To see the other types of publications on this topic, follow the link: Benzene. Nitration.

Journal articles on the topic 'Benzene. Nitration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Benzene. Nitration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yamato, Takehiko, Koji Tsuchihashi, Noriko Nakamura, Mai Hirahara, and Hirohisa Tsuzuki. "Medium-sized cyclophanes, part 59:1 Nitration of [3.3]- and [3.3.3]metacyclophanes — Through-space electronic interactions between two or three benzene rings." Canadian Journal of Chemistry 80, no. 2 (2002): 207–15. http://dx.doi.org/10.1139/v02-009.

Full text
Abstract:
The two tert-butyl groups of anti-6,15-di-tert-butyl-9,18-dimethoxy[3.3]metacyclophane (anti-4) are both ipso-nitrated even under mild reaction conditions such as copper(II) nitrate in an acetic anhydride solution because of the decreased deactivation of the second aromatic ring by the introduced nitro group. On the other hand, anti-5,13-di-tert-butyl-8,16-dimethoxy[2.2]metacyclophane (anti-1) undergoes replacement of only one tert-butyl group under the same reaction conditions. The higher yields of the twofold ipso-nitration product anti-7 were obtained in nitration of anti-4 with fuming nitr
APA, Harvard, Vancouver, ISO, and other styles
2

Кондратов, Сергей Алексеевич, and Анна Александровна Красильникова. "Modeling continuous adiabatic nitration of benzene." Eastern-European Journal of Enterprise Technologies 6, no. 6(66) (2013): 15. http://dx.doi.org/10.15587/1729-4061.2013.19128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

You, Kuiyi, Renjie Deng, Jian Jian, Pingle Liu, Qiuhong Ai, and He’an Luo. "H3PW12O40 synergized with MCM-41 for the catalytic nitration of benzene with NO2 to nitrobenzene." RSC Advances 5, no. 89 (2015): 73083–90. http://dx.doi.org/10.1039/c5ra15679c.

Full text
Abstract:
In this work, NO<sub>2</sub> as a nitration agent and the supported HPW/MCM-41 as a synergistic catalyst to replace traditional nitric acid and sulfuric acids were employed to catalyze benzene nitration to nitrobenzene.
APA, Harvard, Vancouver, ISO, and other styles
4

Mane, Vinod, Mahind Lalaso, Shobha Waghmode, K. D. Jadhav, M. K. Dongare, and Sharda P. Dagade. "Nitration of Benzene Using Mixed Oxide Catalysts." IOSR Journal of Applied Chemistry 7, no. 7 (2014): 50–57. http://dx.doi.org/10.9790/5736-07725057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Afonso, Diogo, Alejandro F. G. Ribeiro, Paulo Araújo, Joaquim Vital, and Luis M. Madeira. "Phenol in Mixed Acid Benzene Nitration Systems." Industrial & Engineering Chemistry Research 57, no. 46 (2018): 15942–53. http://dx.doi.org/10.1021/acs.iecr.8b04226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Danov, S. M., V. A. Kolesnikov, and A. L. Esipovich. "Kinetics of benzene nitration by nitric acid." Russian Journal of Applied Chemistry 83, no. 1 (2010): 168–70. http://dx.doi.org/10.1134/s1070427210010337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quadros, Paulo A., Nuno M. C. Oliveira, and Cristina M. S. G. Baptista. "Benzene nitration: validation of heterogeneous reaction models." Chemical Engineering Science 59, no. 22-23 (2004): 5449–54. http://dx.doi.org/10.1016/j.ces.2004.07.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shang, Zhenhua, and Yifeng Yu. "1-Bromo-4-nitro-2-(trifluoromethyl)benzene." Acta Crystallographica Section E Structure Reports Online 63, no. 11 (2007): o4266. http://dx.doi.org/10.1107/s1600536807048180.

Full text
Abstract:
The title compound, C7H3BrNO2, was synthesized by the nitration of 1-bromo-2-(trifluoromethyl)benzene. In the crystal structure, there are three independent molecules, one of which lies on a crystallographic mirror plane.
APA, Harvard, Vancouver, ISO, and other styles
9

Yamato, Takehiko, Hideo Kamimura, and Hirohisa Tsuzuki. "ipso-Nitration of tert-butyl[n.2]metacyclophanes; through-space electronic interactions between two benzene rings." Canadian Journal of Chemistry 76, no. 7 (1998): 997–1005. http://dx.doi.org/10.1139/v98-111.

Full text
Abstract:
The selective introduction of one or two nitro groups by direct replacement of tert-butyl groups via the ipso aromatic nitration of the meta-bridged aromatic compounds having two arene rings is described. The ipso-nitration at the tert-butyl groups of syn- and anti-di-tert-butyl-dimethoxy[n.2]metacyclophanes 1 is attributed to the highly activated character of the aryl ring and the increased stabilization of a σ-complex intermediate arising from the dienone-type σ-complex intermediate possible in the case of an internally methoxy substituent. However, only one tert-butyl group is ipso-nitrated
APA, Harvard, Vancouver, ISO, and other styles
10

Peterson, John R., Hoang D. Do, and Andrew J. Dunham. "Cerium(IV)-induced nitration of cinnamic acids. Novel remote electrophilic substitution." Canadian Journal of Chemistry 66, no. 7 (1988): 1670–74. http://dx.doi.org/10.1139/v88-271.

Full text
Abstract:
The treatment of (E)-3,4-dimethoxycinnamic acid with ceric ammonium nitrate in trifluoroacetic acid afforded (E)-1,2-dimethoxy-4-nitro-5-(2-nitroethenyl)benzene in 79% yield. The unusual ipso substitution of the carboxylic acid moiety by a nitro functional center illustrated a new reaction manifold of cerium(IV). Six cinnamic acids were examined to ascertain the generality of the transformation. The bidentate nitrato structure of the metal salt is believed to account for the nitrating ability of this system.
APA, Harvard, Vancouver, ISO, and other styles
11

Quadros, Paulo A., José A. A. M. Castro, and Cristina M. S. G. Baptista. "Nitrophenols Reduction in the Benzene Adiabatic Nitration Process." Industrial & Engineering Chemistry Research 43, no. 15 (2004): 4438–45. http://dx.doi.org/10.1021/ie034263o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Huang, Wei, Qiang Jing, Yunchen Du, et al. "An in situ SERS study of substrate-dependent surface plasmon induced aromatic nitration." Journal of Materials Chemistry C 3, no. 20 (2015): 5285–91. http://dx.doi.org/10.1039/c5tc00835b.

Full text
Abstract:
Here we demonstrate the surface plasmon (SP) induced nitration of benzene by anin situsurface enhanced Raman spectroscopy (SERS) technique, where the plasmonic heating effect arising from SP is necessarily involved.
APA, Harvard, Vancouver, ISO, and other styles
13

Saha, Moumita, and Asish R. Das. "Hypervalent iodine promoted ortho diversification: 2-aryl benzimidazole, quinazoline and imidazopyridine as directing templates." Organic & Biomolecular Chemistry 18, no. 5 (2020): 941–55. http://dx.doi.org/10.1039/c9ob02533b.

Full text
Abstract:
(Diacetoxyiodo)benzene (PIDA) promoted Pd-catalyzed efficient ortho C(sp<sup>2</sup>)–H acetoxylation, arylation, iodination and nitration are achieved using (NH)-free 2-substituted benzimidazole, quinazoline and imidazopyridine as chelating substrates.
APA, Harvard, Vancouver, ISO, and other styles
14

Sato, H., and K. Hirose. "Vapor-phase nitration of benzene over solid acid catalysts (1): Nitration with nitric oxide (NO2)." Applied Catalysis A: General 174, no. 1-2 (1998): 77–81. http://dx.doi.org/10.1016/s0926-860x(98)00161-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sato, H., and K. Hirose. "Vapor phase nitration of benzene over solid acid catalysts (1): Nitration with nitrogen dioxide (NO2)." Research on Chemical Intermediates 24, no. 4 (1998): 473–80. http://dx.doi.org/10.1163/156856798x00519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hessley, Rita K. "Assessing Nitration Products of Benzene Derivatives Using TLC Analysis." Journal of Chemical Education 85, no. 12 (2008): 1623. http://dx.doi.org/10.1021/ed085p1623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sato, H., K. Nagai, H. Yoshioka, and Y. Nagaoka. "Vapor phase nitration of benzene over solid acid catalysts." Applied Catalysis A: General 175, no. 1-2 (1998): 209–13. http://dx.doi.org/10.1016/s0926-860x(98)00217-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sato, H., K. Hirose, K. Nagai, H. Yoshioka, and Y. Nagaoka. "Vapor phase nitration of benzene over solid acid catalysts." Applied Catalysis A: General 175, no. 1-2 (1998): 201–7. http://dx.doi.org/10.1016/s0926-860x(98)00218-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Burns, John Robert, and Colin Ramshaw. "A Microreactor for the Nitration of Benzene and Toluene." Chemical Engineering Communications 189, no. 12 (2002): 1611–28. http://dx.doi.org/10.1080/00986440214585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bertea, L., H. W. Kouwenhoven, and R. Prins. "Vapour-phase nitration of benzene over modified mordenite catalysts." Applied Catalysis A: General 129, no. 2 (1995): 229–50. http://dx.doi.org/10.1016/0926-860x(95)00105-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kirkby, Scott J. "Acid-Free Nitration of Benzene and Toluene in Zeolite NaZSM-5." ISRN Physical Chemistry 2013 (February 28, 2013): 1–7. http://dx.doi.org/10.1155/2013/164868.

Full text
Abstract:
The syntheses of nitrobenzene and p-nitrotoluene directly from benzene, toluene, and NO2 within the pore network of the initially acid-free zeolite NaZSM-5 are reported for the first time. The active species , formed by the interaction of NO2 with the Na+ cations present on the internal surface, results in the acid-free electrophilic substitution of the aromatic ring. There are two distinct reservoirs for the reagents: one associated with close proximity to the cation sites and the other associated with the siliceous areas of the pore network. Up to 34% of the hydrocarbon and 70% of the availa
APA, Harvard, Vancouver, ISO, and other styles
22

Blankespoor, Ronald L., Stephanie Hogendoorn, and Andrea Pearson. "Competitive Nitration of Benzene–Fluorobenzene and Benzene–Toluene Mixtures: Orientation and Reactivity Studies Using HPLC." Journal of Chemical Education 84, no. 4 (2007): 697. http://dx.doi.org/10.1021/ed084p697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Кондратов, Сергей Алексеевич, and М. Д. Аль Хамадани. "Model of continuous nitration of benzene in perfect mixing reactor." Eastern-European Journal of Enterprise Technologies 2, no. 6(68) (2014): 16. http://dx.doi.org/10.15587/1729-4061.2014.23334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Brei, V. V., S. V. Prudius, and O. V. Melezhyk. "Vapour-phase nitration of benzene over superacid WO3/ZrO2 catalysts." Applied Catalysis A: General 239, no. 1-2 (2003): 11–16. http://dx.doi.org/10.1016/s0926-860x(02)00383-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chen, Litao, Heming Xiao, Jijun Xiao, and Xuedong Gong. "DFT Study on Nitration Mechanism of Benzene with Nitronium Ion." Journal of Physical Chemistry A 107, no. 51 (2003): 11440–44. http://dx.doi.org/10.1021/jp030167p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Suzuki, Sadakatsu, Kunihiko Tohmori, and Yoshio Ono. "VAPOR-PHASE NITRATION OF BENZENE OVER POLYORGANOSILOXANES BEARING SULFO GROUPS." Chemistry Letters 15, no. 5 (1986): 747–50. http://dx.doi.org/10.1246/cl.1986.747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kuck, Dietmar, Jens Linke, Lisa Christin Teichmann, et al. "Centrohexaindane: six benzene rings mutually fixed in three dimensions – solid-state structure and six-fold nitration." Physical Chemistry Chemical Physics 18, no. 17 (2016): 11722–37. http://dx.doi.org/10.1039/c5cp07005h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

XIAO, Heming. "A theoretical study on nitration mechanism of benzene and solvent effects." Science in China Series B 46, no. 5 (2003): 453. http://dx.doi.org/10.1360/02yb0215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Koleva, Gergana, Boris Galabov, Boriana Hadjieva, Henry F. Schaefer, and Paul von R. Schleyer. "An Experimentally Established Key Intermediate in Benzene Nitration with Mixed Acid." Angewandte Chemie 127, no. 47 (2015): 14329–33. http://dx.doi.org/10.1002/ange.201506959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Koleva, Gergana, Boris Galabov, Boriana Hadjieva, Henry F. Schaefer, and Paul von R. Schleyer. "An Experimentally Established Key Intermediate in Benzene Nitration with Mixed Acid." Angewandte Chemie International Edition 54, no. 47 (2015): 14123–27. http://dx.doi.org/10.1002/anie.201506959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Suzuki, Eiichi, Kunihiko Tohmori, and Yoshio Ono. "Vapor-phase Nitration of Benzene over Silica-supported Benzenesulfonic Acid Catalyst." Chemistry Letters 16, no. 11 (1987): 2273–74. http://dx.doi.org/10.1246/cl.1987.2273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Szabó, K. J. "Structures of sigma complexes in nitration reactions of monosubstituted benzene derivatives." Journal of Molecular Structure: THEOCHEM 181, no. 1-2 (1988): 1–9. http://dx.doi.org/10.1016/0166-1280(88)80024-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Koskin, Anton P., Roman V. Kenzhin, Aleksey A. Vedyagin, and Ilya V. Mishakov. "Sulfated perfluoropolymer–CNF composite as a gas-phase benzene nitration catalyst." Catalysis Communications 53 (August 2014): 83–86. http://dx.doi.org/10.1016/j.catcom.2014.04.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chatterjee, Nachiketa, Divya Bhatt, and Avijit Goswami. "A novel transition metal free [bis-(trifluoroacetoxy)iodo]benzene (PIFA) mediated oxidative ipso nitration of organoboronic acids." Organic & Biomolecular Chemistry 13, no. 17 (2015): 4828–32. http://dx.doi.org/10.1039/c5ob00337g.

Full text
Abstract:
A mild, convenient and transition metal free methodology for oxidative ipso nitration of organoboronic acids, including heteroaryl- and alkylboronic acids, has been developed using a combination of [bis-(trifluoroacetoxy)]iodobenzene (PIFA) – N-bromosuccinimide (NBS) and sodium nitrite as the nitro source.
APA, Harvard, Vancouver, ISO, and other styles
35

Kondratov, Serhii, and Anna Krasyl’nikova. "Computer simulation of a reactor for high-temperature adiabatic nitration of benzene." Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies, no. 23(1245) (June 10, 2017): 150–57. http://dx.doi.org/10.20998/2413-4295.2017.23.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Koleva, Gergana, Boris Galabov, Boriana Hadjieva, Henry F. Schaefer, and Paul R. Schleyer. "Corrigendum: An Experimentally Established Key Intermediate in Benzene Nitration with Mixed Acid." Angewandte Chemie International Edition 59, no. 21 (2020): 7986. http://dx.doi.org/10.1002/anie.202002293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Umbarkar, S. B., A. V. Biradar, S. M. Mathew, et al. "Vapor phase nitration of benzene using mesoporous MoO3/SiO2 solid acid catalyst." Green Chemistry 8, no. 5 (2006): 488. http://dx.doi.org/10.1039/b600094k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kuznetsova, T. G., K. G. Ione, and L. V. Malysheva. "Gas phase nitration of benzene by nitric acid on ZSM-5 zeolite." Reaction Kinetics and Catalysis Letters 63, no. 1 (1998): 61–66. http://dx.doi.org/10.1007/bf02475431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Koleva, Gergana, Boris Galabov, Boriana Hadjieva, Henry F. Schaefer, and Paul R. Schleyer. "Berichtigung: An Experimentally Established Key Intermediate in Benzene Nitration with Mixed Acid." Angewandte Chemie 132, no. 21 (2020): 8062. http://dx.doi.org/10.1002/ange.202002293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ross, Holly D., and Joseph H. Hotchkiss. "Determination of Nitrate in Dried Foods by Gas Chromatography-Thermal Energy Analyzer." Journal of AOAC INTERNATIONAL 68, no. 1 (1985): 41–43. http://dx.doi.org/10.1093/jaoac/68.1.41.

Full text
Abstract:
Abstract The method described for determining N03~ in dried foods is based on extraction of N03~ from the sample with subsequent nitration of benzene. The nitrobenzene is extracted with ethyl acetate, analyzed by using a gas chromatograph-thermal energy analyzer (GC-TEA), and quantitated against a nitrobenzene standard. Sensitivity is 100-200 μg/ kg. Coefficients of variation for analyses of dried foods were 3-13%. Recovery of N03" from nonfat dry milk spiked at 10 mg/kg averaged 100%.
APA, Harvard, Vancouver, ISO, and other styles
41

Sasaki, Yoshiki, Masayoshi Takase, Shigeki Mori, and Hidemitsu Uno. "Synthesis and Properties of NitroHPHAC: The First Example of Substitution Reaction on HPHAC." Molecules 25, no. 11 (2020): 2486. http://dx.doi.org/10.3390/molecules25112486.

Full text
Abstract:
Hexapyrrolohexaazacoronene (HPHAC) is one of the N-containing polycyclic aromatic hydrocarbons in which six pyrroles are fused circularly around a benzene. Despite the recent development of HPHAC analogues, there is no report on direct introduction of functional groups into the HPHAC skeleton. This work reports the first example of nitration reaction of decaethylHPHAC. The structures of nitrodecaethylHPHAC including neutral and two oxidized species (radical cation and dication), intramolecular charge transfer (ICT) character, and global aromaticity of the dication are discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Politzer, Peter, Keerthi Jayasuriya, Per Sjoberg, and Patricia R. Laurence. "Properties of some possible intermediate stages in the nitration of benzene and toluene." Journal of the American Chemical Society 107, no. 5 (1985): 1174–77. http://dx.doi.org/10.1021/ja00291a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Quadros, Paulo A., Nuno M. C. Oliveira, and Cristina M. S. G. Baptista. "Continuous adiabatic industrial benzene nitration with mixed acid at a pilot plant scale." Chemical Engineering Journal 108, no. 1-2 (2005): 1–11. http://dx.doi.org/10.1016/j.cej.2004.12.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kozlova, O. V., A. G. Bazanov, and N. G. Zubritskaya. "Formation of nitrophenols in the gas-phase nitration of benzene over solid catalysts." Russian Journal of Organic Chemistry 46, no. 7 (2010): 1095–96. http://dx.doi.org/10.1134/s1070428010070249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Silva, Alexander Martins, and Marco Antonio Chaer Nascimento. "A DFT study of nitration of benzene by acyl nitrate catalyzed by zeolites." Chemical Physics Letters 393, no. 1-3 (2004): 173–78. http://dx.doi.org/10.1016/j.cplett.2004.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Herrera-Rodríguez, Tamy, Lina S. Miranda-Jiménez, and Ángel D. González-Delgado. "Computer-Aided Exergy Sensibility Analysis of Nitrobenzene Production through Benzene Nitration Using an Acid Mixture." International Journal of Chemical Engineering 2019 (March 3, 2019): 1–7. http://dx.doi.org/10.1155/2019/6986709.

Full text
Abstract:
Nitrobenzene is widely produced via benzene nitration to be applied in several industries such as pharmaceutical, textile, and agricultural. In this work, an exergy sensibility analysis was performed with the aim of identifying possible opportunities of process improvements. The irreversibilities, exergy of wastes, and efficiency were calculated per stage through exergy balance. The simulation software Aspen plus V10.1 provided the physical exergies of process streams while chemical exergies were found in literature. A sensibility analysis was also carried out in order to study the effect of e
APA, Harvard, Vancouver, ISO, and other styles
47

Hartshorn, MP, MC Judd, RW Vannoort, and GJ Wright. "The Nitration of 4-Methylphenol, 3,4-Dimethylphenol and 3,4,5-Trimethylphenol With Nitrogen Dioxide." Australian Journal of Chemistry 42, no. 5 (1989): 689. http://dx.doi.org/10.1071/ch9890689.

Full text
Abstract:
Reaction of 4-methylphenol (la) with excess nitrogen dioxide in either benzene or dichloromethane gives the 4-nitro dienone (2a) and the 2,6-dinitrophenol (5). Similar reactions of 3,4-dimethylphenol (Ib) yields the 4-nitro dienone (2b), the 2,6-dinitrophenol (8) and the 4-hydroxy 2,6-dinitro dienone (9), while reaction of 3,4,5-trimethylphenol (1c) gives the 4-nitro dienone (2c), the 2,4-dinitro dienone (11) and the 2,4,6-trinitro dienone (12a). The reaction pathways by which these products are formed are described and the results of reactions of postulated intermediates with nitrogen dioxide
APA, Harvard, Vancouver, ISO, and other styles
48

Gleghorn, John T., and Garnick Torossian. "A theoretical study of the nitration of ethylene and benzene with the nitronium ion." Journal of the Chemical Society, Perkin Transactions 2, no. 9 (1987): 1303. http://dx.doi.org/10.1039/p29870001303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Koskin, Anton P., Ilya V. Mishakov, and Aleksey A. Vedyagin. "In search of efficient catalysts and appropriate reaction conditions for gas phase nitration of benzene." Resource-Efficient Technologies 2, no. 3 (2016): 118–25. http://dx.doi.org/10.1016/j.reffit.2016.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Olah, George A., Takehiko Yamato, Toshihiko Hashimoto, et al. "Aromatic substitution. 53. Electrophilic nitration, halogenation, acylation, and alkylation of (.alpha.,.alpha.,.alpha.-trifluoromethoxy)benzene." Journal of the American Chemical Society 109, no. 12 (1987): 3708–13. http://dx.doi.org/10.1021/ja00246a030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!