Academic literature on the topic 'Best linear unbiased estimator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Best linear unbiased estimator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Best linear unbiased estimator"
Štulajter, František. "Robustness of the best linear unbiased estimator and predictor in linear regression models." Applications of Mathematics 35, no. 2 (1990): 162–68. http://dx.doi.org/10.21136/am.1990.104398.
Full textSjöberg, Lars. "On the Best Quadratic Minimum Bias Non-Negative Estimator of a Two-Variance Component Model." Journal of Geodetic Science 1, no. 3 (September 1, 2011): 280–85. http://dx.doi.org/10.2478/v10156-011-0006-y.
Full textLiu, Yonghui. "On equality of ordinary least squares estimator, best linear unbiased estimator and best linear unbiased predictor in the general linear model." Journal of Statistical Planning and Inference 139, no. 4 (April 2009): 1522–29. http://dx.doi.org/10.1016/j.jspi.2008.08.015.
Full textWang, Xiang. "A best linear unbiased estimator for multi-seam deposits." International Journal of Mining and Geological Engineering 6, no. 3 (October 1988): 259–66. http://dx.doi.org/10.1007/bf00880977.
Full textWu, Jibo, and Chaolin Liu. "The best linear unbiased estimator in a singular linear regression model." Statistical Papers 59, no. 3 (July 28, 2016): 1193–204. http://dx.doi.org/10.1007/s00362-016-0811-6.
Full textPuntanen, Simo, George P. H. Styan, and Hans Joachim Werner. "Two matrix-based proofs that the linear estimator Gy is the best linear unbiased estimator." Journal of Statistical Planning and Inference 88, no. 2 (August 2000): 173–79. http://dx.doi.org/10.1016/s0378-3758(00)00076-8.
Full textMäkinen, J. "A bound for the Euclidean norm of the difference between the best linear unbiased estimator and a linear unbiased estimator." Journal of Geodesy 76, no. 6-7 (July 1, 2002): 317–22. http://dx.doi.org/10.1007/s00190-002-0262-9.
Full textBaksalary, Oskar Maria, and Götz Trenkler. "A projector oriented approach to the best linear unbiased estimator." Statistical Papers 50, no. 4 (August 2009): 721–33. http://dx.doi.org/10.1007/s00362-009-0252-6.
Full textWu, Jong-Wuu, Sheau-Chiann Chen, Wen-Chuan Lee, and Heng-Yi Lai. "Weighted Moments Estimators of the Parameters for the Extreme Value Distribution Based on the Multiply Type II Censored Sample." Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/281624.
Full textSchaden, Daniel, and Elisabeth Ullmann. "On Multilevel Best Linear Unbiased Estimators." SIAM/ASA Journal on Uncertainty Quantification 8, no. 2 (January 2020): 601–35. http://dx.doi.org/10.1137/19m1263534.
Full textDissertations / Theses on the topic "Best linear unbiased estimator"
Zhang, Keshu. "Best linear unbiased estimation fusion with constraints." ScholarWorks@UNO, 2003. http://louisdl.louislibraries.org/u?/NOD,86.
Full textTitle from electronic submission form. "A dissertation ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical Engineering"--Dissertation t.p. Vita. Includes bibliographical references.
Li, Huilin. "Small area estimation an empirical best linear unbiased prediction approach /." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7600.
Full textThesis research directed by: Mathematical Statistics Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Haq, Abdul. "Improvements in ranked set sampling." Thesis, University of Canterbury. Mathematics and Statistics, 2014. http://hdl.handle.net/10092/9661.
Full textTeixeira, Marcos Vinícius. "Estudos sobre a implementação online de uma técnica de estimação de energia no calorímetro hadrônico do atlas em cenários de alta luminosidade." Universidade Federal de Juiz de Fora (UFJF), 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/4169.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-25T15:26:43Z (GMT) No. of bitstreams: 1 marcosviniciusteixeira.pdf: 5877294 bytes, checksum: 8fe056549285d49782c2d9ec8e16f786 (MD5)
Made available in DSpace on 2017-04-25T15:26:43Z (GMT). No. of bitstreams: 1 marcosviniciusteixeira.pdf: 5877294 bytes, checksum: 8fe056549285d49782c2d9ec8e16f786 (MD5) Previous issue date: 2015-08-21
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Este trabalho tem como objetivo o estudo de técnicas para a estimação da amplitude de sinais no calorímetro de telhas (TileCal) do ATLAS no LHC em cenários de alta luminosidade. Em alta luminosidade, sinais provenientes de colisões adjacentes são observados, ocasionando o efeito de empilhamento de sinais. Neste ambiente, o método COF (do inglês, Constrained Optimal Filter), apresenta desempenho superior ao algoritmo atualmente implementado no sistema. Entretanto, o COF requer a inversão de matrizes para o cálculo da pseudo-inversa de uma matriz de convolução, dificultando sua implementação online. Para evitar a inversão de matrizes, este trabalho apresenta métodos interativos, para a daptação do COF, que resultam em operações matemáticas simples. Baseados no Gradiente Descendente, os resultados demonstraram que os algoritmos são capazes de estimar a amplitude de sinais empilhados, além do sinal de interesse com eficiência similar ao COF. Visando a implementação online, este trabalho apresenta estudos sobre a complexidade dos métodos iterativos e propõe uma arquitetura de processamento em FPGA. Baseado em uma estrutura sequencial e utilizando lógica aritmética em ponto fixo, os resultados demonstraram que a arquitetura desenvolvida é capaz executar o método iterativo, atendendo os requisitos de tempo de processamento exigidos no TileCal.
This work aims at the study of techniques for online energy estimation in the ATLAS hadronic Calorimeter (TileCal) on the LHC collider. During further periods of the LHC operation, signals coming from adjacent collisions will be observed within the same window, producing a signal superposition. In this environment, the energy reconstruction method COF (Constrained Optimal Filter) outperforms the algorithm currently implemented in the system. However , the COF method requires an inversion of matrices and its online implementation is not feasible. To avoid such inversion of matrices, this work presents iteractive methods to implement the COF, resulting in simple mathematical operations. Based on the Gradient Descent, the results demonstrate that the algorithms are capable of estimating the amplitude of the superimposed signals with efficiency similar to COF. In addition, a processing architecture for FPGA implementation is proposed. The analysis has shown that the algorithms can be implemented in the new TilaCal electronics, reaching the processing time requirements.
Krishnan, Rajet. "Problems in distributed signal processing in wireless sensor networks." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1351.
Full textZhao, Zhanlue. "Performance Appraisal of Estimation Algorithms and Application of Estimation Algorithms to Target Tracking." ScholarWorks@UNO, 2006. http://scholarworks.uno.edu/td/394.
Full textMbah, Alfred Kubong. "On the theory of records and applications." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002216.
Full textEatwell, Karen Anne. "Remediation of instability in Best Linear Unbiased Prediction." Thesis, University of Pretoria, 2013. http://hdl.handle.net/2263/40245.
Full textThesis (PhD)--University of Pretoria, 2013.
gm2014
Genetics
unrestricted
Hettasch, Marianne Helena. "Applicability of best linear unbiased prediction (BLUP) for the selection of ortets in Eucalyptus hybrid populations." Diss., Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-08062009-122539.
Full textLadejobi, Olufunmilayo Olubukola. "Testing new genetic and genomic approaches for trait mapping and prediction in wheat (Triticum aestivum) and rice (Oryza spp)." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277449.
Full textBooks on the topic "Best linear unbiased estimator"
Geological Survey (U.S.), ed. KRIGING: An interactive program to determine the best linear unbiased estimation. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textBook chapters on the topic "Best linear unbiased estimator"
Puntanen, Simo, and George P. H. Styan. "Best Linear Unbiased Estimation in Linear Models." In International Encyclopedia of Statistical Science, 141–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_143.
Full textZimmerman, Dale L. "Best Linear Unbiased Estimation for the Aitken Model." In Linear Model Theory, 239–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52063-2_11.
Full textZimmerman, Dale L. "Best Linear Unbiased Estimation for the Aitken Model." In Linear Model Theory, 153–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52074-8_11.
Full textFerreira, Sandra S., Dário Ferreira, Célia Nunes, Francisco Carvalho, and João Tiago Mexia. "Orthogonal Block Structure and Uniformly Best Linear Unbiased Estimators." In Contributions to Statistics, 89–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17519-1_7.
Full textBalakrishnan, N., and William W. S. Chen. "Best Linear Unbiased Estimation of Location and Scale Parameters." In Handbook of Tables for Order Statistics from Lognormal Distributions with Applications, 13–15. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5309-0_4.
Full textBalakrishnan, N., and C. R. Rao. "Large-Sample Approximations to the Best Linear Unbiased Estimation and Best Linear Unbiased Prediction Based on Progressively Censored Samples and Some Applications." In Advances in Statistical Decision Theory and Applications, 431–44. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-2308-5_28.
Full textClark, Samuel A., and Julius van der Werf. "Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values." In Methods in Molecular Biology, 321–30. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-447-0_13.
Full textZimmerman, Dale L. "Best Linear Unbiased Prediction." In Linear Model Theory, 301–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52063-2_13.
Full textZimmerman, Dale L. "Best Linear Unbiased Prediction." In Linear Model Theory, 185–222. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52074-8_13.
Full textShekhar, Shashi, and Hui Xiong. "Best Linear Unbiased Prediction." In Encyclopedia of GIS, 52. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_98.
Full textConference papers on the topic "Best linear unbiased estimator"
Comuniello, Antonella, Alessio De Angelis, and Antonio Moschitta. "Ultrasound TDoA positioning using the Best Linear Unbiased Estimator." In 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2019. http://dx.doi.org/10.1109/i2mtc.2019.8827071.
Full textLang, Oliver, Alexander Onic, Markus Steindl, and Mario Huemer. "Constrained Best Linear and Widely Linear Unbiased Estimation." In 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018. http://dx.doi.org/10.1109/acssc.2018.8645155.
Full textLiang, Ao, Fu Yun, and Zeng Zhaoyang. "Best linear unbiased estimation method for ammunition storage reliability data." In EM). IEEE, 2009. http://dx.doi.org/10.1109/icieem.2009.5344632.
Full textZhang, K., and X. R. Li. "Optimal sensor data quantization for best linear unbiased estimation fusion." In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1428861.
Full textDikici, Engin, Fredrik Orderud, and Hans Torp. "Best linear unbiased estimator for Kalman filter based left ventricle tracking in 3D+T echocardiography." In 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA). IEEE, 2012. http://dx.doi.org/10.1109/mmbia.2012.6164741.
Full textWu, Jwo-Yuh, and Ling-Hua Chang. "Channel-aware distributed best-linear-unbiased estimation with reduced communication overheads." In ICC 2012 - 2012 IEEE International Conference on Communications. IEEE, 2012. http://dx.doi.org/10.1109/icc.2012.6363845.
Full textNiu, Dunbiao, Linxia Zhang, Enbin Song, and Yunmin Zhu. "The Equivalence Between Distributed and Centralized Best Linear Unbiased Estimation Fusion." In 2018 21st International Conference on Information Fusion (FUSION 2018). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455320.
Full textWang, Pengfei, Hang Zhang, Liu Yang, and Yue Xiao. "An Improved Best Linear Unbiased Estimate with Conjugate Gradient for Channel Estimation in Massive MIMO Systems." In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2019. http://dx.doi.org/10.1109/imcec46724.2019.8984045.
Full textWu, Jwo-Yuh, and Tsang-Yi Wang. "Power allocation for robust distributed Best-Linear-Unbiased Estimation against sensing noise variance uncertainty." In 2011 IEEE 12th Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2011). IEEE, 2011. http://dx.doi.org/10.1109/spawc.2011.5990391.
Full textPladdy, C., S. Ozen, M. J. Fimoff, S. M. Nerayanuru, and M. D. Zoltowsko. "Best linear unbiased channel estimation for frequency selective multipath channels with long delay spreads." In 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484). IEEE, 2003. http://dx.doi.org/10.1109/vetecf.2003.1285220.
Full text