes, 476–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-73584-7_105.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Benzène (C6H6)"

1

Sung, Keeyoon, Geoffrey Toon, and Linda Brown. "FT-IR MEASUREMENTS OF COLD CROSS SECTIONS OF BENZENE (C6H6) FOR CASSINI/CIRS." In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.fe11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moazzen-Ahmadi, Nasser, Bob McKellar, and A. Barclay. "SPECTRA OF C6H6-Rgn (n=1,2) IN THE 3 MIRCON INFRARED BAND SYSTEM OF BENZENE." In 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.mk04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography