Academic literature on the topic 'Bernoulli filter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bernoulli filter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bernoulli filter"

1

Ren, Yayun, and Benlian Xu. "A Quantitative Analysis on Two RFS-Based Filtering Methods for Multicell Tracking." Mathematical Problems in Engineering 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/495765.

Full text
Abstract:
Multiobject filters developed from the theory of random finite sets (RFS) have recently become well-known methods for solving multiobject tracking problem. In this paper, we present two RFS-based filtering methods, Gaussian mixture probability hypothesis density (GM-PHD) filter and multi-Bernoulli filter, to quantitatively analyze their performance on tracking multiple cells in a series of low-contrast image sequences. The GM-PHD filter, under linear Gaussian assumptions on the cell dynamics and birth process, applies the PHD recursion to propagate the posterior intensity in an analytic form, while the multi-Bernoulli filter estimates the multitarget posterior density through propagating the parameters of a multi-Bernoulli RFS that approximates the posterior density of multitarget RFS. Numerous performance comparisons between the two RFS-based methods are carried out on two real cell images sequences and demonstrate that both yield satisfactory results that are in good agreement with manual tracking method.
APA, Harvard, Vancouver, ISO, and other styles
2

Saucan, Augustin-Alexandru, Mark J. Coates, and Michael Rabbat. "A Multisensor Multi-Bernoulli Filter." IEEE Transactions on Signal Processing 65, no. 20 (October 15, 2017): 5495–509. http://dx.doi.org/10.1109/tsp.2017.2723348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mahler, Ronald. "The Pairwise-Markov Bernoulli Filter." IEEE Access 8 (2020): 168229–45. http://dx.doi.org/10.1109/access.2020.3022752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Törő, Olivér, Tamás Bécsi, Szilárd Aradi, and Péter Gáspár. "IMM Bernoulli Gaussian Particle Filter." IFAC-PapersOnLine 51, no. 22 (2018): 274–79. http://dx.doi.org/10.1016/j.ifacol.2018.11.554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Du, Haocui, and Weixin Xie. "Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter." Sensors 20, no. 18 (September 20, 2020): 5387. http://dx.doi.org/10.3390/s20185387.

Full text
Abstract:
The existence of clutter, unknown measurement sources, unknown number of targets, and undetected probability are problems for multi-extended target tracking, to address these problems; this paper proposes a gamma-Gaussian-inverse Wishart (GGIW) implementation of a marginal distribution Poisson multi-Bernoulli mixture (MD-PMBM) filter. Unlike existing multiple extended target tracking filters, the GGIW-MD-PMBM filter computes the marginal distribution (MD) and the existence probability of each target, which can shorten the computing time while maintaining good tracking results. The simulation results confirm the validity and reliability of the GGIW-MD-PMBM filter.
APA, Harvard, Vancouver, ISO, and other styles
6

Mahler, Ronald. "Exact Closed-Form Multitarget Bayes Filters." Sensors 19, no. 12 (June 24, 2019): 2818. http://dx.doi.org/10.3390/s19122818.

Full text
Abstract:
The finite-set statistics (FISST) foundational approach to multitarget tracking and information fusion has inspired work by dozens of research groups in at least 20 nations; and FISST publications have been cited tens of thousands of times. This review paper addresses a recent and cutting-edge aspect of this research: exact closed-form—and, therefore, provably Bayes-optimal—approximations of the multitarget Bayes filter. The five proposed such filters—generalized labeled multi-Bernoulli (GLMB), labeled multi-Bernoulli mixture (LMBM), and three Poisson multi-Bernoulli mixture (PMBM) filter variants—are assessed in depth. This assessment includes a theoretically rigorous, but intuitive, statistical theory of “undetected targets”, and concrete formulas for the posterior undetected-target densities for the “standard” multitarget measurement model.
APA, Harvard, Vancouver, ISO, and other styles
7

Si, Weijian, Hongfan Zhu, and Zhiyu Qu. "A Novel Structure for a Multi-Bernoulli Filter without a Cardinality Bias." Electronics 8, no. 12 (December 5, 2019): 1484. http://dx.doi.org/10.3390/electronics8121484.

Full text
Abstract:
The original multi-target multi-Bernoulli (MeMBer) filter for multi-target tracking (MTT) is shown analytically to have a significant bias in its cardinality estimation. A novel cardinality balance multi-Bernoulli (CBMeMBer) filter reduces the cardinality bias by calculating the exact cardinality of the posterior probability generating functional (PGFl) without the second assumption of the original MeMBer filter. However, the CBMeMBer filter can only have a good performance under a high detection probability, and retains the first assumption of the MeMBer filter, which requires measurements that are well separated in the surveillance region. An improved MeMBer filter proposed by Baser et al. alleviates the cardinality bias by modifying the legacy tracks. Although the cardinality is balanced, the improved algorithm employs a low clutter density approximation. In this paper, we propose a novel structure for a multi-Bernoulli filter without a cardinality bias, termed as a novel multi-Bernoulli (N-MB) filter. We remove the approximations employed in the original MeMBer filter, and consequently, the N-MB filter performs well in a high clutter intensity and low signal-to-noise environment. Numerical simulations highlight the improved tracking performance of the proposed filter.
APA, Harvard, Vancouver, ISO, and other styles
8

Deusch, Hendrik, Stephan Reuter, and Klaus Dietmayer. "The Labeled Multi-Bernoulli SLAM Filter." IEEE Signal Processing Letters 22, no. 10 (October 2015): 1561–65. http://dx.doi.org/10.1109/lsp.2015.2414274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ouyang, C., C. Li, and H. Ji. "Improved multi-target multi-Bernoulli filter." IET Radar, Sonar & Navigation 6, no. 6 (July 1, 2012): 458–64. http://dx.doi.org/10.1049/iet-rsn.2011.0377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Shijie, and Humin Lei. "Measurement-Driven Multi-Target Multi-Bernoulli Filter." Mathematical Problems in Engineering 2018 (July 22, 2018): 1–9. http://dx.doi.org/10.1155/2018/6515608.

Full text
Abstract:
A measurement-driven multi-target multi-Bernoulli (MeMBer) filter which modifies the MeMBer filter by the measurements information is proposed in this paper. The proposed filter refines both the legacy estimates and the data-induced estimates of the MeMBer filter. For the targets under the legacy track set, the detection probabilities derived from the measurements are employed to refine the multi-target distribution. And for the targets under the data-induced track set, the multi-target distribution is further improved by the modified existence probabilities of the legacy tracks. Unlike the cardinality balanced MeMBer (CBMeMBer) filter, the proposed filter removes the cardinality bias in the MeMBer filter by utilizing the measurements information. Simulation results show that, compared with the traditional methods, the proposed filter can improve the stability and accuracy of the estimates and does not need the high detection probability hypothesis.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bernoulli filter"

1

Legrand, Leo. "Contributions aux pistages mono et multi-cibles fondés sur les ensembles finis aléatoires." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0107/document.

Full text
Abstract:
La détection et le pistage de cibles de surface, maritimes ou terrestres, constituent l’un des champs d’application de la surveillance par radar aéroporté. Dans ce contexte spécifique, il s’agit d’estimer les trajectoires d’un ou de plusieurs objets mobiles au cours du temps à partir de mesures radar bruitées. Cependant, plusieurs contraintes s’additionnent au problème d’estimation des trajectoires :1. le nombre d’objets présents dans la région d’intérêt est inconnu et peut évoluer au cours du temps,2. les mesures fournies par le radar ne correspondent pas toutes à des objets mobiles car certaines sont dues à l’environnement ; il s’agit de fausses alarmes,3. une mesure n’est pas toujours disponible pour chaque objet à chaque instant ; il s’agit de non-détections,4. les cibles de surface peuvent être très diverses en termes de capacité de manoeuvre.Pour tenir compte des trois premières exigences, les modèles d’ensembles finis aléatoires peuvent être envisagés pour procéder aux estimations simultanées du nombre d’objets et de leur trajectoire dans un formalisme bayésien. Pour répondre à la quatrième contrainte, une classification des objets à pister peut s’avérer utile. Aussi, dans le cadre de cette thèse, nous nous intéressons à deux traitements adaptatifs qui intègrent ces deux principes.Tout d’abord, nous proposons une approche conjointe de pistage et de classification dédiée au cas d’un objet évoluant en présence de fausses alarmes. Notre contribution réside dans le développement d’un algorithme incorporant un filtre fondé sur un ensemble fini aléatoire de Bernoulli. L’algorithme résultant combine robustesse aux fausses alarmes et capacité à classer l’objet. Cette classification peut être renforcée grâce à l’estimation d’un paramètre discriminant comme la longueur, qui est déduite d’une mesure d’étalement distance.Le second traitement adaptatif présenté dans cette thèse est une technique de pistage de groupes de cibles dont les mouvements sont coordonnés. Chaque groupe est caractérisé par un paramètre commun définissant la coordination des mouvements de ses cibles. Cependant, ces dernières conservent une capacité de manoeuvre propre par rapport à la dynamique de groupe. S’appuyant sur le formalisme des ensembles finis aléatoires, la solution proposée modélise hiérarchiquement la configuration multi-groupes multi-cibles. Au niveau supérieur, la situation globale est représentée par un ensemble fini aléatoire dont les éléments correspondent aux groupes de cibles. Ils sont constitués du paramètredu groupe et d’un ensemble fini aléatoire multi-cibles. Ce dernier contient les vecteurs d’état des cibles du groupe dont le nombre peut évoluer au cours du temps. L’algorithme d’estimation développé est lui-aussi organisé de manière hiérarchique. Un filtre multi-Bernoulli labélisé (LMB) permet d’estimer le nombre de groupes, puis pour chacun d’entre eux, leur probabilité d’existence ainsi que leur paramètre commun. Pour ce faire, le filtre LMB interagit avec un banc de filtres multi-cibles qui opèrent conditionnellement à une hypothèse de groupe. Chaque filtre multi-cibles estime le nombre et les vecteurs d’état des objets du groupe. Cette approche permet de fournir à l’opérationnel des informations sur la situation tactique
Detecting and tracking maritime or ground targets is one of the application fields for surveillance by airborne radar systems. In this specific context, the goal is to estimate the trajectories of one or more moving objects over time by using noisy radar measurements. However, several constraints have to be considered in addition to the problem of estimating trajectories:1. the number of objects inside the region of interest is unknown and may change over time,2. the measurements provided by the radar can arise from the environment and do not necessarily correspond to a mobile object; the phenomenon is called false detection,3. a measurement is not always available for each object; the phenomenon is called non-detection,4. the maneuverability depends on the surface targets.Concerning the three first points, random finite set models can be considered to simultaneously estimate the number of objects and their trajectories in a Bayesian formalism. To deal with the fourth constraint, a classification of the objects to be tracked can be useful. During this PhD thesis, we developped two adaptive approaches that take into account both principles.First of all, we propose a joint target tracking and classification method dedicated to an object with the presence of false detections. Our contribution is to incorporate a filter based on a Bernoulli random finite set. The resulting algorithm combines robustness to the false detections and the ability to classify the object. This classification can exploit the estimation of a discriminating parameter such as the target length that can be deduced from a target length extent measurement.The second adaptive approach presented in this PhD dissertation aims at tracking target groups whose movements are coordinated. Each group is characterized by a common parameter defining the coordination of the movements of its targets. However, the targets keep their own capabilities of maneuvering relatively to the group dynamics. Based on the random finite sets formalism, the proposed solution represents the multi-target multi-group configuration hierarchically. At the top level, the overall situation is modeled by a random finite set whose elements correspond to the target groups. They consist of the common parameter of the group and a multi-target random finite set. The latter contains the state vectors of the targets of the group whose number may change over time. The estimation algorithm developed is also organized hierarchically. A labeled multi-Bernoulli filter (LMB) makes it possible to estimate the number of groups, and for each of them, to obtain their probability of existence as well as their common parameter. For this purpose, the LMB filter interacts with a bank of multi-target filters working conditionally to a group hypothesis. Each multi-target filter estimates the number and state vectors of the objects in the group. This approach provides operational information on the tactical situation
APA, Harvard, Vancouver, ISO, and other styles
2

Pace, Michele. "Stochastic models and methods for multi-object tracking." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00651396.

