Academic literature on the topic 'Bernoulli percolation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bernoulli percolation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bernoulli percolation"

1

Hilário, M. R., and V. Sidoravicius. "Bernoulli line percolation." Stochastic Processes and their Applications 129, no. 12 (2019): 5037–72. http://dx.doi.org/10.1016/j.spa.2019.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chayes, J. T., L. Chayes, and C. M. Newman. "Bernoulli Percolation Above Threshold: An Invasion Percolation Analysis." Annals of Probability 15, no. 4 (1987): 1272–87. http://dx.doi.org/10.1214/aop/1176991976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reimann, Stefan, and Andreas Tupak. "Can constrained percolation be approximated by Bernoulli percolation?" Journal of Physics A: Mathematical and General 35, no. 48 (2002): 10219–27. http://dx.doi.org/10.1088/0305-4470/35/48/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hof, A. "Percolation on Penrose Tilings." Canadian Mathematical Bulletin 41, no. 2 (1998): 166–77. http://dx.doi.org/10.4153/cmb-1998-026-0.

Full text
Abstract:
AbstractIn Bernoulli site percolation on Penrose tilings there are two natural definitions of the critical probability. This paper shows that they are equal on almost all Penrose tilings. It also shows that for almost all Penrose tilings the number of infinite clusters is almost surely 0 or 1. The results generalize to percolation on a large class of aperiodic tilings in arbitrary dimension, to percolation on ergodic subgraphs of ℤd, and to other percolation processes, including Bernoulli bond percolation.
APA, Harvard, Vancouver, ISO, and other styles
5

Timár, Adám. "Neighboring clusters in Bernoulli percolation." Annals of Probability 34, no. 6 (2006): 2332–43. http://dx.doi.org/10.1214/009117906000000485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Pengfei. "Heavy Bernoulli-percolation clusters are indistinguishable." Annals of Probability 47, no. 6 (2019): 4077–115. http://dx.doi.org/10.1214/19-aop1354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mülbacher, Peter. "Critical parameters for loop and Bernoulli percolation." Latin American Journal of Probability and Mathematical Statistics 18, no. 1 (2021): 289. http://dx.doi.org/10.30757/alea.v18-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dembin, Barbara. "Regularity of the time constant for a supercritical Bernoulli percolation." ESAIM: Probability and Statistics 25 (2021): 109–32. http://dx.doi.org/10.1051/ps/2021005.

Full text
Abstract:
We consider an i.i.d. supercritical bond percolation on ℤd, every edge is open with a probability p > pc(d), where pc(d) denotes the critical parameter for this percolation. We know that there exists almost surely a unique infinite open cluster 𝒞p. We are interested in the regularity properties of the chemical distance for supercritical Bernoulli percolation. The chemical distance between two points x, y ∈ 𝒞p corresponds to the length of the shortest path in 𝒞p joining the two points. The chemical distance between 0 and nx grows asymptotically like nμp(x). We aim to study the regularity pro
APA, Harvard, Vancouver, ISO, and other styles
9

Mathieu, P., and A. Piatnitski. "Quenched invariance principles for random walks on percolation clusters." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, no. 2085 (2007): 2287–307. http://dx.doi.org/10.1098/rspa.2007.1876.

Full text
Abstract:
We consider a supercritical Bernoulli percolation model in , d ≥2, and study the simple symmetric random walk on the infinite percolation cluster. The aim of this paper is to prove the almost sure (quenched) invariance principle for this random walk.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Dayue. "On the infinite cluster of Bernoulli bond percolation in Scherk's graph." Journal of Applied Probability 38, no. 4 (2001): 828–40. http://dx.doi.org/10.1239/jap/1011994175.

Full text
Abstract:
Scherk's graph is a subgraph of the three-dimensional lattice. It was shown by Markvorsen, McGuinness and Thomassen (1992) that Scherk's graph is transient. Consider the Bernoulli bond percolation in Scherk's graph. We prove that the infinite cluster is transient forp> ½ and is recurrent forp< ½. This implies the well-known result of Grimmett, Kesten and Zhang (1993) on the transience of the infinite cluster of the Bernoulli bond percolation in the three-dimensional lattice forp> ½. On the other hand, Scherk's graph exhibits a new dichotomy in the supercritical region.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bernoulli percolation"

1

Raoufi, Aran. "Topics on the Phase Transition of the Lattice Models of Statistical Physics." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS572.

Full text
Abstract:
Le thème de cette thèse est l’utilisation de méthodes probabilistes (plus spécifiquement de technique venant de la théorie de la percolation) pour mener une analyse non-perturbative de plusieurs modèles de physique statistique. La thèse est centrée sur les systèmes de spins et les modèles de percolation. Cette famille de modèle comprend le modèle d’Ising, le modèle de Potts, la percolation de Bernoulli, la percolation de Fortuin-Kasteleyn et les modèles de percolation continue. L’objectif principal de la thèse est de démontrer la décroissance exponentielle des corrélations au-dessus de la temp
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bernoulli percolation"

1

Aymone, Marco, Marcelo R. Hilário, Bernardo N. B. de Lima, and Vladas Sidoravicius. "Bernoulli Hyperplane Percolation." In Progress in Probability. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60754-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chayes, J. T., and L. Chayes. "The Mean Field Bound for the Order Parameter of Bernoulli Percolation." In Percolation Theory and Ergodic Theory of Infinite Particle Systems. Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4613-8734-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!