To see the other types of publications on this topic, follow the link: Berge.

Journal articles on the topic 'Berge'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Berge.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hvidt, Niels Christian. "Glaube versetzt Berge – Berge versetzen Glauben." Spiritual Care 6, no. 2 (April 1, 2017): 237–40. http://dx.doi.org/10.1515/spircare-2016-0174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kudryavtsev, Konstantin, and Ustav Malkov. "Weak Berge Equilibrium in Finite Three-person Games: Conception and Computation." Open Computer Science 11, no. 1 (December 17, 2020): 127–34. http://dx.doi.org/10.1515/comp-2020-0210.

Full text
Abstract:
AbstractThe paper proposes the concept of a weak Berge equilibrium. Unlike the Berge equilibrium, the moral basis of this equilibrium is the Hippocratic Oath “First do no harm”. On the other hand, any Berge equilibrium is a weak Berge equilibrium. But, there are weak Berge equilibria, which are not the Berge equilibria. The properties of the weak Berge equilibrium have been investigated. The existence of the weak Berge equilibrium in mixed strategies has been established for finite games. The weak Berge equilibria for finite three-person non-cooperative games are computed.
APA, Harvard, Vancouver, ISO, and other styles
3

Enkhbat, R. "A Note on Anti-Berge Equilibrium for Bimatrix Game." Bulletin of Irkutsk State University. Series Mathematics 36 (2021): 3–13. http://dx.doi.org/10.26516/1997-7670.2021.36.3.

Full text
Abstract:
Game theory plays an important role in applied mathematics, economics and decision theory. There are many works devoted to game theory. Most of them deals with a Nash equilibrium. A global search algorithm for finding a Nash equilibrium was proposed in [13]. Also, the extraproximal and extragradient algorithms for the Nash equilibrium have been discussed in [3]. Berge equilibrium is a model of cooperation in social dilemmas, including the Prisoner’s Dilemma games [15]. The Berge equilibrium concept was introduced by the French mathematician Claude Berge [5] for coalition games. The first research works of Berge equilibrium were conducted by Vaisman and Zhukovskiy [18; 19]. A method for constructing a Berge equilibrium which is Pareto-maximal with respect to all other Berge equilibriums has been examined in Zhukovskiy [10]. Also, the equilibrium was studied in [16] from a view point of differential games. Abalo and Kostreva [1; 2] proved the existence theorems for pure-strategy Berge equilibrium in strategic-form games of differential games. Nessah [11] and Larbani, Tazdait [12] provided with a new existence theorem. Applications of Berge equilibrium in social science have been discussed in [6; 17]. Also, the work [7] deals with an application of Berge equilibrium in economics. Connection of Nash and Berge equilibriums has been shown in [17]. Most recently, the Berge equilibrium was examined in Enkhbat and Batbileg [14] for Bimatrix game with its nonconvex optimization reduction. In this paper, inspired by Nash and Berge equilibriums, we introduce a new notion of equilibrium so-called Anti-Berge equilibrium. The main goal of this paper is to examine Anti-Berge equilibrium for bimatrix game. The work is organized as follows. Section 2 is devoted to the existence of Anti-Berge equilibrium in a bimatrix game for mixed strategies. In Section 3, an optimization formulation of Anti-Berge equilibrium has been formulated.
APA, Harvard, Vancouver, ISO, and other styles
4

Kjeldstadli, Knut. "Berge Furre." Arbeiderhistorie 1, no. 01 (March 28, 2017): 141–42. http://dx.doi.org/10.18261/issn.2387-5879-2017-01-09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Newman, Laura. "BERGE MINASSIAN." Neurology Today &NA; (April 2006): 6–7. http://dx.doi.org/10.1097/01.nt.0000282445.16401.9c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chudnovsky, Maria. "Berge trigraphs." Journal of Graph Theory 53, no. 1 (2006): 1–55. http://dx.doi.org/10.1002/jgt.20165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Janssen, P., P. Cavaillé, A. Vivier, and A. Evette. "Le génie végétal favorise une plus grande diversité de micro-habitats aquatiques et de macro-invertébrés benthiques." Techniques Sciences Méthodes, no. 9 (September 2019): 55–64. http://dx.doi.org/10.1051/tsm/201909055.

Full text
Abstract:
Le génie végétal est une alternative écologique au génie civil pour contrôler l’érosion des berges des cours d’eau.Vial’introduction active de végétaux vivants, ces techniques d’ingénierie peuvent également faciliter ou accélérer la restauration écologique des zones riveraines en i) améliorant la qualité de l’habitat riverain et en ii) favorisant une recolonisation de la partie émergée et immergée de la berge par des espèces cibles. Notre étude vise à caractériser comment différentes techniques de stabilisation des berges, d’âges différents, influencent la diversité et la composition des micro-habitats aquatiques et des macro-invertébrés benthiques associés. Au total, 37 berges ont été échantillonnées et hiérarchisées selon un indice de qualité de l’habitat riverain croisant le type et l’âge des ouvrages et représentant un gradient de végétalisation croissant de la berge. Nos résultats montrent que la richesse et le potentiel d’habitabilité des micro-habitats aquatiques augmentent significativement avec la qualité de l’habitat riverain. Spécifiquement, le génie végétal permet une meilleure représentation de micro-habitats à forts potentiels biogènes, comme c’est le cas des systèmes racinaires immergés. Cette augmentation de la qualité de l’habitat aquatique se traduit par une plus grande diversité taxinomique de macro-invertébrés benthiques au niveau des berges stabilisées par les techniques de génie végétal. Pris dans leur ensemble, nos résultats pointent la plus-value du génie végétal pour la restauration écologique des compartiments terrestre et aquatique des berges dégradées.
APA, Harvard, Vancouver, ISO, and other styles
8

Harambourg, Lydia. "Louis-René Berge." Nouvelles de l'estampe, no. 236 (September 1, 2011): 72–75. http://dx.doi.org/10.4000/estampe.1139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peskoller, Helga. "Berge, Menschen, Meere." Paragrana 24, no. 1 (August 1, 2015): 39–50. http://dx.doi.org/10.1515/para-2015-0004.

Full text
Abstract:
Abstract Der Beitrag geht anhand von zwei Beispielen - Achttausender im Himalaya überschreiten und Weltmeere gegen den Wind umsegeln - der Frage nach, was es mit dieser großen Sehnsucht nach dem wilden Leben auf sich hat, die nicht nur wenige Grenzgänger, sondern auch viele Alltagsmenschen zu erfassen scheint, und erinnert im Nachgang des Erlebten Konzepte von Abenteuer, Freiheit, Risiko und Natur.
APA, Harvard, Vancouver, ISO, and other styles
10

Söring, Jürgen. "Dichtung und Berge." KulturPoetik 19, no. 2 (September 24, 2019): 205–21. http://dx.doi.org/10.13109/kult.2019.19.2.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Merkel, Christiane. "Können Berge niesen?" Im OP 06, no. 03 (April 22, 2016): 119–24. http://dx.doi.org/10.1055/s-0042-102831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chudnovsky*, Maria, Gérard Cornuéjols**, Xinming Liu†, Paul Seymour†, and Kristina Vušković‡. "Recognizing Berge Graphs." Combinatorica 25, no. 2 (March 2005): 143–86. http://dx.doi.org/10.1007/s00493-005-0012-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Berge, Geir Erik. "G.E. Berge svarer:." Tidsskrift for Den norske legeforening 134, no. 15 (2014): 1448. http://dx.doi.org/10.4045/tidsskr.14.0913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Loos, Andreas. "Teilchenbewegung und Berge." Physik in unserer Zeit 48, no. 1 (January 2017): 49. http://dx.doi.org/10.1002/piuz.201790008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Keskin, Kerim, and H. Çağrı Sağlam. "On the Existence of Berge Equilibrium: An Order Theoretic Approach." International Game Theory Review 17, no. 03 (September 2015): 1550007. http://dx.doi.org/10.1142/s0219198915500073.

Full text
Abstract:
We propose lattice-theoretical methods to analyze the existence and the order structure of Berge equilibria (in the sense of Zhukovskii) in noncooperative games. We introduce Berge-modular games, and prove that the set of Berge equilibrium turns out to be a complete lattice.
APA, Harvard, Vancouver, ISO, and other styles
16

Prömel, Hans Jürgen, and Angelika Steger. "Almost all Berge Graphs are Perfect." Combinatorics, Probability and Computing 1, no. 1 (March 1992): 53–79. http://dx.doi.org/10.1017/s0963548300000079.

Full text
Abstract:
Let Per f(n) denote the set of all perfect graphs on n vertices and let Berge(n) denote the set of all Berge graphs on n vertices. The strong perfect graph conjecture states that Per f(n) = Berge(n) for all n. In this paper we prove that this conjecture is at least asymptotically true, i.e. we show that
APA, Harvard, Vancouver, ISO, and other styles
17

Larbani, Moussa, and Rabia Nessah. "A note on the existence of Berge and Berge–Nash equilibria." Mathematical Social Sciences 55, no. 2 (March 2008): 258–71. http://dx.doi.org/10.1016/j.mathsocsci.2007.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

POTTIER, ANTONIN, and RABIA NESSAH. "BERGE–VAISMAN AND NASH EQUILIBRIA: TRANSFORMATION OF GAMES." International Game Theory Review 16, no. 04 (December 2014): 1450009. http://dx.doi.org/10.1142/s0219198914500091.

Full text
Abstract:
In this paper, we reconsider the concept of Berge equilibrium. In a recent work, Colman et al. [(2011) J. Math. Psych.55, 166–175] proposed a correspondence for two-player games between Berge and Nash equilibria by permutation of the utility functions. We define here more general transformations of games that lead to a correspondence with Berge and Nash equilibria and characterize all such transformations.
APA, Harvard, Vancouver, ISO, and other styles
19

Glenn, Jerry, and Lothar Walsdorf. "Über Berge kam ich." World Literature Today 62, no. 4 (1988): 650. http://dx.doi.org/10.2307/40144597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

TUBACH, J. "Herakles vom Berge Sanbulos." Ancient Society 26 (January 1, 1995): 241–71. http://dx.doi.org/10.2143/as.26.0.632416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bråstad Jensen, Eivind. "Intervju med Arvid Berge." Ravnetrykk, no. 37 (February 7, 2018): 17. http://dx.doi.org/10.7557/15.4341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chv�tal, Va?ek. "Claude Berge: 5.6.1926-30.6.2002." Graphs and Combinatorics 19, no. 1 (March 1, 2003): 1–6. http://dx.doi.org/10.1007/s00373-002-0493-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

English, Sean, Pamela Gordon, Nathan Graber, Abhishek Methuku, and Eric C. Sullivan. "Saturation of Berge hypergraphs." Discrete Mathematics 342, no. 6 (June 2019): 1738–61. http://dx.doi.org/10.1016/j.disc.2019.01.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Schlichting, H. Joachim. "Rote Sonne, blaue Berge." Physik in unserer Zeit 36, no. 6 (November 2005): 291. http://dx.doi.org/10.1002/piuz.200590104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Füredi, Zoltán, Alexandr Kostochka, and Ruth Luo. "Avoiding long Berge cycles." Journal of Combinatorial Theory, Series B 137 (July 2019): 55–64. http://dx.doi.org/10.1016/j.jctb.2018.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

BAKER, KENNETH L. "SURGERY DESCRIPTIONS AND VOLUMES OF BERGE KNOTS I: LARGE VOLUME BERGE KNOTS." Journal of Knot Theory and Its Ramifications 17, no. 09 (September 2008): 1077–97. http://dx.doi.org/10.1142/s0218216508006518.

Full text
Abstract:
By obtaining surgery descriptions of knots which lie on the genus one fiber of the trefoil or figure eight knot, we show that these include hyperbolic knots with arbitrarily large volume. These knots admit lens space surgeries and form two families of Berge knots. By way of tangle descriptions we also obtain surgery descriptions for these knots on minimally twisted chain links.
APA, Harvard, Vancouver, ISO, and other styles
27

MUSY, OLIVIER, ANTONIN POTTIER, and TARIK TAZDAIT. "A NEW THEOREM TO FIND BERGE EQUILIBRIA." International Game Theory Review 14, no. 01 (March 2012): 1250005. http://dx.doi.org/10.1142/s0219198912500053.

Full text
Abstract:
This paper examines the existence of Berge equilibrium. Colman et al. provide a theorem on the existence of this type of equilibrium in the paper [Colman, A. M., Körner, T. W., Musy, O. and Tazdaït, T. [2011] Mutual support in games: Some properties of Berge equilibria, J. Math. Psychol.55, 166–175]. This theorem has been demonstrated on the basis of a correspondence with Nash equilibrium. We propose to restate this theorem without using Nash equilibrium, and deduce a method for the computation of Berge equilibria.
APA, Harvard, Vancouver, ISO, and other styles
28

Anouk, Ikorong. "The complete short proof of the Berge conjecture." Indonesian Journal of Combinatorics 6, no. 1 (June 27, 2022): 1. http://dx.doi.org/10.19184/ijc.2022.6.1.1.

Full text
Abstract:
<p>We say that a graph <em>B</em> is berge if every graph <em>B'</em> ∈ {<em>B</em>,<em>B̄</em><em></em>} does not contain an induced cycle of odd length ≥ 5 [<span><em>B̄</em></span> is the complementary graph of <em>B</em>}.</p><p>A graph G is perfect if every induced subgraph <em>G'</em> of <em>G</em> satisfies <em>χ</em>(<em>G'</em>)=<em>ω</em>(<em>G'</em>), where <em>χ</em>(<em>G'</em>) is the chromatic number of <em>G'</em> and <em>ω</em>(<em>G'</em>) is the clique number of <em>G'</em>. The Berge conjecture states that a graph <em>H</em> is perfect if and only if <em>H</em> is berge. Indeed, the Berge problem (or the difficult part of the Berge conjecture) consists to show that <em>χ</em>(<em>B</em>)=<em>ω</em>(<em>B</em>) for every berge graph <em>B</em>. In this paper, we give the direct short proof of the Berge conjecture by reducing the Berge problem into a simple equation of three unknowns and by using trivial complex calculus coupled with elementary computation and a trivial reformulation of that problem via the reasoning by reduction to absurd [we recall that the Berge conjecture was first proved by Chudnovsky, Robertson, Seymour and Thomas in a paper of at least 143 pages long. That being said, the new proof given in this paper is far more easy and more short].</p><p>Our work in this paper is original and is completely different from all strong investigations made by Chudnovsky, Robertson, Seymour and Thomas in their manuscript of at least 143 pages long.</p>
APA, Harvard, Vancouver, ISO, and other styles
29

Bourgeus, Camille, and Yves T'Sjoen. "Breyten Breytenbachs poëzie in Raster." Tydskrif vir Letterkunde 54, no. 2 (September 4, 2017): 26–41. http://dx.doi.org/10.17159/2309-9070/tvl.v.54i2.435.

Full text
Abstract:
From 1969 until 1972 the South-African writer and graphic artist Breyten Breytenbach published 29 poems, prose texts and three drawings in the Dutch experimental periodical Raster (first edition: 1967). H. C. ten Berge, writer, poet and Raster's main editor, attributed Breytenbach an unusually prominent position in his magazine. In the Dutch language area of the late sixties and early seventies, Breytenbach was mostly known for his political engagement within the anti-apartheid movement. Ten Berge, however, also praised his work for its formal and experimental aesthetic qualities. According to Ten Berge experiment and engagement are related to one another in a very unique way. By examining the position of Breytenbach in Raster, the paper presents a documentation of the exceptional literary relationship between Breytenbach and Ten Berge, as well as their shared interest in certain motifs in poetry, the use of a specific metaphoric language (e.g. perception of nature and body) and a common belief in the power of poetic language.
APA, Harvard, Vancouver, ISO, and other styles
30

Pykacz, Jarosław, Paweł Bytner, and Piotr Frąckiewicz. "Example of a Finite Game with No Berge Equilibria at All." Games 10, no. 1 (January 29, 2019): 7. http://dx.doi.org/10.3390/g10010007.

Full text
Abstract:
The problem of the existence of Berge equilibria in the sense of Zhukovskii in normal-form finite games in pure and in mixed strategies is studied. The example of a three-player game that has Berge equilibrium neither in pure, nor in mixed strategies is given.
APA, Harvard, Vancouver, ISO, and other styles
31

Elstad, Hallgeir. "Berge R. Furre (1937–2016)." Teologisk Tidsskrift 4, no. 01 (April 1, 2016): 95–96. http://dx.doi.org/10.18261/issn.1893-0271-2016-01-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gerbner, Dániel, Balázs Patkós, Zsolt Tuza, and Máté Vizer. "On saturation of Berge hypergraphs." European Journal of Combinatorics 102 (May 2022): 103477. http://dx.doi.org/10.1016/j.ejc.2021.103477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gerbner, Dániel, and Cory Palmer. "Extremal Results for Berge Hypergraphs." SIAM Journal on Discrete Mathematics 31, no. 4 (January 2017): 2314–27. http://dx.doi.org/10.1137/16m1066191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Larbani, Moussa, and Rabia Nessah. "Sur l'équilibre fort selon Berge." RAIRO - Operations Research 35, no. 4 (October 2001): 439–51. http://dx.doi.org/10.1051/ro:2001124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chvátal, Vašek. "In praise of Claude Berge." Discrete Mathematics 165-166 (March 1997): 3–9. http://dx.doi.org/10.1016/s0012-365x(96)00156-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Markosian, S. E., G. S. Gasparian, and A. S. Markosian. "On a conjecture of berge." Journal of Combinatorial Theory, Series B 56, no. 1 (September 1992): 97–107. http://dx.doi.org/10.1016/0095-8956(92)90010-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Palraj, Bharath Raj, Larry M. Baddour, and Muhammad Rizwan Sohail. "Reply to Naucler and Berge." Clinical Infectious Diseases 61, no. 10 (July 29, 2015): 1630.2–1631. http://dx.doi.org/10.1093/cid/civ635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gerbner, Dániel, Abhishek Methuku, Gholamreza Omidi, and Máté Vizer. "Ramsey Problems for Berge Hypergraphs." SIAM Journal on Discrete Mathematics 34, no. 1 (January 2020): 351–69. http://dx.doi.org/10.1137/18m1225227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chudnovsky, Maria, and Paul Seymour. "Even pairs in Berge graphs." Journal of Combinatorial Theory, Series B 99, no. 2 (March 2009): 370–77. http://dx.doi.org/10.1016/j.jctb.2008.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chudnovsky, Maria, Irene Lo, Frédéric Maffray, Nicolas Trotignon, and Kristina Vušković. "Coloring square-free Berge graphs." Journal of Combinatorial Theory, Series B 135 (March 2019): 96–128. http://dx.doi.org/10.1016/j.jctb.2018.07.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nessah, Rabia, Moussa Larbani, and Tarik Tazdait. "A note on Berge equilibrium." Applied Mathematics Letters 20, no. 8 (August 2007): 926–32. http://dx.doi.org/10.1016/j.aml.2006.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Győri, Ervin, Nika Salia, Casey Tompkins, and Oscar Zamora. "Turán numbers of Berge trees." Discrete Mathematics 346, no. 4 (April 2023): 113286. http://dx.doi.org/10.1016/j.disc.2022.113286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Crettez, Bertrand. "A New Sufficient Condition for a Berge Equilibrium to be a Berge–Vaisman Equilibrium." Journal of Quantitative Economics 15, no. 3 (November 22, 2016): 451–59. http://dx.doi.org/10.1007/s40953-016-0066-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Good, Michael, and Wei Liang Quek. ""Seeking the Light in a Cavity" in Conversation with Nobel Laureate Serge Haroche." Asia Pacific Physics Newsletter 03, no. 02 (August 2014): 12–14. http://dx.doi.org/10.1142/s2251158x14000204.

