Dissertations / Theses on the topic 'Bergman spaces. Toeplitz operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 dissertations / theses for your research on the topic 'Bergman spaces. Toeplitz operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Yousef, Abdelrahman F. "Two problems in the theory of Toeplitz operators on the Bergman space /." Connect to full text in OhioLINK ETD Center, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1242219617.
Full textArroussi, Hicham. "Function and Operator Theory on Large Bergman spaces." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/395175.
Full textRandriamahaleo, Fanilo rajaofetra. "Opérateurs de Toeplitz sur l'espace de Bergman harmonique et opérateurs de Teoplitz tronqués de rang fini." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0108/document.
Full textIn the first part of the thesis,we give some classical results concerning theHardy space, models spaces and analytic and harmonic Bergman spaces. The basic concepts such as projections and reproducing kernels are introduced. We then describe our results on the the stability of the product and the commutativity of two quasihomogeneous Toeplitz operators on the harmonic Bergman space. Finally, we give the matrix description of truncated Toeplitz operators of type "a" in the finite dimensional case
Yousef, Abdelrahman Fawzi. "Two Problems in the Theory of Toeplitz Operators on the Bergman Space." University of Toledo / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1242219617.
Full textSubedi, Krishna Subedi. "Hyponormality and Positivity of Toeplitz operators via the Berezin transform." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1532963068992661.
Full textLe, Van An. "Petits espaces de Fock, petits espaces de Bergman et leurs opérateurs." Thesis, Aix-Marseille, 2019. http://theses.univ-amu.fr.lama.univ-amu.fr/191210_LE_604try554eejyoj865ovdfq987fxy_TH.pdf.
Full textWe study the Carleson measures and the Toeplitz operators on the class of the so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip's results from the unit disk of mathbb C to the unit ball mathbb Bn of mathbb Cn. We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten p classes membership of Toeplitz operators for 1
Jones, Matthew Michael. "Composition operators on weighted Bergman spaces." Thesis, University College London (University of London), 1999. http://discovery.ucl.ac.uk/1363351/.
Full textOliver, Vendrell Roc. "Hankel operators on vector-valued Bergman spaces." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/471520.
Full textKraemer, Daniel [Verfasser], and Jörg [Akademischer Betreuer] Eschmeier. "Toeplitz operators on Hardy spaces / Daniel Kraemer ; Betreuer: Jörg Eschmeier." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1209947455/34.
Full textTattersall, Joshua Malcolm. "Toeplitz and Hankel operators on Hardy spaces of complex domains." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/11498/.
Full textFedchenko, Dmitry, and Nikolai Tarkhanov. "A Class of Toeplitz Operators in Several Variables." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6893/.
Full textFulsche, Robert [Verfasser]. "Toeplitz operators and generated algebras on non-Hilbertian spaces / Robert Fulsche." Hannover : Gottfried Wilhelm Leibniz Universität, 2020. http://d-nb.info/1223090264/34.
Full textDeleporte-Dumont, Alix. "Low-energy spectrum of Toeplitz operators." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD004/document.
Full textBerezin-Toeplitz operators allow to quantize functions, or symbols, on compact Kähler manifolds, and are defined using the Bergman (or Szeg\H{o}) kernel. We study the spectrum of Toeplitz operators in an asymptotic regime which corresponds to a semiclassical limit. This study is motivated by the atypic magnetic behaviour observed in certain crystals at low temperature. We study the concentration of eigenfunctions of Toeplitz operators in cases where subprincipal effects (of same order as the semiclassical parameter) discriminate between different classical configurations, an effect known in physics as quantum selection . We show a general criterion for quantum selection and we give detailed eigenfunction expansions in the Morse and Morse-Bott case, as well as in a degenerate case. We also develop a new framework in order to treat Bergman kernels and Toeplitz operators with real-analytic regularity. We prove that the Bergman kernel admits an expansion with exponentially small error on real-analytic manifolds. We also obtain exponential accuracy in compositions and spectra of operators with analytic symbols, as well as exponential decay of eigenfunctions
Harutyunyan, Anahit V. "Toeplitz operators and division theorems in anisotropic spaces of holomorphic functions in the polydisc." Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2611/.
Full textBarusseau, Benoit. "Propriétés spectrales des opérateurs de Toeplitz." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14027/document.