Full text
Abstract:
La poursuite multi-cibles a pour objet le suivi d'un ensemble de cibles mobiles à partir de données obtenues séquentiellement. Ce problème est particulièrement complexe du fait du nombre inconnu et variable de cibles, de la présence de bruit de mesure, de fausses alarmes, d'incertitude de détection et d'incertitude dans l'association de données. Les filtres PHD (Probability Hypothesis Density) constituent une nouvelle gamme de filtres adaptés à cette problématique. Ces techniques se distinguent des méthodes classiques (MHT, JPDAF, particulaire) par la modélisation de l'ensemble des cibles comme un ensemble fini aléatoire et par l'utilisation des moments de sa densité de probabilité. Dans la première partie, on s'intéresse principalement à la problématique de l'application des filtres PHD pour le filtrage multi-cibles maritime et aérien dans des scénarios réalistes et à l'étude des propriétés numériques de ces algorithmes. Dans la seconde partie, nous nous intéressons à l'étude théorique des processus de branchement liés aux équations du filtrage multi-cibles avec l'analyse des propriétés de stabilité et le comportement en temps long des semi-groupes d'intensités de branchements spatiaux. Ensuite, nous analysons les propriétés de stabilité exponentielle d'une classe d'équations à valeurs mesures que l'on rencontre dans le filtrage non-linéaire multi-cibles. Cette analyse s'applique notamment aux méthodes de type Monte Carlo séquentielles et aux algorithmes particulaires dans le cadre des filtres de Bernoulli et des filtres PHD.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bernoulli filter"

1

Streit, Roy, Robert Blair Angle, and Murat Efe. "Multi-Bernoulli Mixture and Multiple Hypothesis Tracking Filters." In Analytic Combinatorics for Multiple Object Tracking, 113–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61191-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bernoulli filter"

1

Fontana, Marco, Angel F. Garcia-Fenandez, and Simon Maskell. "Bernoulli merging for the Poisson multi-Bernoulli mixture filter." In 2020 IEEE 23rd International Conference on Information Fusion (FUSION). IEEE, 2020. http://dx.doi.org/10.23919/fusion45008.2020.9190443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Williams, Jason L. "The best fitting multi-Bernoulli filter." In 2014 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2014. http://dx.doi.org/10.1109/ssp.2014.6884615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Bin, Jun Wang, Wenguang Wang, and Shaoming Wei. "Multipath Generalized Labeled Multi-Bernoulli Filter." In 2018 21st International Conference on Information Fusion (FUSION 2018). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Xuan, Hongbing Ji, Yongquan Zhang, and Nanqi Chen. "Box Particle Fast Labeled Multi-Bernoulli Filter." In 2019 IEEE 5th International Conference on Computer and Communications (ICCC). IEEE, 2019. http://dx.doi.org/10.1109/iccc47050.2019.9064190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cormack, David, and Daniel Clark. "Tracking Small UAVs Using a Bernoulli Filter." In 2016 Sensor Signal Processing for Defence (SSPD). IEEE, 2016. http://dx.doi.org/10.1109/sspd.2016.7590614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yiqi, Ping Wei, Gaiyou Li, Lin Gao, and Yuansheng Li. "The Spline Multi-Target Multi-Bernoulli Filter." In 2020 IEEE 23rd International Conference on Information Fusion (FUSION). IEEE, 2020. http://dx.doi.org/10.23919/fusion45008.2020.9190412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vo, Ba-Tuong, and Ba-Ngu Vo. "Multi-Scan Generalized Labeled Multi-Bernoulli Filter." In 2018 21st International Conference on Information Fusion (FUSION 2018). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nannuru, Santosh, and Mark Coates. "Particle filter implementation of the multi-Bernoulli filter for superpositional sensors." In 2013 IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2013. http://dx.doi.org/10.1109/camsap.2013.6714084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Xi, Wei Li, Qin Lu, Peter Willett, and Qinyu Zhang. "Underwater Acoustic Channel Tracking by Multi-Bernoulli Filter." In 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO). IEEE, 2018. http://dx.doi.org/10.1109/oceanskobe.2018.8558861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cao, Wenhuan, Shucai Huang, Daozhi Wei, Wei Zhao, and Jiahao Xie. "Generalized Labeled Multi-Bernoulli Filter Using Spectral Matching." In 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2019. http://dx.doi.org/10.1109/iaeac47372.2019.8997795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography