Academic literature on the topic 'Bernstein polynomials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bernstein polynomials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bernstein polynomials"
Goodman, T. N. T., and S. L. Lee. "Convolution operators with trigonometric spline kernels." Proceedings of the Edinburgh Mathematical Society 31, no. 2 (June 1988): 285–99. http://dx.doi.org/10.1017/s0013091500003412.
Full textHan, Xuli. "The Trigonometric Polynomial Like Bernstein Polynomial." Scientific World Journal 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/174716.
Full textJanaki, G., and R. Sarulatha. "On Sequences of Geophine Triples Involving Padovan and Bernstein Polynomial with Propitious Property." Indian Journal Of Science And Technology 17, no. 16 (April 19, 2024): 1690–94. http://dx.doi.org/10.17485/ijst/v17i16.160.
Full textMahmudov, Nazim I. "Approximation by Genuineq-Bernstein-Durrmeyer Polynomials in Compact Disks in the Caseq>1." Abstract and Applied Analysis 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/959586.
Full textHamadneh, Tareq, Mohammed Ali, and Hassan AL-Zoubi. "Linear Optimization of Polynomial Rational Functions: Applications for Positivity Analysis." Mathematics 8, no. 2 (February 20, 2020): 283. http://dx.doi.org/10.3390/math8020283.
Full textGoodman, T. N. T., and A. Sharma. "A property of Bernstein-Schoenberg spline operators." Proceedings of the Edinburgh Mathematical Society 28, no. 3 (October 1985): 333–40. http://dx.doi.org/10.1017/s0013091500017144.
Full textTuran, Mehmet. "The Truncatedq-Bernstein Polynomials in the Caseq>1." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/126319.
Full textCichella, Venanzio, Isaac Kaminer, Claire Walton, Naira Hovakimyan, and António Pascoal. "Consistency of Approximation of Bernstein Polynomial-Based Direct Methods for Optimal Control." Machines 10, no. 12 (November 28, 2022): 1132. http://dx.doi.org/10.3390/machines10121132.
Full textProlla, João B. "A generalized Bernstein approximation theorem." Mathematical Proceedings of the Cambridge Philosophical Society 104, no. 2 (September 1988): 317–30. http://dx.doi.org/10.1017/s030500410006549x.
Full textKim, Taekyun, Lee-Chae Jang, and Heungsu Yi. "A Note on the Modifiedq-Bernstein Polynomials." Discrete Dynamics in Nature and Society 2010 (2010): 1–12. http://dx.doi.org/10.1155/2010/706483.
Full textDissertations / Theses on the topic "Bernstein polynomials"
Oruç, Halil. "Generalized Bernstein polynomials and total positivity." Thesis, University of St Andrews, 1999. http://hdl.handle.net/10023/11183.
Full textLiang, Jie Ling. "Approximation by Bernstein polynomials at the point of discontinuity." Honors in the Major Thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/460.
Full textB.S.
Bachelors
Sciences
Mathematics
Yang, Ning. "Structured matrix methods for computations on Bernstein basis polynomials." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/3311/.
Full textHerath, Dushanthi N. "Nonparametric Estimation of Receiver Operating Characteristic Surfaces Via Bernstein Polynomials." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177212/.
Full textPiazzon, Federico. "Bernstein Markov Properties and Applications." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424517.
Full textLa proprietà di Bernstein Markov per un compatto E ed una misura positiva finita μ avente supporto in E è un’ assunzione di comparabilità asintotica tra le norme uniformi ed L μ 2 dei polinomi di grado al più k (o altre famiglie innestate di funzioni) al tendere all’ infinito di k. Le Admissible Meshes sono sequenze di sottoinsiemi finiti A k del compatto E la cui cardinalità cresce in modo subesponenziale rispetto a k e per i quali esiste una costante positiva C tale che max E |p| ≤ C max A k |p| per ogni polinomi di grado al più k. Questi due oggetti matematici hanno molte appliicazioni e motivazioni prove- nienti dalla Teoria dell’ Approssimazione e dalla Teoria del Pluripotenziale, lo stu- dio delle funzioni plurisubarmoniche in più variabili complesse. Le proprietà delle misure di Bernstein Markov e delle admissible meshes per un dato compatto E sono molto simili, infatti le due definizioni possono essere viste come gli approcci rispettivamente continuo e discreto dello stesso problema. Questo lavoro si concentra nel fornire condizioni sufficienti per la proprietà di Bernstein Markov in diverse situazioni e nella costruzione esplicita di admissible meshes. Come primo problema vengono studiate condizioni sufficienti per una versione della proprietà di Bernstein Markov per successioni di funzioni razionali nel piano complesso in relazione alla stessa proprietà per i polinomi. Nel Capitolo 5 viene considerato il caso di un compatto E sottoinsieme di una varietà algebrica A ⊂ C n di dimensione pura m < n ed irriducibile e quindi provata una condizione sufficiente per la proprietà di Bernstein Markov per le tracce dei polinomi su E. A questo scopo vengono provati due risultati nuovi in Teoria del Pluripoten- ziale riguardanti la convergenza e la comparabilità della capacità relativa (di Monge Ampère), delle funzioni plurisubarmoniche estremali globali e relative e delle co- stanti di Chebyshev per sottoinsiemi E j di un dato compatto E della varietà alge- brica A, anche nel caso A sia singolare. Tali risultati sono di interesse indipendente. Nell’ultima parte della tesi vengono provate ed illustrate alcune procedure per la costruzione di admissible meshes per alcune classi di compatti reali. In ultimo vengono presentati alcuni nuovi algoritmi, basati sulle admissible meshes, per l’ approssimazione numerica delle più rilevanti grandezze in Teoria del Pluripotenziale: il diametro transfinito, la funzione estremale di Siciak-Zaharjuta e la misura di equilibrio pluripotenziale.
Bourne, Martin. "Structure-preserving matrix methods for computations on univariate and bivariate Bernstein polynomials." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20860/.
Full textKebede, Sebsibew. "On Bernstein-Sato ideals and Decomposition of D-modules over Hyperplane Arrangements." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129493.
Full textHarden, Lisa A. Govil N. K. "On the growth of polynomials and entire functions of exponential type." Auburn, Ala., 2004. http://repo.lib.auburn.edu/EtdRoot/2004/FALL/Mathematics/Thesis/hardeli_58_Thesis.pdf.
Full textHamadneh, Tareq [Verfasser]. "Bounding Polynomials and Rational Functions in the Tensorial and Simplicial Bernstein Forms / Tareq Hamadneh." Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1151075027/34.
Full textStahlke, Colin. "Bernstein-Polynom und Tjurinazahl von [mu]-konstant-Deformationen der Singularitäten xa̲ + yb̲." Bonn : [s.n.], 1998. http://catalog.hathitrust.org/api/volumes/oclc/41464676.html.
Full textBooks on the topic "Bernstein polynomials"
Grinshpun, Z. S. Ortogonalʹnye mnogochleny Bernshteĭna-sege. Alma-Ata: Gylym, 1992.
Find full textFreund, Roland W. New Bernstein type inequalitites for polynomials on ellipses. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1990.
Find full textTenbusch, Axel. Nonparametric curve estimation with Bernstein estimates. Osnabrück: Universitätsverlag Rasch, 1995.
Find full textFreund, Roland W. On Bernstein type inequalities and a weighted Chebyshev approximation problem on ellipses. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.
Find full textRassias, Themistocles, ed. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials: (Mathematical Analysis and its Applications). London, UK: San Diego: Elsevier Science & Technology, 2019.
Find full textBernstein-Type Inequalities for Polynomials and Rational Functions. Elsevier Science & Technology, 2020.
Find full textShape-Preserving Approximation by Real and Complex Polynomials. Birkhäuser Boston, 2014.
Find full textGal, Sorin G. Approximation by Complex Bernstein and Convolution Type Operators. World Scientific Publishing Co Pte Ltd, 2009.
Find full textBook chapters on the topic "Bernstein polynomials"
Phillips, George M. "Bernstein Polynomials." In CMS Books in Mathematics, 247–90. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/0-387-21682-0_7.
Full textDeVore, Ronald A., and George G. Lorentz. "Bernstein Polynomials." In Grundlehren der mathematischen Wissenschaften, 303–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02888-9_10.
Full textLorentz, G. G. "Deferred Bernstein Polynomials." In Mathematics from Leningrad to Austin, 819–23. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-5329-7_75.
Full textLubinsky, Doron S., and Edward B. Saff. "Bernstein's formula and bernstein extremal polynomials." In Strong Asymptotics for Extremal Polynomials Associated with Weights on ℝ, 111–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082426.
Full textBustamante, Jorge. "Iterates of Bernstein Polynomials." In Bernstein Operators and Their Properties, 359–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_8.
Full textLyche, Tom, and Jean-Louis Merrien. "Bézier Curves and Bernstein Polynomials." In Exercises in Computational Mathematics with MATLAB, 131–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43511-3_7.
Full textBustamante, Jorge. "Bernstein Polynomials as Linear Operators." In Bernstein Operators and Their Properties, 161–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_3.
Full textBustamante, Jorge. "Linear Combinations of Bernstein Polynomials." In Bernstein Operators and Their Properties, 371–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_9.
Full textBerens, Hubert, and George G. Lorentz. "Inverse Theorems for Bernstein Polynomials." In Mathematics from Leningrad to Austin, 947–62. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-5329-7_86.
Full textLevin, Eli, and Doron S. Lubinsky. "Formulae Involving Bernstein-Szegő Polynomials." In SpringerBriefs in Mathematics, 117–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72947-3_12.
Full textConference papers on the topic "Bernstein polynomials"
Wu, Xuezhi, and Wenjuan Zhong. "Fuzzy q-Bernstein polynomials." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6233924.
Full textSchmeisser, Gerhard. "Real zeros of Bernstein polynomials." In Third CMFT Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812833044_0038.
Full textWang, Yongqiao, and Xudong Liu. "Multivariate Probability Calibration with Isotonic Bernstein Polynomials." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/353.
Full textGRANGER, MICHEL. "BERNSTEIN-SATO POLYNOMIALS AND FUNCTIONAL EQUATIONS." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0006.
Full textBen Sassi, Mohamed Amin, and Sriram Sankaranarayanan. "Stability and stabilization of polynomial dynamical systems using Bernstein polynomials." In HSCC '15: 18th International Conference on Hybrid Systems: Computation and Control. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2728606.2728639.
Full textCetin, Elif, Hatice Ozbay, Muge Togan, I. Naci Cangul, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Properties of n-th Degree Bernstein Polynomials." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636745.
Full textAçíkgöz, Mehmet, Serkan Araci, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "On the Generating Function for Bernstein Polynomials." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3497855.
Full textSimsek, Yilmaz, Mehmet Acikgoz, Abdelmejid Bayad, V. Lokesha, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "q-Frobenius-Euler Polynomials Related to the (q-)Bernstein Type Polynomials." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3497862.
Full textJanchitrapongvej, Kanok, Chaipichit Cumpim, and Pongpan Rattanathanawan. "Chrominance gain slope equalizer based on bernstein polynomials." In 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2013). IEEE, 2013. http://dx.doi.org/10.1109/ecticon.2013.6559653.
Full textNava, Jaime, Olga Kosheleva, and Vladik Kreinovich. "Why bernstein polynomials are better: Fuzzy-inspired justification." In 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2012. http://dx.doi.org/10.1109/fuzz-ieee.2012.6251341.
Full text