Full textThis thesis deals with the spectral properties of the Toeplitz operators in relation to their associated symbol. In the first part, we give some classical results about Hardy space, model spaces and Bergman space. Afterwards, we expose some results about Toeplitz operator on the Hardy space. In particular, we discuss their spectrum and essential spectrum. Our work is inspired from two facts which have been proved on the Hardy space. First, considering a Toeplitz operator T, the norm, essential norm, spectral radius of T and the supremum of its symbol are equal. Secondly, on the Hardy space, spectrum, essential spectrum and essential range are strongly related. We answer the question of the equality between the norms, the spectral radius and the supremum of the symbol and between spectrum and essential range on the Bergman space. We look at these two properties on the Bergman space when the symbol is radial or quasihomogeneous. We answer these questions using the Berezin transform, the Mellin coefficients and the mean value of the symbol. The last part deals with the classical Szegö theorem which underline a link between the eigenvalues of a Toeplitz matrix sequence and its symbol. We give a result of the same type on Bergman space considering harmonic symbol wich have a continuous extension. We give a generalization, considering the sequence of the compressions of a Toeplitz operator on a sequence of model spaces
Liang, Xiaoming. "A class of weighted Bergman spaces, reducing subspaces for multiple weighted shifts, and dilatable operators." Diss., Virginia Tech, 1996. http://hdl.handle.net/10919/39164.
Full textPh. D.
Bauer, Wolfram [Verfasser]. "Toeplitz Operators on finite and infinite dimensional spaces with associated Psi*-Fréchet Algebras / Wolfram Bauer." Aachen : Shaker, 2006. http://d-nb.info/1186587393/34.
Full textTytgat, Romaric. "Trace de Dixmier d'opérateurs de Hankel." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4772/document.
Full textWe study Hankel operators $H_{bar{f}}$ with anti holomorphic symbol $bar{f}$ and we are interested to the Dixmier space $mathcal{D}^{p}$ ($pgeq1$), the set of functions $f$ such that $|H_{bar{f}}|^{p} in mathcal{S}^{+}_{1}$ the Macaev ideal. We look Dixmier space as a limit of Schatten class. When $f in mathcal{D}^{p}$, we study $Tr_{omega}(|$H_{bar{f}}$|^{p})$ the Dixmier trace of $|H_{bar{f}}|^{p}$. We have different results when $f$ is an entire or a holomorphic function of the unit disk in the complex plan. We study also the Dixmier space of the little Hankel operator, Toeplitz operator and composition operator
Casseli, Irène. "Eléments sur la transformée de Berezin et sur les opérateurs de Toeplitz dans des espaces de fonctions polyanalytiques." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0578.
Full textEntire polyanalytic functions generalize entire functions in that they are solutions of "Cauchy-Riemann equations of order n, of the form {\partial}^n f / \partial \overline{z}^n = 0, over the whole complex plane \mathbb{C}. Polyanalytic Fock space F^2_{\alpha,n} is, by analogy with the classical case, the closed subspace of the Hilbert space L^2(\mathbb{C},d\mu_\alpha), where \mu_\alpha is a Gaussian probability measure over \mathbb{C} with weight \alpha>0, of polyentire functions of order n. The aim of this PhD thesis is the study of classical objects of operator theory such that the Berezin transform and Toeplitz operators in the particular case of polyanalytic Fock spaces. In this written, it is shown among other results, that the L^p fixed points of the Berezin transform are constant functions. Concerning Toeplitz operators, the Sarason problem is studied. Given a function f, the Toeplitz operator with symbol f is formally defined by T^n_f(h)=P_{F^2_n}(f h), where P_{F^2_n} is the orthogonal projection from L^2(\mathbb{C},d\mu) on to F^2_n. The so-called Sarason's problem consists in finding necessary and sufficient conditions on the symbols f and g for the Toeplitz product with symbols f and \bar g to be bounded in the Fock space
Le, Trieu Long. "Toeplitz operators on the Hardy and Bergman spaces." 2007. http://proquest.umi.com/pqdweb?did=1335360441&sid=17&Fmt=2&clientId=39334&RQT=309&VName=PQD.
Full textTitle from PDF title page (viewed on Nov. 14, 2007) Available through UMI ProQuest Digital Dissertations. Thesis adviser: Xia, Jingbo. Includes bibliographical references.
Chailuek, Kamthorn. "An extension of Bergman spaces and their Toeplitz operators." 2007. http://etd.nd.edu/ETD-db/theses/available/etd-07192007-033805/.
Full textIssa, Hassan. "The analysis of Toeplitz operators, commutative Toeplitz algebras and applications to heat kernel constructions." Doctoral thesis, 2012. http://hdl.handle.net/11858/00-1735-0000-000D-F066-5.
Full textBauer, Wolfram [Verfasser]. "Toeplitz operators on finite and infinite dimensional spaces with associated Ψ*-Fréchet [Psi*-Fréchet] algebras / Wolfram Bauer." 2006. http://nbn-resolving.de/urn:nbn:de:hebis:77-10375.
Full text