Full text
Abstract:
Serge Haroche, Chair in Quantum Physics at the College de France. Professor Haroche was awarded the 2012 Nobel Prize for Physics for "groundbreaking experimental methods that enable measuring and manipulation of individual quantum systems". On 22 April 2013, the first day of the Berge Fest Conference, Professor Haroche delivered a talk on "Controlling photons in cavities". He reviewed recent experiments in Cavity QED in which his group count trapped microwave photons non-destructively and used quantum feedback methods to stabilize the photon number to a preset value. Further developments of these experiments were also discussed in his talk. The editorial team of Asia Pacific Physics Newsletter interviewed Professor Haroche during the Berge Fest Conference on 24 April 2014. For more information of the Berge Fest Conference, please visit http://bergefest.quantumlah.org/
APA, Harvard, Vancouver, ISO, and other styles
45

Courtois, Pierre, Rabia Nessah, and Tarik Tazdaït. "HOW TO PLAY GAMES? NASH VERSUS BERGE BEHAVIOUR RULES." Economics and Philosophy 31, no. 1 (February 19, 2015): 123–39. http://dx.doi.org/10.1017/s026626711400042x.

Full text
Abstract:
Abstract:Assuming that in order to best achieve their goal, individuals adapt their behaviour to the game situation, this paper examines the appropriateness of the Berge behaviour rule and equilibrium as a complement to Nash. We define a Berge equilibrium and explain what it means to play in this fashion. We analyse the rationale of individuals playing in a situational manner, and establish an operational approach that describes the circumstances under which the same individual might play in one fashion versus another.
APA, Harvard, Vancouver, ISO, and other styles
46

Győri, Ervin, Nika Salia, and Oscar Zamora. "Connected hypergraphs without long Berge-paths." European Journal of Combinatorics 96 (August 2021): 103353. http://dx.doi.org/10.1016/j.ejc.2021.103353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mathieu, Jon. "Gibt es eine Geschichte der Berge?" Historische Anthropologie 14, no. 2 (July 2006): 305–16. http://dx.doi.org/10.7788/ha.2006.14.2.305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nie, Jiaxi, and Jacques Verstraëte. "Ramsey Numbers for Nontrivial Berge Cycles." SIAM Journal on Discrete Mathematics 36, no. 1 (January 4, 2022): 103–13. http://dx.doi.org/10.1137/21m1396770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Suppan, Wolfgang, and Hans Gielge. "Klingende Berge. Juchzer, Rufe und Jodler." Jahrbuch für Volksliedforschung 38 (1993): 162. http://dx.doi.org/10.2307/848971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kim, Won Kyu. "ON A GENERALIZED BERGE STRONG EQUILIBRIUM." Communications of the Korean Mathematical Society 29, no. 2 (April 30, 2014): 367–77. http://dx.doi.org/10.4134/ckms.2014.29.2.367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography